Most of what ccgexprs uses is now ported to cbuilder, so this PR makes
around ~25% of ccgexprs use it, along with adding `if` stmts (no
`while`/`switch` and `for` which is only used as `for (tmp = a; tmp < b;
tmp++)`). The `if` builder does not add indents for blocks since we
can't make `Builder` an object yet rather than an alias to `string`,
this will likely be one of the last refactors.
Somewhat unrelated but `ccgtypes` is not ready yet because proc
signatures are not implemented.
fixes#24378
```nim
type Win = typeof(`body`)
doAssert not supportsCopyMem((int, Win))
```
`semAfterMacroCall` doesn't skip the children aliases types in the tuple
typedesc construction while the normal program seem to skip the aliases
types somewhere
`(int, Win)` is kept as `(int, alias string)` instead of expected `(int,
string)`
The types of the typed operations are not necessarily correct, the mixed
types of the operands in some cases are left the same to keep the C
integer promotion working as expected. To fix any wrong types the
integer promotion can be done explicitly instead, but this is a behavior
change to codegen.
Different from `intLiteral`, we add procs that just try to generate
integer values, assuming they're not an edge case like `<= low(int32)`
or `> high(int32)`.
refs #23625, refs #24289
Encountered in #24360 but could not reproduce minimally: overloading on
static parameters can work with the normal compile commands but crash
`nim check`. Static overloading relies on `tryConstExpr` which recovers
from things like `globalError` and fails softly, in this case this can
happen when a variable etc. is not available to evaluate in the VM. But
with `nim check`, the compiler does not throw an exception in this case,
and instead tries to keep generating the entire expression in the VM,
which can cause crashes.
To fix this, when the compiler has no error outputs even on `nim check`,
we raise a global error so that the VM code generation stops early. This
fixes both `tryConstExpr` and speeds up `nim check`, because no error
outputs means we don't need cascading errors.
pre-existing issues:
```nim
block:
type
FooObj = object
data: int
Foo = ref ref FooObj
proc delete(self: Foo) =
echo self.data
var s: Foo
new(s, delete)
```
it crashed with arc/orc in 1.6.x and 2.x.x
```nim
block:
type
Foo = ref int
proc delete(self: Foo) =
echo self[]
var s: Foo
new(s, delete)
```
The simple fix is to add a type restriction for the type `T` for arc/orc
versions
```nim
proc new*[T: object](a: var ref T, finalizer: proc (x: T) {.nimcall.})
```
fixes#13417, fixes#19703
When passing an expression to an `openarray` iterator parameter: If the
expression is a statement list (considered "complex"), it's assigned in
a non-deep-copying way to a temporary variable first, then this variable
is used as a parameter. If it's not a statement list, i.e. a call or a
symbol, the parameter is substituted directly with the given expression.
In the case of calls, this results in the call potentially being
executed more than once, or can cause redefined variables in the
codegen.
To fix this, calls are also considered as "complex" assignments to
openarrays, as long as the return type of the call is not `openarray` as
the generated assignment in that case has issues/is unimplemented
(caused a segfault [here in
datamancer](47ba4d81bf/src/datamancer/dataframe.nim (L1580))).
As for why creating a temporary isn't the default only with exceptions
for things like `nkSym`, the "non-deep-copying" way of assignment
apparently still causes arrays to be copied according to a comment in
the code. I'm not sure to what extent this is true: if it still happens
on ARC/ORC, if it happens for every array length, or if we can fix it by
passing arrays by reference. Otherwise, a more general way to assign to
openarrays might be needed, but I'm not sure if the compiler can easily
do this.
This PR is somewhat large, worst case it can be split into one with just
assignments and one with just fields/derefs etc.
Assignments with calls as values have not been touched so they can be
done when calls are implemented. Similarly codegen with complex logic
i.e. `genEnumInfo`, `genTypeInfoV2`, `unaryExpr` is not completely
ported yet so they can be done in standalone PRs.
closes https://github.com/nim-lang/RFCs/issues/380, fixes#4773, fixes
#14729, fixes#16755, fixes#18150, fixes#22984, refs #11167 (only some
comments fixed), refs #12620 (needs tiny workaround)
The compiler gains a concept of root "nominal" types (i.e. objects,
enums, distincts, direct `Foo = ref object`s, generic versions of all of
these). Exported top-level routines in the same module as the nominal
types that their parameter types derive from (i.e. with
`var`/`sink`/`typedesc`/generic constraints) are considered attached to
the respective type, as the RFC states. This happens for every argument
regardless of placement.
When a call is overloaded and overload matching starts, for all
arguments in the call that already have a type, we add any operation
with the same name in the scope of the root nominal type of each
argument (if it exists) to the overload match. This also happens as
arguments gradually get typed after every overload match. This restricts
the considered overloads to ones attached to the given arguments, as
well as preventing `untyped` arguments from being forcefully typed due
to unrelated overloads. There are some caveats:
* If no overloads with a name are in scope, type bound ops are not
triggered, i.e. if `foo` is not declared, `foo(x)` will not consider a
type bound op for `x`.
* If overloads in scope do not have enough parameters up to the argument
which needs its type bound op considered, then type bound ops are also
not added. For example, if only `foo()` is in scope, `foo(x)` will not
consider a type bound op for `x`.
In the cases of "generic interfaces" like `hash`, `$`, `items` etc. this
is not really a problem since any code using it will have at least one
typed overload imported. For arbitrary versions of these though, as in
the test case for #12620, a workaround is to declare a temporary
"template" overload that never matches:
```nim
# neither have to be exported, just needed for any use of `foo`:
type Placeholder = object
proc foo(_: Placeholder) = discard
```
I don't know what a "proper" version of this could be, maybe something
to do with the new concepts.
Possible directions:
A limitation with the proposal is that parameters like `a: ref Foo` are
not attached to any type, even if `Foo` is nominal. Fixing this for just
`ptr`/`ref` would be a special case, parameters like `seq[Foo]` would
still not be attached to `Foo`. We could also skip any *structural* type
but this could produce more than one nominal type, i.e. `(Foo, Bar)`
(not that this is hard to implement, it just might be unexpected).
Converters do not use type bound ops, they still need to be in scope to
implicitly convert. But maybe they could also participate in the nominal
type consideration: if `Generic[T] = distinct T` has a converter to `T`,
both `Generic` and `T` can be considered as nominal roots.
The other restriction in the proposal, being in the same scope as the
nominal type, could maybe be worked around by explicitly attaching to
the type, i.e.: `proc foo(x: T) {.attach: T.}`, similar to class
extensions in newer OOP languages. The given type `T` needs to be
obtainable from the type of the given argument `x` however, i.e.
something like `proc foo(x: ref T) {.attach: T.}` doesn't work to fix
the `ref` issue since the compiler never obtains `T` from a given `ref
T` argument. Edit: Since the module is queried now, this is likely not
possible.
---------
Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
fixes#24338
When unrolling each iteration of a `fields` iterator, the compiler only
opens a new scope for semchecking, but doesn't generate a node that
signals to the codegen that a new scope should be created. This causes
issues for reused template instantiations that reuse variable symbols
between each iteration, which causes the codegen to generate multiple
declarations for them in the same scope (regardless of `inject` or
`gensym`). To fix this, we wrap the unrolled iterations in an `if true:
body` node, which both opens a new scope and doesn't interfere with
`break`.
The only remaining explicit use of `typedef` in the codegen (from my
search) is in `addForwardStructFormat` which from what I understand
won't do anything in NIFC.
Running `ctags` on files with quoted symbols (e.g. `$`) would list \`
instead of the full ident. Issue was the result getting reassigned at
the end to a \` instead of appending
closes https://github.com/nim-lang/RFCs/issues/554
Adds a symmetric difference operation to the language bitset type. This
maps to a simple `xor` operation on the backend and thus is likely
faster than the current alternatives, namely `(a - b) + (b - a)` or `a +
b - a * b`. The compiler VM implementation of bitsets already
implemented this via `symdiffSets` but it was never used.
The standalone binary operation is added to `setutils`, named
`symmetricDifference` in line with [hash
sets](https://nim-lang.org/docs/sets.html#symmetricDifference%2CHashSet%5BA%5D%2CHashSet%5BA%5D).
An operator version `-+-` and an in-place version like `toggle` as
described in the RFC are also added, implemented as trivial sugar.
refs #8064, refs #24010
Error messages for standalone explicit generic instantiations are
revamped. Failing standalone explicit generic instantiations now only
error after overloading has finished and resolved to the default `[]`
magic (this means `[]` can now be overloaded for procs but this isn't
necessarily intentional, in #24010 it was documented that it isn't
possible). The error messages for failed instantiations are also no
longer a simple `cannot instantiate: foo` message, instead they now give
the same type mismatch error message as overloads with mismatching
explicit generic parameters.
This is now possible due to the changes in #24010 that delegate all
explicit generic proc instantiations to overload resolution. Old code
that worked around this is now removed. `maybeInstantiateGeneric` could
maybe also be removed in favor of just `explicitGenericSym`, the `result
== n` case is due to `explicitGenericInstError` which is only for niche
cases.
Also, to cause "ambiguous identifier" error messages when the explicit
instantiation is a symchoice and the expression context doesn't allow
symchoices, we semcheck the sym/symchoice created by
`explicitGenericSym` with the given expression flags.
#8064 isn't entirely fixed because the error message is still misleading
for the original case which does `values[1]`, as a consequence of
#12664.
The remaining followup from #24259. A body for building the type doesn't
seem necessary here since the types with array fields are generally
atomic/already built from `getTypeDescAux`.
The first commit reverts the revert of #23787.
The second fixes lambdalifting in convolutedly nested
closures/closureiters. This is considered to be the reason of #24094,
though I can't tell for sure, as I was not able to reproduce #24094 for
complicated but irrelevant reasons. Therefore I ask @jmgomez, @metagn or
anyone who could reproduce it to try it again with this PR.
I would suggest this PR to not be squashed if possible, as the history
is already messy enough.
Some theory behind the lambdalifting fix:
- A closureiter that captures anything outside its body will always have
`:up` in its env. This property is now used as a trigger to lift any
proc that captures such a closureiter.
- Instantiating a closureiter involves filling out its `:up`, which was
previously done incorrectly. The fixed algorithm is to use "current" env
if it is the owner of the iter declaration, or traverse through `:up`s
of env param until the common ancestor is found.
---------
Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
fixes#24305, refs #23807
Since #23014 `nkHiddenAddr` is produced to fast assign array elements in
iterators. However the array access inside this `nkHiddenAddr` can get
folded at compile time, generating invalid code. In #23807, compile time
folding of regular `addr` expressions was changed to be prevented in
`transf` but `nkHiddenAddr` was not updated alongside it.
The method for preventing folding in `addr` in #23807 was also faulty,
it should only trigger on the immediate child node of the address rather
than all nodes nested inside it. This caused a regression as outlined in
[this
comment](https://github.com/nim-lang/Nim/pull/24322#issuecomment-2419560182).
To fix both issues, `addr` and `nkHiddenAddr` now both shallowly prevent
constant folding for their immediate children.
fixes#24319
`byRefLoc` (`mapType`) requires the Loc `a` to have the right type.
Without `lfEnforceDeref`, it produces the wrong type for `deref (var
array)`, which may come from `mitems`.
fixes#18896fixes#20886
```nim
type
PFile {.importc: "FILE*", header: "<stdio.h>".} = distinct pointer
# import C's FILE* type; Nim will treat it as a new pointer type
```
This is an excerpt from the Nim manual. In the old Nim versions, it
produces a void pointer type instead of the `FILE*` type that should
have been generated. Because these C types tend to be opaque and adapt
to changes on different platforms. It might affect the portability of
Nim on various OS, i.e. `csource_v2` cannot build on the apline platform
because of `Time` relies on Nim types instead of the `time_t` type.
ref https://github.com/nim-lang/Nim/pull/18851
follows up #24259
This is the remaining missing use of `StructInitializer` in
`getDefaultValue` after #24259 and #24302. The only remaining direct C
code in getDefaultValue is [this
line](922f7dfd71/compiler/ccgexprs.nim (L3525))
which creates a global array variable, which isn't implemented yet. Next
steps would be all remaining variable and `typedef` declarations, then
hopefully we can move on to general statements and expressions.
follows up #24259
This was the only use of the `STRING_LITERAL` macro in `nimbase.h`, so
this macro is now removed. We don't have to remove it though, maybe
people use it.
`StructInitializer` is now used for most braced initializers in the C
generation, mostly in `genBracedInit`, `getNullValueAux`,
`getDefaultValue`. The exceptions are:
* the default case branch initializer for objects uses C99 designated
initializers with field names, which are not implemented for
`StructInitializer` yet (`siNamedStruct`)
* the uses in `ccgliterals` are untouched so all of ccgliterals can be
done separately and in 1 go
There is one case where `genBracedInit` does not use cbuilder, which is
the global literal variable for openarrays. The reason for this is
simply that variables with C array type are not implemented, which I
thought would be best to leave out of this PR.
For the simplicity of the implementation, code in `getNullValueAuxT`
that reset the initializer back to its initial state if the `Sup` field
did not have any fields itself, is now disabled. This was so the
compiler does not generate `{}` for the Sup field, i.e. `{{}}`, but
every call to `getNullValueAuxT` still generates `{}` if the struct
doesn't have any fields, so I don't know if it really breaks anything.
The case where the Sup field doesn't have any fields but the struct does
also would have generated `{{}, field}`.
Worst case, we can implement either the "resetting" or just disable the
generation of the `Sup` field if there are no fields total. But a better
fix might be to always generate `{0}` if the struct has no fields, in
line with the `char dummy` field that gets added for all objects with no
fields. This doesn't seem necessary for now but might be for the NIFC
output, in which case we can probably keep the logic contained inside
cbuilder (if no fields generated for `siOrderedStruct`/`siNamedStruct`,
we add a `0` for the `dummy` field). This would stipulate that all uses
of struct initializers are exhaustive for every field in structs.
fixes#24296fixes#24295
Templates use `expectedType` for type inference. It's justified that
when templates don't have an actual return type, i.e., `untyped` etc.
When the return type of templates is specified, we should not infer the
type
```nim
template g(): string = ""
let c: cstring = g()
```
In this example, it is not reasonable to annotate the templates
expression with the `cstring` type before the `fitNode` check with its
specified return type.
fixes#24288, refs #23625
Since #23625 "cannot evaluate" errors during VM code generation are
"soft" errors with `nim check`, i.e. the code generation isn't halted
(except for the current proc which `return`s which can cause wrong
codegen) and the expression is still attempted to be evaluated. Now,
these errors signal to the VM that the current generated VM code cannot
be evaluated, and so instead of evaluating, an error node is returned.
This keeps the benefit of the "soft" errors without potentially crashing
the compiler on improperly generated VM code. Although maybe the
compiler might not be able to handle the generated error node in some
cases.
This fixes the chame example in #24288 but this is not tested in CI.
Presumably it or the compiler was doing something like `compiles()` on
code that can't run in the VM.
I would accept nicer ways of tracking non-evaluability than
`c.cannotEval = true` but I tried to keep it as harmless as possible.
fixes#24021
The field checking for case object branches at some point generates a
negated set `contains` check for the object discriminator. For enum
types, this tries to generate a complement set and convert to a
`contains` check in that instead. It obtains this type from the type of
the element node in the `contains` check.
`buildProperFieldCheck` creates the element node by changing a field
access expression like `foo.z` into `foo.kind`. In order to do this, it
copies the node `foo.z` and sets the field name in the node to the
symbol `kind`. But when copying the node, the type of the original
`foo.z` is retained. This means that the complement is performed on the
type of the accessed field rather than the type of the discriminator,
which causes problems when the accessed field is also an enum.
To fix this, we properly set the type of the copied node to the type of
the kind field. An alternative is just to make a new node instead.
A lot of text for a single line change, I know, but this part of the
codebase could use more explanation.
fixes#24087, refs https://forum.nim-lang.org/t/341, refs #14222, refs
#14221
The Nim compiler calls `cl` for linking as well as compilation. This
means that options to the linker have to be passed after a `/link`
argument. But the Nim compiler doesn't include this option normally,
because users may still want to pass non-linker options to `cl` at link
time.
To deal with this, a workaround is used: every single library link
option adds `/link` before it. The linker simply ignores extraneous
`/link` arguments and gives a warning instead, since it's an
unrecognized option to the linker. This is really hacky but otherwise we
need to separate linker arguments into arguments passed either to the
compiler or to the linker at link time, and this behavior wouldn't be
meaningful outside of MSVC.
I can't really test this manually but I did test that the linker ignores
`/link`. I also can't really do more than this, I don't really use MSVC
so I wouldn't know how to navigate it, or how people use it. Ideally
someone who knows more about/uses MSVC can give their input or take
over.
fixes#24269, refs #20095
Instead of checking the package of the *used sym* to determine whether a
stylecheck should trigger, we check the package of the lineinfo instead.
Before #20095 this checked for the current compilation context module
instead which caused issues with generic procs, but the lineinfo should
more closely match the AST.
I figured this might cause issues with includes etc but the foreign
package test specifically tests for an include and passes, so maybe the
package determining logic accounts for this already. This still might
not be the correct logic, I'm not too familiar with the package handling
in the compiler.
Package PRs, both merged:
- json_rpc: https://github.com/status-im/nim-json-rpc/pull/226
- json_serialization:
https://github.com/status-im/nim-json-serialization/pull/99
fixes#24274
The code in the `if` branch replaces the current destination `d` with a
new one. But the location `d` can be an assignment location, in which
case the provided expression isn't generated. To fix this, don't trigger
this code for when the location already exists. An alternative would be
to call `putIntoDest` in this case as is done below.
fixes#24091, refs #24092
Any instantiations resolving to a generic body type now gives an error.
Due to #24092, this does not error in cases like matching against `type
M` in generics because generic body type symbols are just not
instantiated. But this prevents parameters with type `type M` from being
used, although there doesn't seem to be any code which does this. Just
in case such code exists, we still allow `typedesc` types resolving to
generic body types.