# # # The Nim Compiler # (c) Copyright 2025 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # import lineinfos, options, ropes, idents, int128 import std/[tables, hashes] when defined(nimPreviewSlimSystem): import std/assertions export int128 import nodekinds export nodekinds type TCallingConvention* = enum ccNimCall = "nimcall" # nimcall, also the default ccStdCall = "stdcall" # procedure is stdcall ccCDecl = "cdecl" # cdecl ccSafeCall = "safecall" # safecall ccSysCall = "syscall" # system call ccInline = "inline" # proc should be inlined ccNoInline = "noinline" # proc should not be inlined ccFastCall = "fastcall" # fastcall (pass parameters in registers) ccThisCall = "thiscall" # thiscall (parameters are pushed right-to-left) ccClosure = "closure" # proc has a closure ccNoConvention = "noconv" # needed for generating proper C procs sometimes ccMember = "member" # proc is a (cpp) member TNodeKinds* = set[TNodeKind] type TSymFlag* = enum # 63 flags! sfUsed, # read access of sym (for warnings) or simply used sfExported, # symbol is exported from module sfFromGeneric, # symbol is instantiation of a generic; this is needed # for symbol file generation; such symbols should always # be written into the ROD file sfGlobal, # symbol is at global scope sfForward, # symbol is forward declared sfWasForwarded, # symbol had a forward declaration # (implies it's too dangerous to patch its type signature) sfImportc, # symbol is external; imported sfExportc, # symbol is exported (under a specified name) sfMangleCpp, # mangle as cpp (combines with `sfExportc`) sfVolatile, # variable is volatile sfRegister, # variable should be placed in a register sfPure, # object is "pure" that means it has no type-information # enum is "pure", its values need qualified access # variable is "pure"; it's an explicit "global" sfNoSideEffect, # proc has no side effects sfSideEffect, # proc may have side effects; cannot prove it has none sfMainModule, # module is the main module sfSystemModule, # module is the system module sfNoReturn, # proc never returns (an exit proc) sfAddrTaken, # the variable's address is taken (ex- or implicitly); # *OR*: a proc is indirectly called (used as first class) sfCompilerProc, # proc is a compiler proc, that is a C proc that is # needed for the code generator sfEscapes # param escapes # currently unimplemented sfDiscriminant, # field is a discriminant in a record/object sfRequiresInit, # field must be initialized during construction sfDeprecated, # symbol is deprecated sfExplain, # provide more diagnostics when this symbol is used sfError, # usage of symbol should trigger a compile-time error sfShadowed, # a symbol that was shadowed in some inner scope sfThread, # proc will run as a thread # variable is a thread variable sfCppNonPod, # tells compiler to treat such types as non-pod's, so that # `thread_local` is used instead of `__thread` for # {.threadvar.} + `--threads`. Only makes sense for importcpp types. # This has a performance impact so isn't set by default. sfCompileTime, # proc can be evaluated at compile time sfConstructor, # proc is a C++ constructor sfDispatcher, # copied method symbol is the dispatcher # deprecated and unused, except for the con sfBorrow, # proc is borrowed sfInfixCall, # symbol needs infix call syntax in target language; # for interfacing with C++, JS sfNamedParamCall, # symbol needs named parameter call syntax in target # language; for interfacing with Objective C sfDiscardable, # returned value may be discarded implicitly sfOverridden, # proc is overridden sfCallsite # A flag for template symbols to tell the # compiler it should use line information from # the calling side of the macro, not from the # implementation. sfGenSym # symbol is 'gensym'ed; do not add to symbol table sfNonReloadable # symbol will be left as-is when hot code reloading is on - # meaning that it won't be renamed and/or changed in any way sfGeneratedOp # proc is a generated '='; do not inject destructors in it # variable is generated closure environment; requires early # destruction for --newruntime. sfTemplateParam # symbol is a template parameter sfCursor # variable/field is a cursor, see RFC 177 for details sfInjectDestructors # whether the proc needs the 'injectdestructors' transformation sfNeverRaises # proc can never raise an exception, not even OverflowDefect # or out-of-memory sfSystemRaisesDefect # proc in the system can raise defects sfUsedInFinallyOrExcept # symbol is used inside an 'except' or 'finally' sfSingleUsedTemp # For temporaries that we know will only be used once sfNoalias # 'noalias' annotation, means C's 'restrict' # for templates and macros, means cannot be called # as a lone symbol (cannot use alias syntax) sfEffectsDelayed # an 'effectsDelayed' parameter sfGeneratedType # A anonymous generic type that is generated by the compiler for # objects that do not have generic parameters in case one of the # object fields has one. # # This is disallowed but can cause the typechecking to go into # an infinite loop, this flag is used as a sentinel to stop it. sfVirtual # proc is a C++ virtual function sfByCopy # param is marked as pass bycopy sfMember # proc is a C++ member of a type sfCodegenDecl # type, proc, global or proc param is marked as codegenDecl sfWasGenSym # symbol was 'gensym'ed sfForceLift # variable has to be lifted into closure environment sfDirty # template is not hygienic (old styled template) module, # compiled from a dirty-buffer sfCustomPragma # symbol is custom pragma template sfBase, # a base method sfGoto # var is used for 'goto' code generation sfAnon, # symbol name that was generated by the compiler # the compiler will avoid printing such names # in user messages. sfAllUntyped # macro or template is immediately expanded in a generic context sfTemplateRedefinition # symbol is a redefinition of an earlier template TSymFlags* = set[TSymFlag] const sfNoInit* = sfMainModule # don't generate code to init the variable sfNoForward* = sfRegister # forward declarations are not required (per module) sfReorder* = sfForward # reordering pass is enabled sfCompileToCpp* = sfInfixCall # compile the module as C++ code sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code sfExperimental* = sfOverridden # module uses the .experimental switch sfWrittenTo* = sfBorrow # param is assigned to # currently unimplemented sfCppMember* = { sfVirtual, sfMember, sfConstructor } # proc is a C++ member, meaning it will be attached to the type definition const # getting ready for the future expr/stmt merge nkWhen* = nkWhenStmt nkWhenExpr* = nkWhenStmt nkEffectList* = nkArgList # hacks ahead: an nkEffectList is a node with 4 children: exceptionEffects* = 0 # exceptions at position 0 requiresEffects* = 1 # 'requires' annotation ensuresEffects* = 2 # 'ensures' annotation tagEffects* = 3 # user defined tag ('gc', 'time' etc.) pragmasEffects* = 4 # not an effect, but a slot for pragmas in proc type forbiddenEffects* = 5 # list of illegal effects effectListLen* = 6 # list of effects list nkLastBlockStmts* = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt} # these must be last statements in a block type TTypeKind* = enum # order is important! # Don't forget to change hti.nim if you make a change here # XXX put this into an include file to avoid this issue! # several types are no longer used (guess which), but a # spot in the sequence is kept for backwards compatibility # (apparently something with bootstrapping) # if you need to add a type, they can apparently be reused tyNone, tyBool, tyChar, tyEmpty, tyAlias, tyNil, tyUntyped, tyTyped, tyTypeDesc, tyGenericInvocation, # ``T[a, b]`` for types to invoke tyGenericBody, # ``T[a, b, body]`` last parameter is the body tyGenericInst, # ``T[a, b, realInstance]`` instantiated generic type # realInstance will be a concrete type like tyObject # unless this is an instance of a generic alias type. # then realInstance will be the tyGenericInst of the # completely (recursively) resolved alias. tyGenericParam, # ``a`` in the above patterns tyDistinct, tyEnum, tyOrdinal, # integer types (including enums and boolean) tyArray, tyObject, tyTuple, tySet, tyRange, tyPtr, tyRef, tyVar, tySequence, tyProc, tyPointer, tyOpenArray, tyString, tyCstring, tyForward, tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers tyFloat, tyFloat32, tyFloat64, tyFloat128, tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64, tyOwned, tySink, tyLent, tyVarargs, tyUncheckedArray # An array with boundaries [0,+∞] tyError # used as erroneous type (for idetools) # as an erroneous node should match everything tyBuiltInTypeClass # Type such as the catch-all object, tuple, seq, etc tyUserTypeClass # the body of a user-defined type class tyUserTypeClassInst # Instance of a parametric user-defined type class. # Structured similarly to tyGenericInst. # tyGenericInst represents concrete types, while # this is still a "generic param" that will bind types # and resolves them during sigmatch and instantiation. tyCompositeTypeClass # Type such as seq[Number] # The notes for tyUserTypeClassInst apply here as well # sons[0]: the original expression used by the user. # sons[1]: fully expanded and instantiated meta type # (potentially following aliases) tyInferred # In the initial state `base` stores a type class constraining # the types that can be inferred. After a candidate type is # selected, it's stored in `last`. Between `base` and `last` # there may be 0, 2 or more types that were also considered as # possible candidates in the inference process (i.e. last will # be updated to store a type best conforming to all candidates) tyAnd, tyOr, tyNot # boolean type classes such as `string|int`,`not seq`, # `Sortable and Enumable`, etc tyAnything # a type class matching any type tyStatic # a value known at compile type (the underlying type is .base) tyFromExpr # This is a type representing an expression that depends # on generic parameters (the expression is stored in t.n) # It will be converted to a real type only during generic # instantiation and prior to this it has the potential to # be any type. tyConcept # new style concept. tyVoid # now different from tyEmpty, hurray! tyIterable static: # remind us when TTypeKind stops to fit in a single 64-bit word # assert TTypeKind.high.ord <= 63 discard const tyPureObject* = tyTuple GcTypeKinds* = {tyRef, tySequence, tyString} tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst, tyConcept, tyAnd, tyOr, tyNot, tyAnything} tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyUntyped} + tyTypeClasses tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst} # consider renaming as `tyAbstractVarRange` abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned} abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned} # xxx what about tyStatic? type TTypeKinds* = set[TTypeKind] TNodeFlag* = enum nfNone, nfBase2, # nfBase10 is default, so not needed nfBase8, nfBase16, nfAllConst, # used to mark complex expressions constant; easy to get rid of # but unfortunately it has measurable impact for compilation # efficiency nfTransf, # node has been transformed nfNoRewrite # node should not be transformed anymore nfSem # node has been checked for semantics nfLL # node has gone through lambda lifting nfDotField # the call can use a dot operator nfDotSetter # the call can use a setter dot operarator nfExplicitCall # x.y() was used instead of x.y nfExprCall # this is an attempt to call a regular expression nfIsRef # this node is a 'ref' node; used for the VM nfIsPtr # this node is a 'ptr' node; used for the VM nfPreventCg # this node should be ignored by the codegen nfBlockArg # this a stmtlist appearing in a call (e.g. a do block) nfFromTemplate # a top-level node returned from a template nfDefaultParam # an automatically inserter default parameter nfDefaultRefsParam # a default param value references another parameter # the flag is applied to proc default values and to calls nfExecuteOnReload # A top-level statement that will be executed during reloads nfLastRead # this node is a last read nfFirstWrite # this node is a first write nfHasComment # node has a comment nfSkipFieldChecking # node skips field visable checking nfDisabledOpenSym # temporary: node should be nkOpenSym but cannot # because openSym experimental switch is disabled # gives warning instead nfLazyType # node has a lazy type TNodeFlags* = set[TNodeFlag] TTypeFlag* = enum # keep below 32 for efficiency reasons (now: 47) tfVarargs, # procedure has C styled varargs # tyArray type represeting a varargs list tfNoSideEffect, # procedure type does not allow side effects tfFinal, # is the object final? tfInheritable, # is the object inheritable? tfHasOwned, # type contains an 'owned' type and must be moved tfEnumHasHoles, # enum cannot be mapped into a range tfShallow, # type can be shallow copied on assignment tfThread, # proc type is marked as ``thread``; alias for ``gcsafe`` tfFromGeneric, # type is an instantiation of a generic; this is needed # because for instantiations of objects, structural # type equality has to be used tfUnresolved, # marks unresolved typedesc/static params: e.g. # proc foo(T: typedesc, list: seq[T]): var T # proc foo(L: static[int]): array[L, int] # can be attached to ranges to indicate that the range # can be attached to generic procs with free standing # type parameters: e.g. proc foo[T]() # depends on unresolved static params. tfResolved # marks a user type class, after it has been bound to a # concrete type (lastSon becomes the concrete type) tfRetType, # marks return types in proc (used to detect type classes # used as return types for return type inference) tfCapturesEnv, # whether proc really captures some environment tfByCopy, # pass object/tuple by copy (C backend) tfByRef, # pass object/tuple by reference (C backend) tfIterator, # type is really an iterator, not a tyProc tfPartial, # type is declared as 'partial' tfNotNil, # type cannot be 'nil' tfRequiresInit, # type contains a "not nil" constraint somewhere or # a `requiresInit` field, so the default zero init # is not appropriate tfNeedsFullInit, # object type marked with {.requiresInit.} # all fields must be initialized tfVarIsPtr, # 'var' type is translated like 'ptr' even in C++ mode tfHasMeta, # type contains "wildcard" sub-types such as generic params # or other type classes tfHasGCedMem, # type contains GC'ed memory tfPacked tfHasStatic tfGenericTypeParam tfImplicitTypeParam tfInferrableStatic tfConceptMatchedTypeSym tfExplicit # for typedescs, marks types explicitly prefixed with the # `type` operator (e.g. type int) tfWildcard # consider a proc like foo[T, I](x: Type[T, I]) # T and I here can bind to both typedesc and static types # before this is determined, we'll consider them to be a # wildcard type. tfHasAsgn # type has overloaded assignment operator tfBorrowDot # distinct type borrows '.' tfTriggersCompileTime # uses the NimNode type which make the proc # implicitly '.compiletime' tfRefsAnonObj # used for 'ref object' and 'ptr object' tfCovariant # covariant generic param mimicking a ptr type tfWeakCovariant # covariant generic param mimicking a seq/array type tfContravariant # contravariant generic param tfCheckedForDestructor # type was checked for having a destructor. # If it has one, t.destructor is not nil. tfAcyclic # object type was annotated as .acyclic tfIncompleteStruct # treat this type as if it had sizeof(pointer) tfCompleteStruct # (for importc types); type is fully specified, allowing to compute # sizeof, alignof, offsetof at CT tfExplicitCallConv tfIsConstructor tfEffectSystemWorkaround tfIsOutParam tfSendable tfImplicitStatic TTypeFlags* = set[TTypeFlag] TSymKind* = enum # the different symbols (start with the prefix sk); # order is important for the documentation generator! skUnknown, # unknown symbol: used for parsing assembler blocks # and first phase symbol lookup in generics skConditional, # symbol for the preprocessor (may become obsolete) skDynLib, # symbol represents a dynamic library; this is used # internally; it does not exist in Nim code skParam, # a parameter skGenericParam, # a generic parameter; eq in ``proc x[eq=`==`]()`` skTemp, # a temporary variable (introduced by compiler) skModule, # module identifier skType, # a type skVar, # a variable skLet, # a 'let' symbol skConst, # a constant skResult, # special 'result' variable skProc, # a proc skFunc, # a func skMethod, # a method skIterator, # an iterator skConverter, # a type converter skMacro, # a macro skTemplate, # a template; currently also misused for user-defined # pragmas skField, # a field in a record or object skEnumField, # an identifier in an enum skForVar, # a for loop variable skLabel, # a label (for block statement) skStub, # symbol is a stub and not yet loaded from the ROD # file (it is loaded on demand, which may # mean: never) skPackage, # symbol is a package (used for canonicalization) TSymKinds* = set[TSymKind] const routineKinds* = {skProc, skFunc, skMethod, skIterator, skConverter, skMacro, skTemplate} ExportableSymKinds* = {skVar, skLet, skConst, skType, skEnumField, skStub} + routineKinds tfUnion* = tfNoSideEffect tfGcSafe* = tfThread tfObjHasKids* = tfEnumHasHoles tfReturnsNew* = tfInheritable tfNonConstExpr* = tfExplicitCallConv ## tyFromExpr where the expression shouldn't be evaluated as a static value tfGenericHasDestructor* = tfExplicitCallConv ## tyGenericBody where an instance has a generated destructor skError* = skUnknown var eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr, tfGcSafe, tfNoSideEffect, tfIsOutParam} ## type flags that are essential for type equality. ## This is now a variable because for emulation of version:1.0 we ## might exclude {tfGcSafe, tfNoSideEffect}. type TMagic* = enum # symbols that require compiler magic: mNone, mDefined, mDeclared, mDeclaredInScope, mCompiles, mArrGet, mArrPut, mAsgn, mLow, mHigh, mSizeOf, mAlignOf, mOffsetOf, mTypeTrait, mIs, mOf, mAddr, mType, mTypeOf, mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mStatic, mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst, mInc, mDec, mOrd, mNew, mNewFinalize, mNewSeq, mNewSeqOfCap, mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq, mIncl, mExcl, mCard, mChr, mGCref, mGCunref, mAddI, mSubI, mMulI, mDivI, mModI, mSucc, mPred, mAddF64, mSubF64, mMulF64, mDivF64, mShrI, mShlI, mAshrI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, mAddU, mSubU, mMulU, mDivU, mModU, mEqI, mLeI, mLtI, mEqF64, mLeF64, mLtF64, mLeU, mLtU, mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, mLePtr, mLtPtr, mXor, mEqCString, mEqProc, mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI, mUnaryPlusF64, mUnaryMinusF64, mCharToStr, mBoolToStr, mCStrToStr, mStrToStr, mEnumToStr, mAnd, mOr, mImplies, mIff, mExists, mForall, mOld, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet, mConStrStr, mSlice, mDotDot, # this one is only necessary to give nice compile time warnings mFields, mFieldPairs, mOmpParFor, mAppendStrCh, mAppendStrStr, mAppendSeqElem, mInSet, mRepr, mExit, mSetLengthStr, mSetLengthSeq, mSetLengthSeqUninit, mIsPartOf, mAstToStr, mParallel, mSwap, mIsNil, mArrToSeq, mOpenArrayToSeq, mNewString, mNewStringOfCap, mParseBiggestFloat, mMove, mEnsureMove, mWasMoved, mDup, mDestroy, mTrace, mDefault, mUnown, mFinished, mIsolate, mAccessEnv, mAccessTypeField, mArray, mOpenArray, mRange, mSet, mSeq, mVarargs, mRef, mPtr, mVar, mDistinct, mVoid, mTuple, mOrdinal, mIterableType, mInt, mInt8, mInt16, mInt32, mInt64, mUInt, mUInt8, mUInt16, mUInt32, mUInt64, mFloat, mFloat32, mFloat64, mFloat128, mBool, mChar, mString, mCstring, mPointer, mNil, mExpr, mStmt, mTypeDesc, mVoidType, mPNimrodNode, mSpawn, mDeepCopy, mIsMainModule, mCompileDate, mCompileTime, mProcCall, mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType, mCompileOption, mCompileOptionArg, mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel, mNKind, mNSymKind, mNccValue, mNccInc, mNcsAdd, mNcsIncl, mNcsLen, mNcsAt, mNctPut, mNctLen, mNctGet, mNctHasNext, mNctNext, mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal, mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetStrVal, mNLineInfo, mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mNSigHash, mNSizeOf, mNBindSym, mNCallSite, mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNGenSym, mNHint, mNWarning, mNError, mInstantiationInfo, mGetTypeInfo, mGetTypeInfoV2, mNimvm, mIntDefine, mStrDefine, mBoolDefine, mGenericDefine, mRunnableExamples, mException, mBuiltinType, mSymOwner, mUncheckedArray, mGetImplTransf, mSymIsInstantiationOf, mNodeId, mPrivateAccess, mZeroDefault const # things that we can evaluate safely at compile time, even if not asked for it: ctfeWhitelist* = {mNone, mSucc, mPred, mInc, mDec, mOrd, mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq, mArrGet, mArrPut, mAsgn, mDestroy, mIncl, mExcl, mCard, mChr, mAddI, mSubI, mMulI, mDivI, mModI, mAddF64, mSubF64, mMulF64, mDivF64, mShrI, mShlI, mBitandI, mBitorI, mBitxorI, mMinI, mMaxI, mAddU, mSubU, mMulU, mDivU, mModU, mEqI, mLeI, mLtI, mEqF64, mLeF64, mLtF64, mLeU, mLtU, mEqEnum, mLeEnum, mLtEnum, mEqCh, mLeCh, mLtCh, mEqB, mLeB, mLtB, mEqRef, mEqProc, mLePtr, mLtPtr, mEqCString, mXor, mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI, mUnaryPlusF64, mUnaryMinusF64, mCharToStr, mBoolToStr, mCStrToStr, mStrToStr, mEnumToStr, mAnd, mOr, mEqStr, mLeStr, mLtStr, mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet, mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem, mInSet, mRepr, mOpenArrayToSeq} generatedMagics* = {mNone, mIsolate, mFinished, mOpenArrayToSeq} ## magics that are generated as normal procs in the backend type ItemId* = object module*: int32 item*: int32 proc `$`*(x: ItemId): string = "(module: " & $x.module & ", item: " & $x.item & ")" proc `==`*(a, b: ItemId): bool {.inline.} = a.item == b.item and a.module == b.module proc hash*(x: ItemId): Hash = var h: Hash = hash(x.module) h = h !& hash(x.item) result = !$h type PNode* = ref TNode TNodeSeq* = seq[PNode] PType* = ref TType PSym* = ref TSym TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes when defined(useNodeIds): id*: int typField*: PType info*: TLineInfo flags*: TNodeFlags case kind*: TNodeKind of nkCharLit..nkUInt64Lit: intVal*: BiggestInt of nkFloatLit..nkFloat128Lit: floatVal*: BiggestFloat of nkStrLit..nkTripleStrLit: strVal*: string of nkSym: sym*: PSym of nkIdent: ident*: PIdent else: sons*: TNodeSeq when defined(nimsuggest): endInfo*: TLineInfo TStrTable* = object # a table[PIdent] of PSym counter*: int data*: seq[PSym] # -------------- backend information ------------------------------- TLocKind* = enum locNone, # no location locTemp, # temporary location locLocalVar, # location is a local variable locGlobalVar, # location is a global variable locParam, # location is a parameter locField, # location is a record field locExpr, # "location" is really an expression locProc, # location is a proc (an address of a procedure) locData, # location is a constant locCall, # location is a call expression locOther # location is something other TLocFlag* = enum lfIndirect, # backend introduced a pointer lfNoDeepCopy, # no need for a deep copy lfNoDecl, # do not declare it in C lfDynamicLib, # link symbol to dynamic library lfExportLib, # export symbol for dynamic library generation lfHeader, # include header file for symbol lfImportCompilerProc, # ``importc`` of a compilerproc lfSingleUse # no location yet and will only be used once lfEnforceDeref # a copyMem is required to dereference if this a # ptr array due to C array limitations. # See #1181, #6422, #11171 lfPrepareForMutation # string location is about to be mutated (V2) TStorageLoc* = enum OnUnknown, # location is unknown (stack, heap or static) OnStatic, # in a static section OnStack, # location is on hardware stack OnHeap # location is on heap or global # (reference counting needed) TLocFlags* = set[TLocFlag] TLoc* = object k*: TLocKind # kind of location storage*: TStorageLoc flags*: TLocFlags # location's flags lode*: PNode # Node where the location came from; can be faked snippet*: Rope # C code snippet of location (code generators) # ---------------- end of backend information ------------------------------ TLibKind* = enum libHeader, libDynamic TLib* = object # also misused for headers! # keep in sync with PackedLib kind*: TLibKind generated*: bool # needed for the backends: isOverridden*: bool name*: Rope path*: PNode # can be a string literal! CompilesId* = int ## id that is used for the caching logic within ## ``system.compiles``. See the seminst module. TInstantiation* = object sym*: PSym concreteTypes*: seq[PType] genericParamsCount*: int # for terrible reasons `concreteTypes` contains all the types, # so we need to know how many generic params there were # this is not serialized for IC and that is fine. compilesId*: CompilesId PInstantiation* = ref TInstantiation TScope* {.acyclic.} = object depthLevel*: int symbols*: TStrTable parent*: PScope allowPrivateAccess*: seq[PSym] # # enable access to private fields optionStackLen*: int PScope* = ref TScope ItemState* = enum Complete # completely in memory Partial # partially in memory Sealed # complete in memory, already written to NIF file, so further mutations are not allowed PLib* = ref TLib TSym* {.acyclic.} = object # Keep in sync with ast2nif.nim itemId*: ItemId # proc and type instantiations are cached in the generic symbol state*: ItemState case kindImpl*: TSymKind # Note: kept as 'kind' for case statement, but accessor checks state of routineKinds: #procInstCache*: seq[PInstantiation] gcUnsafetyReasonImpl*: PSym # for better error messages regarding gcsafe transformedBodyImpl*: PNode # cached body after transf pass of skLet, skVar, skField, skForVar: guardImpl*: PSym bitsizeImpl*: int alignmentImpl*: int # for alignment else: nil magicImpl*: TMagic typImpl*: PType name*: PIdent infoImpl*: TLineInfo when defined(nimsuggest): endInfoImpl*: TLineInfo hasUserSpecifiedTypeImpl*: bool # used for determining whether to display inlay type hints ownerFieldImpl*: PSym flagsImpl*: TSymFlags astImpl*: PNode # syntax tree of proc, iterator, etc.: # the whole proc including header; this is used # for easy generation of proper error messages # for variant record fields the discriminant # expression # for modules, it's a placeholder for compiler # generated code that will be appended to the # module after the sem pass (see appendToModule) optionsImpl*: TOptions positionImpl*: int # used for many different things: # for enum fields its position; # for fields its offset # for parameters its position (starting with 0) # for a conditional: # 1 iff the symbol is defined, else 0 # (or not in symbol table) # for modules, an unique index corresponding # to the module's fileIdx # for variables a slot index for the evaluator offsetImpl*: int32 # offset of record field disamb*: int32 # disambiguation number; the basic idea is that # `___` is unique locImpl*: TLoc annexImpl*: PLib # additional fields (seldom used, so we use a # reference to another object to save space) when hasFFI: cnameImpl*: string # resolved C declaration name in importc decl, e.g.: # proc fun() {.importc: "$1aux".} => cname = funaux constraintImpl*: PNode # additional constraints like 'lit|result'; also # misused for the codegenDecl and virtual pragmas in the hope # it won't cause problems # for skModule the string literal to output for # deprecated modules. instantiatedFromImpl*: PSym # for instances, the generic symbol where it came from. when defined(nimsuggest): allUsagesImpl*: seq[TLineInfo] TTypeSeq* = seq[PType] TTypeAttachedOp* = enum ## as usual, order is important here attachedWasMoved, attachedDestructor, attachedAsgn, attachedDup, attachedSink, attachedTrace, attachedDeepCopy TType* {.acyclic.} = object # \ # types are identical iff they have the # same id; there may be multiple copies of a type # in memory! # Keep in sync with PackedType itemId*: ItemId kind*: TTypeKind # kind of type state*: ItemState uniqueId*: ItemId # due to a design mistake, we need to keep the real ID here as it # is required by the --incremental:on mode. callConvImpl*: TCallingConvention # for procs flagsImpl*: TTypeFlags # flags of the type sonsImpl*: TTypeSeq # base types, etc. nImpl*: PNode # node for types: # for range types a nkRange node # for record types a nkRecord node # for enum types a list of symbols # if kind == tyInt: it is an 'int literal(x)' type # for procs and tyGenericBody, it's the # formal param list # for concepts, the concept body # else: unused ownerFieldImpl*: PSym # the 'owner' of the type symImpl*: PSym # types have the sym associated with them # it is used for converting types to strings sizeImpl*: BiggestInt # the size of the type in bytes # -1 means that the size is unknown alignImpl*: int16 # the type's alignment requirements paddingAtEndImpl*: int16 # locImpl*: TLoc typeInstImpl*: PType # for generic instantiations the tyGenericInst that led to this # type. TPair* = object key*, val*: RootRef TPairSeq* = seq[TPair] TIdPair*[T] = object key*: ItemId val*: T TIdPairSeq*[T] = seq[TIdPair[T]] TIdTable*[T] = object counter*: int data*: TIdPairSeq[T] TNodePair* = object h*: Hash # because it is expensive to compute! key*: PNode val*: int TNodePairSeq* = seq[TNodePair] TNodeTable* = object # the same as table[PNode] of int; # nodes are compared by structure! counter*: int data*: TNodePairSeq ignoreTypes*: bool TObjectSeq* = seq[RootRef] TObjectSet* = object counter*: int data*: TObjectSeq TImplication* = enum impUnknown, impNo, impYes const OverloadableSyms* = {skProc, skFunc, skMethod, skIterator, skConverter, skModule, skTemplate, skMacro, skEnumField} GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody, tyGenericParam} StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray, tySet, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyOpenArray, tyVarargs} ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in:: # var x = expr tyBool, tyChar, tyEnum, tyArray, tyObject, tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyPointer, tyOpenArray, tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64} IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64} # weird name because it contains tyFloat ConstantDataTypes*: TTypeKinds = {tyArray, tySet, tyTuple, tySequence} NilableTypes*: TTypeKinds = {tyPointer, tyCstring, tyRef, tyPtr, tyProc, tyError} # TODO PtrLikeKinds*: TTypeKinds = {tyPointer, tyPtr} # for VM PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16, nfDotSetter, nfDotField, nfIsRef, nfIsPtr, nfPreventCg, nfLL, nfFromTemplate, nfDefaultRefsParam, nfExecuteOnReload, nfLastRead, nfFirstWrite, nfSkipFieldChecking, nfDisabledOpenSym, nfLazyType} namePos* = 0 patternPos* = 1 # empty except for term rewriting macros genericParamsPos* = 2 paramsPos* = 3 pragmasPos* = 4 miscPos* = 5 # used for undocumented and hacky stuff bodyPos* = 6 # position of body; use rodread.getBody() instead! resultPos* = 7 dispatcherPos* = 8 nfAllFieldsSet* = nfBase2 nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice, nkClosedSymChoice, nkOpenSym} nkPragmaCallKinds* = {nkExprColonExpr, nkCall, nkCallStrLit} nkLiterals* = {nkCharLit..nkTripleStrLit} nkFloatLiterals* = {nkFloatLit..nkFloat128Lit} nkLambdaKinds* = {nkLambda, nkDo} declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef} routineDefs* = declarativeDefs + {nkMacroDef, nkTemplateDef} procDefs* = nkLambdaKinds + declarativeDefs callableDefs* = nkLambdaKinds + routineDefs nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice} nkStrKinds* = {nkStrLit..nkTripleStrLit} skLocalVars* = {skVar, skLet, skForVar, skParam, skResult} skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator, skMethod, skConverter} defaultSize* = -1 defaultAlignment* = -1 defaultOffset* = -1 proc len*(n: PNode): int {.inline.} = result = n.sons.len proc safeLen*(n: PNode): int {.inline.} = ## works even for leaves. if n.kind in {nkNone..nkNilLit}: result = 0 else: result = n.len template `[]`*(n: PNode, i: int): PNode = n.sons[i] template `[]=`*(n: PNode, i: int; x: PNode) = n.sons[i] = x template `[]`*(n: PNode, i: BackwardsIndex): PNode = n[n.len - i.int] template `[]=`*(n: PNode, i: BackwardsIndex; x: PNode) = n[n.len - i.int] = x iterator items*(n: PNode): PNode = for i in 0.. 0: newSeq(result.sons, children) setIdMaybe() proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode = ## new node with line info, type, and no children result = newNode(kind) result.info = info result.typField = typ proc newNode*(kind: TNodeKind, info: TLineInfo): PNode = ## new node with line info, no type, and no children newNodeImpl(info) setIdMaybe() proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode = result = newNode(nkIdent) result.ident = ident result.info = info proc newSymNode*(sym: PSym, info: TLineInfo): PNode = result = newNode(nkSym) result.sym = sym result.typField = sym.typImpl result.info = info proc newStrNode*(kind: TNodeKind, strVal: string): PNode = result = newNode(kind) result.strVal = strVal proc newStrNode*(strVal: string; info: TLineInfo): PNode = result = newNodeI(nkStrLit, info) result.strVal = strVal # Hooks, converters, method dispatchers and enum-to-string generated procs need special # handling for IC, they end up in IC indexes etc. Thus we "log" them in the module graph # and to pass them around to the NIF writer. This is not very elegant but it works. type LogEntryKind* = enum HookEntry, ConverterEntry, MethodEntry, EnumToStrEntry, GenericInstEntry LogEntry* = object kind*: LogEntryKind op*: TTypeAttachedOp isGeneric*: bool module*: int # Which module this entry belongs to key*: string sym*: PSym proc forcePartial*(s: PSym) = ## Resets all impl-fields to their default values and sets state to Partial. ## This is useful for creating a stub symbol that can be lazily loaded later. ## The fields itemId, name, and disamb are preserved. s.state = Partial case s.kindImpl of routineKinds: s.gcUnsafetyReasonImpl = nil s.transformedBodyImpl = nil of skLet, skVar, skField, skForVar: s.guardImpl = nil s.bitsizeImpl = 0 s.alignmentImpl = 0 # for alignment else: discard s.magicImpl = mNone s.typImpl = nil s.infoImpl = unknownLineInfo s.ownerFieldImpl = nil s.flagsImpl = {} s.astImpl = nil s.optionsImpl = {} s.positionImpl = 0 s.offsetImpl = 0 s.locImpl = TLoc() s.annexImpl = nil s.constraintImpl = nil s.instantiatedFromImpl = nil when defined(nimsuggest): s.endInfoImpl = unknownLineInfo s.hasUserSpecifiedTypeImpl = false s.allUsagesImpl = @[] when hasFFI: s.cnameImpl = "" proc forcePartial*(t: PType) = ## Resets all impl-fields to their default values and sets state to Partial. ## This is useful for creating a stub type that can be lazily loaded later. ## The fields itemId, kind, uniqueId are preserved. t.state = Partial t.callConvImpl = ccNimCall t.flagsImpl = {} t.sonsImpl = @[] t.nImpl = nil t.ownerFieldImpl = nil t.symImpl = nil t.sizeImpl = defaultSize t.alignImpl = defaultAlignment t.paddingAtEndImpl = 0'i16 t.locImpl = TLoc() t.typeInstImpl = nil const # for all kind of hash tables: GrowthFactor* = 2 # must be power of 2, > 0 StartSize* = 8 # must be power of 2, > 0 proc nextTry*(h, maxHash: Hash): Hash {.inline.} = result = ((5 * h) + 1) and maxHash # For any initial h in range(maxHash), repeating that maxHash times # generates each int in range(maxHash) exactly once (see any text on # random-number generation for proof). proc mustRehash*(length, counter: int): bool = assert(length > counter) result = (length * 2 < counter * 3) or (length - counter < 4) proc strTableContains*(t: TStrTable, n: PSym): bool = var h: Hash = n.name.h and high(t.data) # start with real hash value while t.data[h] != nil: if (t.data[h] == n): return true h = nextTry(h, high(t.data)) result = false proc strTableRawInsert(data: var seq[PSym], n: PSym) = var h: Hash = n.name.h and high(data) while data[h] != nil: if data[h] == n: # allowed for 'export' feature: #InternalError(n.info, "StrTableRawInsert: " & n.name.s) return h = nextTry(h, high(data)) assert(data[h] == nil) data[h] = n proc symTabReplaceRaw(data: var seq[PSym], prevSym: PSym, newSym: PSym) = assert prevSym.name.h == newSym.name.h var h: Hash = prevSym.name.h and high(data) while data[h] != nil: if data[h] == prevSym: data[h] = newSym return h = nextTry(h, high(data)) assert false proc symTabReplace*(t: var TStrTable, prevSym: PSym, newSym: PSym) = symTabReplaceRaw(t.data, prevSym, newSym) proc strTableEnlarge(t: var TStrTable) = var n: seq[PSym] newSeq(n, t.data.len * GrowthFactor) for i in 0..high(t.data): if t.data[i] != nil: strTableRawInsert(n, t.data[i]) swap(t.data, n) proc strTableAdd*(t: var TStrTable, n: PSym) = if mustRehash(t.data.len, t.counter): strTableEnlarge(t) strTableRawInsert(t.data, n) inc(t.counter) proc strTableInclReportConflict*(t: var TStrTable, n: PSym; onConflictKeepOld = false): PSym = # if `t` has a conflicting symbol (same identifier as `n`), return it # otherwise return `nil`. Incl `n` to `t` unless `onConflictKeepOld = true` # and a conflict was found. assert n.name != nil var h: Hash = n.name.h and high(t.data) var replaceSlot = -1 while true: var it = t.data[h] if it == nil: break # Semantic checking can happen multiple times thanks to templates # and overloading: (var x=@[]; x).mapIt(it). # So it is possible the very same sym is added multiple # times to the symbol table which we allow here with the 'it == n' check. if it.name.id == n.name.id: if it == n: return nil replaceSlot = h h = nextTry(h, high(t.data)) if replaceSlot >= 0: result = t.data[replaceSlot] # found it if not onConflictKeepOld: t.data[replaceSlot] = n # overwrite it with newer definition! return result # but return the old one elif mustRehash(t.data.len, t.counter): strTableEnlarge(t) strTableRawInsert(t.data, n) else: assert(t.data[h] == nil) t.data[h] = n inc(t.counter) result = nil proc strTableIncl*(t: var TStrTable, n: PSym; onConflictKeepOld = false): bool {.discardable.} = result = strTableInclReportConflict(t, n, onConflictKeepOld) != nil proc strTableGet*(t: TStrTable, name: PIdent): PSym = var h: Hash = name.h and high(t.data) while true: result = t.data[h] if result == nil: break if result.name.id == name.id: break h = nextTry(h, high(t.data))