#include #include #include #include #include #include "shaders.h" #include "Entity.h" #include "Cube.h" #include "MeshRenderComponent.h" #include "FollowCam.h" void TickTree(Entity *e, float deltaSeconds); void ComputeModelMatrices(Entity *ep, hmm_mat4 parentModelMatrix); using std::chrono::high_resolution_clock; int main() { // Initialise GLFW glewExperimental = true; // Needed for core profile if (!glfwInit()) { fprintf( stderr, "Failed to initialize GLFW\n" ); return -1; } glfwWindowHint(GLFW_SAMPLES, 4); // 4x antialiasing glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // We want OpenGL 3.3 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // We don't want the old OpenGL // Open a window and create its OpenGL context GLFWwindow* window; // (In the accompanying source code, this variable is global for simplicity) window = glfwCreateWindow( 1024, 768, "Tutorial 01", NULL, NULL); if (window == NULL) { fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" ); glfwTerminate(); return -1; } glfwMakeContextCurrent(window); // Initialize GLEW glewExperimental=true; // Needed in core profile if (glewInit() != GLEW_OK) { fprintf(stderr, "Failed to initialize GLEW\n"); return -1; } // Ensure we can capture the escape key being pressed below glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE); // Create and compile our GLSL program from the shaders GLuint programID = LoadShaders("src/vertex.glsl", "src/fragment.glsl"); if (!programID) { return 1; } // Get a handle for our "MVP" uniform // Only during the initialisation GLuint uniformID_M = glGetUniformLocation(programID, "M"); GLuint uniformID_V = glGetUniformLocation(programID, "V"); GLuint uniformID_MVP = glGetUniformLocation(programID, "MVP"); // Enable depth test glEnable(GL_DEPTH_TEST); // Accept fragment if it closer to the camera than the former one glDepthFunc(GL_LESS); Cube c1 = Cube(); Entity monkey = Entity(); monkey.position = HMM_Vec3(2.1f, 0.0f, 0.0f); monkey.renderComponent = new MeshRenderComponent("MonkeySmooth.obj"); FollowCam cam = FollowCam(&monkey); // cam.position = HMM_Vec3(3.0f, 3.0f, 4.0f); cam.position = HMM_Vec3(3.0f, 3.0f, 5.0f); // cam.rotation = HMM_QuaternionFromAxisAngle(HMM_Vec3(0.0f, 1.0f, 0.0f), HMM_ToRadians(90.0f)); // Cube c = Cube(); // monkey.position = HMM_Vec3(2.1f, 0.0f, 0.0f); // monkey.AddChild(&c); c1.AddChild(&monkey); Entity root = Entity(); root.AddChild(&c1); root.AddChild(&cam); bool hasTicked = false; high_resolution_clock::time_point lastTickTime; do { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Tick auto now = high_resolution_clock::now(); if (hasTicked) { auto elapsedNanoseconds = std::chrono::duration_cast(now - lastTickTime).count(); float elapsedSeconds = elapsedNanoseconds / 1000000000.0f; TickTree(&root, elapsedSeconds); } lastTickTime = now; hasTicked = true; // Compute model positions for rendering ComputeModelMatrices(&root, HMM_Mat4d(1.0f)); // Render! hmm_mat4 projection = cam.projectionMatrix(); hmm_mat4 view = cam.viewMatrix(); hmm_mat4 vp = projection * view; auto it = EntityIterator(&root); while (it.HasNext()) { Entity *e = it.Next(); if (e->renderComponent) { // Use our shader glUseProgram(programID); // Send uniforms glUniformMatrix4fv(uniformID_M, 1, GL_FALSE, &e->modelMatrix.Elements[0][0]); glUniformMatrix4fv(uniformID_V, 1, GL_FALSE, &view.Elements[0][0]); hmm_mat4 mvp = vp * e->modelMatrix; glUniformMatrix4fv(uniformID_MVP, 1, GL_FALSE, &mvp.Elements[0][0]); e->renderComponent->Draw(); } } // Swap buffers glfwSwapBuffers(window); glfwPollEvents(); } while ( // Check if the ESC key was pressed or the window was closed glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS && glfwWindowShouldClose(window) == 0 ); } void TickTree(Entity *e, float deltaSeconds) { e->Tick(deltaSeconds); for (auto child : e->children) { TickTree(child, deltaSeconds); } } void ComputeModelMatrices(Entity *e, hmm_mat4 parentModelMatrix) { e->parentModelMatrix = parentModelMatrix; e->modelMatrix = parentModelMatrix * HMM_Translate(e->position) * HMM_QuaternionToMat4(e->rotation) * HMM_Scale(e->scale); for (int i = 0; i < e->children.size(); i++) { ComputeModelMatrices(e->children[i], e->modelMatrix); } }