Files
HandmadeMath/test/categories/QuaternionOps.h
Logan Forman c24e4ff873 HMM2.0 (#149)
These changes were all made by @dev-dwarf. Many thanks for his work on this!

* Renaming

* First Pass on 2.0UpdateTool

* Another pass on UpdateTool, changed name

* Another pass on UpdateTool, changed name

* Do Renaming

* Working on Angles Consistency

* Passing Coverage

* Remove unused arc-tangent functions

* Change macro defaults

By default if user is overriding trig functions assume their input and internal units are the same.

* wrap in AngleDeg instead of AngleRad

* Remove HMM_PREFIX configuration

* Fix for Slerp

https://discord.com/channels/239737791225790464/489148972305350656/1055167647274246265

Justified by most implementations of Slerp. EX: http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/

* Handedness Changes

* More renaming. C11 _Generics

Generics enable by default when available (see lines 97-104). User can also force them by defining HANDMADE_MATH_C11_GENERICS

Also fixed some missed things w.r.t renaming. My old tool didn't catch cases like HMM_MultiplyVec3f needing to be HMM_MulV3F instead of HMM_MulV3f.

* Reuse more SSE codepaths for Quaternions

Also improved quaternion tests. More work could be done here, see discussion here about optimizing slerp: https://discord.com/channels/239737791225790464/489148972305350656/1055167647274246265

* Just saving these alternate versions of SLerp

* Reduce V4/M4 Linear Comb. codepaths

* Simple implementation of 2x2 and 3x3 basic matrix operations.

Also renamed Transpose to TransposeM4, so that we can have TransposeM2,M3

* Norm is dead! Long live Norm!

As can be seen from the tests, precision has declined quite a bit from using the FastNorm implementations for various things. We can only guarantee about 0.001f precision for anything where a norm happens now. If this is undesired we can change back easily.

* Started work on Matrix Inverses

TODO: Tests for simple 4x4 Inverses

* Matrix Inverses + Tests

* Generics for Matrices and Rename MXd/f functions

* Fixes + Better Output for UpdateTool

* I think I count as a contributor : )

* Ported UpdateTool, Inlined my library code.

* Moved tool to different repo

https://github.com/dev-dwarf/HMM2.0UpdateTool

* Remove small test change

* Found some more references to atan functions

* Standardize angle function names, use short names

* Remove other slerp comments

* woops that wasnt meant to be commited.

* Finish changing ToRadians to ToRad

* Fix [] overloads

per https://discord.com/channels/239737791225790464/600063880533770251/1051600188302692402

* Tests for 2x2, 3x3 Matrices and Other Matrix Ops

* Add an option to use Z: [0, 1] range for projection matrices.

This will make HMM more convenient to use with other graphics APIs such as Direct3d and Metal.

* Update test imports

* #if should've been #ifdef!

* Implement requested changes
2023-01-22 17:34:50 -06:00

277 lines
8.8 KiB
C

#include "../HandmadeTest.h"
TEST(QuaternionOps, Inverse)
{
HMM_Quat q1 = HMM_Q(1.0f, 2.0f, 3.0f, 4.0f);
HMM_Quat inverse = HMM_InvQ(q1);
HMM_Quat result = HMM_MulQ(q1, inverse);
EXPECT_FLOAT_EQ(result.X, 0.0f);
EXPECT_FLOAT_EQ(result.Y, 0.0f);
EXPECT_FLOAT_EQ(result.Z, 0.0f);
EXPECT_FLOAT_EQ(result.W, 1.0f);
}
TEST(QuaternionOps, Dot)
{
HMM_Quat q1 = HMM_Q(1.0f, 2.0f, 3.0f, 4.0f);
HMM_Quat q2 = HMM_Q(5.0f, 6.0f, 7.0f, 8.0f);
{
float result = HMM_DotQ(q1, q2);
EXPECT_FLOAT_EQ(result, 70.0f);
}
#ifdef __cplusplus
{
float result = HMM_Dot(q1, q2);
EXPECT_FLOAT_EQ(result, 70.0f);
}
#endif
}
TEST(QuaternionOps, Normalize)
{
HMM_Quat q = HMM_Q(1.0f, 2.0f, 3.0f, 4.0f);
{
HMM_Quat result = HMM_NormQ(q);
EXPECT_NEAR(result.X, 0.1825741858f, 0.001f);
EXPECT_NEAR(result.Y, 0.3651483717f, 0.001f);
EXPECT_NEAR(result.Z, 0.5477225575f, 0.001f);
EXPECT_NEAR(result.W, 0.7302967433f, 0.001f);
}
#ifdef __cplusplus
{
HMM_Quat result = HMM_Norm(q);
EXPECT_NEAR(result.X, 0.1825741858f, 0.001f);
EXPECT_NEAR(result.Y, 0.3651483717f, 0.001f);
EXPECT_NEAR(result.Z, 0.5477225575f, 0.001f);
EXPECT_NEAR(result.W, 0.7302967433f, 0.001f);
}
#endif
}
TEST(QuaternionOps, NLerp)
{
HMM_Quat from = HMM_Q(0.0f, 0.0f, 0.0f, 1.0f);
HMM_Quat to = HMM_Q(0.5f, 0.5f, -0.5f, 0.5f);
HMM_Quat result = HMM_NLerp(from, 0.5f, to);
EXPECT_NEAR(result.X, 0.28867513f, 0.001f);
EXPECT_NEAR(result.Y, 0.28867513f, 0.001f);
EXPECT_NEAR(result.Z, -0.28867513f, 0.001f);
EXPECT_NEAR(result.W, 0.86602540f, 0.001f);
}
TEST(QuaternionOps, SLerp)
{
HMM_Quat from = HMM_Q(0.0f, 0.0f, 0.0f, 1.0f);
HMM_Quat to = HMM_Q(0.5f, 0.5f, -0.5f, 0.5f);
{
HMM_Quat result = HMM_SLerp(from, 0.0f, to);
EXPECT_NEAR(result.X, 0.0f, 0.001f);
EXPECT_NEAR(result.Y, 0.0f, 0.001f);
EXPECT_NEAR(result.Z, 0.0f, 0.001f);
EXPECT_NEAR(result.W, 1.0, 0.001f);
}
{
HMM_Quat result = HMM_SLerp(from, 0.25f, to);
EXPECT_NEAR(result.X, 0.149429246f, 0.001f);
EXPECT_NEAR(result.Y, 0.149429246f, 0.001f);
EXPECT_NEAR(result.Z, -0.149429246f, 0.001f);
EXPECT_NEAR(result.W, 0.965925812f, 0.001f);
}
{
HMM_Quat result = HMM_SLerp(from, 0.5f, to);
EXPECT_NEAR(result.X, 0.28867513f, 0.001f);
EXPECT_NEAR(result.Y, 0.28867513f, 0.001f);
EXPECT_NEAR(result.Z, -0.28867513f, 0.001f);
EXPECT_NEAR(result.W, 0.86602540f, 0.001f);
}
{
HMM_Quat result = HMM_SLerp(from, 0.75f, to);
EXPECT_NEAR(result.X, 0.40824830f, 0.001f);
EXPECT_NEAR(result.Y, 0.40824830f, 0.001f);
EXPECT_NEAR(result.Z, -0.40824830f, 0.001f);
EXPECT_NEAR(result.W, 0.70710676f, 0.001f);
}
{
HMM_Quat result = HMM_SLerp(from, 1.0f, to);
EXPECT_NEAR(result.X, 0.5f, 0.001f);
EXPECT_NEAR(result.Y, 0.5f, 0.001f);
EXPECT_NEAR(result.Z, -0.5f, 0.001f);
EXPECT_NEAR(result.W, 0.5f, 0.001f);
}
}
TEST(QuaternionOps, QuatToMat4)
{
const float abs_error = 0.001f;
HMM_Quat rot = HMM_Q(0.707107f, 0.0f, 0.0f, 0.707107f);
HMM_Mat4 result = HMM_QToM4(rot);
EXPECT_NEAR(result.Elements[0][0], 1.0f, abs_error);
EXPECT_NEAR(result.Elements[0][1], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[0][2], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[0][3], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[1][0], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[1][1], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[1][2], 1.0f, abs_error);
EXPECT_NEAR(result.Elements[1][3], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[2][0], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[2][1], -1.0f, abs_error);
EXPECT_NEAR(result.Elements[2][2], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[2][3], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[3][0], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[3][1], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[3][2], 0.0f, abs_error);
EXPECT_NEAR(result.Elements[3][3], 1.0f, abs_error);
}
TEST(QuaternionOps, Mat4ToQuat)
{
const float abs_error = 0.0001f;
// Rotate 90 degrees on the X axis
{
HMM_Mat4 m = HMM_Rotate_RH(HMM_AngleDeg(90.0f), HMM_V3(1, 0, 0));
HMM_Quat result = HMM_M4ToQ_RH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, sinf, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 90 degrees on the Y axis (axis not normalized, just for fun)
{
HMM_Mat4 m = HMM_Rotate_RH(HMM_AngleDeg(90.0f), HMM_V3(0, 2, 0));
HMM_Quat result = HMM_M4ToQ_RH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, 0.0f, abs_error);
EXPECT_NEAR(result.Y, sinf, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 90 degrees on the Z axis
{
HMM_Mat4 m = HMM_Rotate_RH(HMM_AngleDeg(90.0f), HMM_V3(0, 0, 1));
HMM_Quat result = HMM_M4ToQ_RH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, 0.0f, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, sinf, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 45 degrees on the X axis (this hits case 4)
{
HMM_Mat4 m = HMM_Rotate_RH(HMM_AngleDeg(45.0f), HMM_V3(1, 0, 0));
HMM_Quat result = HMM_M4ToQ_RH(m);
float cosf = 0.9238795325f; // cos(90/2 degrees)
float sinf = 0.3826834324f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, sinf, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
/* NOTE(lcf): Left-handed cases. Since both Rotate and M4ToQ are LH results should be
the same with no changes to input. */
// Rotate 90 degrees on the X axis
{
HMM_Mat4 m = HMM_Rotate_LH(HMM_AngleDeg(90.0f), HMM_V3(1, 0, 0));
HMM_Quat result = HMM_M4ToQ_LH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, sinf, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 90 degrees on the Y axis (axis not normalized, just for fun)
{
HMM_Mat4 m = HMM_Rotate_LH(HMM_AngleDeg(90.0f), HMM_V3(0, 2, 0));
HMM_Quat result = HMM_M4ToQ_LH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, 0.0f, abs_error);
EXPECT_NEAR(result.Y, sinf, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 90 degrees on the Z axis
{
HMM_Mat4 m = HMM_Rotate_LH(HMM_AngleDeg(90.0f), HMM_V3(0, 0, 1));
HMM_Quat result = HMM_M4ToQ_LH(m);
float cosf = 0.707107f; // cos(90/2 degrees)
float sinf = 0.707107f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, 0.0f, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, sinf, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
// Rotate 45 degrees on the X axis (this hits case 4)
{
HMM_Mat4 m = HMM_Rotate_LH(HMM_AngleDeg(45.0f), HMM_V3(1, 0, 0));
HMM_Quat result = HMM_M4ToQ_LH(m);
float cosf = 0.9238795325f; // cos(90/2 degrees)
float sinf = 0.3826834324f; // sin(90/2 degrees)
EXPECT_NEAR(result.X, sinf, abs_error);
EXPECT_NEAR(result.Y, 0.0f, abs_error);
EXPECT_NEAR(result.Z, 0.0f, abs_error);
EXPECT_NEAR(result.W, cosf, abs_error);
}
}
TEST(QuaternionOps, FromAxisAngle)
{
HMM_Vec3 axis = HMM_V3(1.0f, 0.0f, 0.0f);
float angle = HMM_PI32 / 2.0f;
{
HMM_Quat result = HMM_QFromAxisAngle_RH(axis, angle);
EXPECT_NEAR(result.X, 0.707107f, 0.001f);
EXPECT_NEAR(result.Y, 0.0f, 0.001f);
EXPECT_NEAR(result.Z, 0.0f, 0.001f);
EXPECT_NEAR(result.W, 0.707107f, 0.001f);
}
{
HMM_Quat result = HMM_QFromAxisAngle_LH(axis, angle);
EXPECT_NEAR(result.X, -0.707107f, 0.001f);
EXPECT_NEAR(result.Y, 0.0f, 0.001f);
EXPECT_NEAR(result.Z, 0.0f, 0.001f);
EXPECT_NEAR(result.W, 0.707107f, 0.001f);
}
}