refs #24032, split from #24036
Conversion from variables of range types or base types of range types to
the other are now considered mutable for `var` params, similar to how
distinct types are mutable when converted to their base type or vice
versa. There are 2 main differences:
1. Conversions from base types to range types need to emit
`nkChckRange`, which is not generated for things like tuple/object
fields.
2. Range types can still correspond to different types in the backend
when nested in other types, such as `set[range[3..5]]` vs
`set[range[0..5]]`.
Since the convertibility check for `var` params and a check whether to
emit a no-op for `nkConv` (and now also `nkChckRange`) so that the
output is still addressable both use `sameType`, we accomplish this by
adding a new flag to `sameType` that ignores range types, but only when
they're not nested in other types. The implementation for this might be
flawed, I didn't include children of some metatypes as "nested in other
types", but stuff like `tyGenericInst` params are respected.
ref #20653
```nim
Error* = object
case kind*: ErrorType
of ErrorA:
discard
of ErrorB:
discard
```
For an object variants without fields, it shouldn't generate empty
brackets for default values since there are no fields at all in case
branches.
fixes#23627
```nim
type
TestObj = object of RootObj
TestTestObj = object of RootObj
testo: TestObj
proc `=destroy`(x: TestTestObj) =
echo "Destructor for TestTestObj"
proc testCaseT() =
echo "\nTest Case T"
let tt1 {.used.} = TestTestObj(testo: TestObj())
```
When generating const object fields, it's likely that
we need to generate type infos for the object, which may be an object
with
custom hooks. We need to generate potential consts in the hooks first.
https://github.com/nim-lang/Nim/pull/20433 changed the semantics of
initialization. It should evaluate`BracedInit` first.
`reset`, `wasMoved` and `move` doesn't support primitive types, which
generate `null` for these types. It is now produce `x = default(...)` in
the backend. Ideally it should be done by ast2ir in the future
fixes#22597
```nim
proc autoToOpenArray*[T](s: Slice[T]): openArray[T] =
echo "here twice"
result = toOpenArray(s.p, s.first, s.last)
```
For functions returning openarray types, `fixupCall` creates a temporary
variable to store the return value: `let tmp = autoToOpenArray()`. But
`genOpenArrayConv` cannot handle openarray assignements with side
effects. It should have stored the right part of the assignment first
instead of calling the right part twice.
Theoretical Benefits / Plans:
- Typed assembler-like language.
- Allows for a CPS transformation.
- Can replace the existing C backend by a new C backend.
- Can replace the VM.
- Can do more effective "not nil" checking and static array bounds
checking.
- Can be used instead of the DFA.
- Easily translatable to LLVM.
- Reasonably easy to produce native code from.
- Tiny memory consumption. No pointers, no cry.
**In very early stages of development.**
Todo:
- [x] Map Nim types to IR types.
- [ ] Map Nim AST to IR instructions:
- [x] Map bitsets to bitops.
- [ ] Implement string cases.
- [ ] Implement range and index checks.
- [x] Implement `default(T)` builtin.
- [x] Implement multi string concat.
- [ ] Write some analysis passes.
- [ ] Write a backend.
- [x] Integrate into the compilation pipeline.
* alternative to #22219; adds a pointer wrapper for T destructor
* clean up and add comments
* Update compiler/ccgtypes.nim
* tidy up
* fixes comments
* fixes cpp
* fixes cpp