From 85dbc2d3065e50f7abeaee733ef309124f927688 Mon Sep 17 00:00:00 2001 From: Robert Persson Date: Tue, 2 Jul 2013 16:01:41 +0200 Subject: [PATCH] Added poly and numeric modules --- lib/pure/numeric.nim | 113 ++++++++++++ lib/pure/poly.nim | 411 +++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 524 insertions(+) create mode 100644 lib/pure/numeric.nim create mode 100644 lib/pure/poly.nim diff --git a/lib/pure/numeric.nim b/lib/pure/numeric.nim new file mode 100644 index 0000000000..902dadea39 --- /dev/null +++ b/lib/pure/numeric.nim @@ -0,0 +1,113 @@ +# +# +# Nimrod's Runtime Library +# (c) Copyright 2013 Robert Persson +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + + +type TOneVarFunction* =proc (x:float):float + +proc brent*(xmin,xmax:float ,function:TOneVarFunction, rootx,rooty:var float,tol:float,maxiter=1000):bool= + ## Searches `function` for a root between `xmin` and `xmax` + ## using brents method. If the function value at `xmin`and `xmax` has the + ## same sign, `rootx`/`rooty` is set too the extrema value closest to x-axis + ## and false is returned. + ## Otherwise there exists at least one root and true is always returned. + ## This root is searched for at most `maxiter` iterations. + ## If `tol` tolerance is reached within `maxiter` iterations + ## the root refinement stops and true is returned. + + # see http://en.wikipedia.org/wiki/Brent%27s_method + var + a=xmin + b=xmax + c=a + d=1.0e308 + fa=function(a) + fb=function(b) + fc=fa + s=0.0 + fs=0.0 + mflag:bool + i=0 + tmp2:float + + if fa*fb>=0: + if abs(fa)tol: + if fa!=fc and fb!=fc: # inverse quadratic interpolation + s = a * fb * fc / (fa - fb) / (fa - fc) + b * fa * fc / (fb - fa) / (fb - fc) + c * fa * fb / (fc - fa) / (fc - fb) + else: #secant rule + s = b - fb * (b - a) / (fb - fa) + tmp2 = (3.0 * a + b) / 4.0 + if (not(((s > tmp2) and (s < b)) or ((s < tmp2) and (s > b)))) or + (mflag and (abs(s - b) >= (abs(b - c) / 2.0))) or + (not mflag and (abs(s - b) >= (abs(c - d) / 2.0))): + s=(a+b)/2.0 + mflag=true + else: + if ((mflag and (abs(b - c) < tol)) or (not mflag and (abs(c - d) < tol))): + s=(a+b)/2.0 + mflag=true + else: + mflag=false + fs = function(s) + d = c + c = b + fc = fb + if fa * fs<0.0: + b=s + fb=fs + else: + a=s + fa=fs + if abs(fa)maxiter: + break + + rootx=b + rooty=fb + return true + + + +when isMainModule: + var rootx=0.0 + var rooty=0.0 + var err=0.0 + + var cnt=0 + proc myf(x:float):float= + inc cnt + echo ($cnt & " : " & $x) + return x*x-200 + + + var suc=brent(-10000.0,0.2,myf,rootx,rooty,1.0e-3) + + + echo suc + echo rootx + echo rooty + + + + discard(readline(stdin)) diff --git a/lib/pure/poly.nim b/lib/pure/poly.nim new file mode 100644 index 0000000000..8333398e55 --- /dev/null +++ b/lib/pure/poly.nim @@ -0,0 +1,411 @@ +# +# +# Nimrod's Runtime Library +# (c) Copyright 2013 Robert Persson +# +# See the file "copying.txt", included in this +# distribution, for details about the copyright. +# + +import math +import strutils +import numeric + + +type + TPoly* = object + cofs:seq[float] + + +proc initPolyFromDegree(n:int):TPoly= + ## internal usage only + ## caller must initialize coefficients of poly + ## and possibly `clean` away zero exponents + var numcof=n+1 #num. coefficients is one more than degree + result.cofs=newSeq[float](numcof) + +proc degree*(p:TPoly):int= + ## Returns the degree of the polynomial, + ## that is the number of coefficients-1 + return p.cofs.len-1 + + +proc eval*(p:TPoly,x:float):float= + ## Evaluates a polynomial function value for `x` + ## quickly using Horners method + var n=p.degree + result=p.cofs[n] + dec n + while n>=0: + result = result*x+p.cofs[n] + dec n + +proc `[]` *(p:TPoly;idx:int):float= + ## Gets a coefficient of the polynomial. + ## p[2] will returns the quadric term, p[3] the cubic etc. + ## Out of bounds index will return 0.0. + if idx<0 or idx>p.degree: + return 0.0 + return p.cofs[idx] + +proc `[]=` *(p:var TPoly;idx:int,v:float)= + ## Sets an coefficient of the polynomial by index. + ## p[2] set the quadric term, p[3] the cubic etc. + ## If index is out of range for the coefficients, + ## the polynomial grows to the smallest needed degree. + if idx<0: + return + + if idx>p.degree: #polynomial must grow + echo("GROW!") + var oldlen=p.cofs.len + p.cofs.setLen(idx+1) + for q in oldlen.. =0: + yield p[i] + dec i + +proc clean*(p:var TPoly;zerotol=0.0)= + ## Removes leading zero coefficients of the polynomial. + ## An optional tolerance can be given for what's considered zero. + var n=p.degree + var relen=false + + while n>0 and abs(p[n])<=zerotol: # >0 => keep at least one coefficient + dec n + relen=true + + if relen: p.cofs.setLen(n+1) + + +proc `$` *(p:TPoly):string = + ## Gets a somewhat reasonable string representation of the polynomial + ## The format should be compatible with most online function plotters, + ## for example directly in google search + result="" + var first=true #might skip + sign if first coefficient + + for idx in countdown(p.degree,0): + var a=p[idx] + + if a==0.0: + continue + + if a>= 0.0 and not first: + result.add('+') + first=false + + if a!=1.0 or idx==0: + result=result & formatFloat(a,ffDefault,0) + if idx>=2: + result.add("x^" & $idx) + elif idx==1: + result.add("x") + + if result=="": + result="0" + + +proc derivative*(p:TPoly):TPoly= + ## Returns a new polynomial, which is the derivative of `p` + newSeq[float](result.cofs,p.degree) + for idx in 0..high(result.cofs): + result.cofs[idx]=p.cofs[idx+1]*float(idx+1) + +proc diff*(p:TPoly,x:float):float= + ## Evaluates the differentiation of a polynomial with + ## respect to `x` quickly using a modifed Horners method + var n=p.degree + result=p[n]*float(n) + dec n + while n>=1: + result = result*x+p[n]*float(n) + dec n + +proc integral*(p:TPoly):TPoly= + ## Returns a new polynomial which is the indefinite + ## integral of `p`. The constant term is set to 0.0 + result=initPolyFromDegree(p.degree+1) + result.cofs[0]=0.0 #constant arbitrary term, use 0.0 + for i in 1..high(result.cofs): + result.cofs[i]=p.cofs[i-1]/float(i) + + +proc integrate*(p:TPoly;xmin,xmax:float):float= + ## Computes the definite integral of `p` between `xmin` and `xmax` + # TODO: this can be done faster using a modified horners method, + # see 'diff' function above. + var igr=p.integral + result=igr.eval(xmax)-igr.eval(xmin) + +proc initPoly*(cofs:varargs[float]):TPoly= + ## Initializes a polynomial with given coefficients. + ## The most significant coefficient is first, so to create x^2-2x+3: + ## intiPoly(1.0,-2.0,3.0) + if len(cofs)<=0: + result.cofs= @[0.0] #need at least one coefficient + else: + # reverse order of coefficients so indexing matches degree of + # coefficient... + result.cofs= @[] + for idx in countdown(cofs.len-1,0): + result.cofs.add(cofs[idx]) + + result.clean #remove leading zero terms + + +proc divMod*(p,d:TPoly;q,r:var TPoly)= + ## Divides `p` with `d`, and stores the quotinent in `q` and + ## the remainder in `d` + var + pdeg=p.degree + ddeg=d.degree + power=p.degree-d.degree + ratio:float + + if power<0: #denominator is larger than numerator + q=initPoly(0.0) #division result is 0 + r=p #remainder is numerator + return + + q=initPolyFromDegree(power) + r=p + + for i in countdown(pdeg,ddeg): + ratio=r[i]/d[ddeg] + + q[i-ddeg]=ratio + r[i]=0.0 + + for j in countup(0,=res[high(res)]+mergetol: res.add(rootx) #dont add equal roots. + else: + #this might be a 'touching' case, check function value against + #zero tolerance + if abs(rooty)<=zerotol: + if res==nil: res= @[rootx] + elif rootx>=res[high(res)]+mergetol: res.add(rootx) #dont add equal roots. + + +proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12):seq[float]= + ## Computes the real roots of the polynomial `p` + ## `tol` is the tolerance use to break searching for each root when reached. + ## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root + ## and is used to find roots for curves that only 'touch' the x-axis. + ## `mergetol` is the tolerance, of which two x-values are considered beeing the same root. + ## Returns a sequence with the solutions, or nil in case of no solutions. + var deg=p.degree + var res:seq[float]=nil + if deg<=0: + return nil + elif p.degree==1: + var linrt= -p.cofs[0]/p.cofs[1] + if linrt==inf or linrt==neginf: + return nil #constant only => no roots + return @[linrt] + elif p.degree==2: + return solveQuadric(p.cofs[2],p.cofs[1],p.cofs[0],zerotol) + else: + # degree >=3 , find min/max points of polynomial with recursive + # derivative and do a numerical search for root between each min/max + var x0,x1:float + p.getRangeForRoots(x0,x1) + var minmax=p.derivative.roots(tol,zerotol,mergetol) + if minmax!=nil: #ie. we have minimas/maximas in this function + for x in minmax.items: + addRoot(p,res,x0,x,tol,zerotol,mergetol) + x0=x + addRoot(p,res,x0,x1,tol,zerotol,mergetol) + + return res + +when isMainModule: + var ply=initPoly(1.0,-6.0,5.0,2.0) + var ply2 =initPoly(4.0,5.0,6.0) + + echo ply + echo ply2 + echo ply2-ply + + + + + var rts=ply.roots + if rts!=nil: + for i in rts: + echo formatFloat(i,ffDefault,0) + + + discard readLine(stdin) + + + + + + + + + + + + + + + + + + + \ No newline at end of file