# # # The Nimrod Compiler # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # this module does the semantic checking of type declarations # included from sem.nim proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType = if prev == nil: result = newTypeS(kind, c) else: result = prev if result.kind == tyForward: result.kind = kind proc newConstraint(c: PContext, k: TTypeKind): PType = result = newTypeS(tyTypeClass, c) result.addSonSkipIntLit(newTypeS(k, c)) proc semEnum(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyEnum) var counter, x: BiggestInt e: PSym base: PType counter = 0 base = nil result = newOrPrevType(tyEnum, prev, c) result.n = newNodeI(nkEnumTy, n.info) checkMinSonsLen(n, 1) if n.sons[0].kind != nkEmpty: base = semTypeNode(c, n.sons[0].sons[0], nil) if base.kind != tyEnum: localError(n.sons[0].info, errInheritanceOnlyWithEnums) counter = lastOrd(base) + 1 rawAddSon(result, base) let isPure = result.sym != nil and sfPure in result.sym.flags for i in countup(1, sonsLen(n) - 1): case n.sons[i].kind of nkEnumFieldDef: e = newSymS(skEnumField, n.sons[i].sons[0], c) var v = semConstExpr(c, n.sons[i].sons[1]) var strVal: PNode = nil case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind of tyTuple: if sonsLen(v) == 2: strVal = v.sons[1] # second tuple part is the string value if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCstring}: x = getOrdValue(v.sons[0]) # first tuple part is the ordinal else: LocalError(strVal.info, errStringLiteralExpected) else: LocalError(v.info, errWrongNumberOfVariables) of tyString, tyCstring: strVal = v x = counter else: x = getOrdValue(v) if i != 1: if x != counter: incl(result.flags, tfEnumHasHoles) if x < counter: LocalError(n.sons[i].info, errInvalidOrderInEnumX, e.name.s) x = counter e.ast = strVal # might be nil counter = x of nkSym: e = n.sons[i].sym of nkIdent: e = newSymS(skEnumField, n.sons[i], c) else: illFormedAst(n) e.typ = result e.position = int(counter) if result.sym != nil and sfExported in result.sym.flags: incl(e.flags, sfUsed) incl(e.flags, sfExported) if not isPure: StrTableAdd(c.module.tab, e) addSon(result.n, newSymNode(e)) if sfGenSym notin e.flags and not isPure: addDecl(c, e) inc(counter) proc semSet(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tySet, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) if base.kind == tyGenericInst: base = lastSon(base) if base.kind != tyGenericParam: if not isOrdinalType(base): LocalError(n.info, errOrdinalTypeExpected) elif lengthOrd(base) > MaxSetElements: LocalError(n.info, errSetTooBig) else: LocalError(n.info, errXExpectsOneTypeParam, "set") addSonSkipIntLit(result, errorType(c)) proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string, prev: PType): PType = result = newOrPrevType(kind, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) else: LocalError(n.info, errXExpectsOneTypeParam, kindStr) addSonSkipIntLit(result, errorType(c)) proc semVarargs(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tyVarargs, prev, c) if sonsLen(n) == 2 or sonsLen(n) == 3: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) if sonsLen(n) == 3: result.n = newIdentNode(considerAcc(n.sons[2]), n.sons[2].info) else: LocalError(n.info, errXExpectsOneTypeParam, "varargs") addSonSkipIntLit(result, errorType(c)) proc semAnyRef(c: PContext, n: PNode, kind: TTypeKind, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(kind, prev, c) var base = semTypeNode(c, n.sons[0], nil) addSonSkipIntLit(result, base) else: result = newConstraint(c, kind) proc semVarType(c: PContext, n: PNode, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(tyVar, prev, c) var base = semTypeNode(c, n.sons[0], nil) if base.kind == tyVar: LocalError(n.info, errVarVarTypeNotAllowed) base = base.sons[0] addSonSkipIntLit(result, base) else: result = newConstraint(c, tyVar) proc semDistinct(c: PContext, n: PNode, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(tyDistinct, prev, c) addSonSkipIntLit(result, semTypeNode(c, n.sons[0], nil)) else: result = newConstraint(c, tyDistinct) proc semRangeAux(c: PContext, n: PNode, prev: PType): PType = assert IsRange(n) checkSonsLen(n, 3) result = newOrPrevType(tyRange, prev, c) result.n = newNodeI(nkRange, n.info) if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty): LocalError(n.Info, errRangeIsEmpty) var a = semConstExpr(c, n[1]) var b = semConstExpr(c, n[2]) if not sameType(a.typ, b.typ): LocalError(n.info, errPureTypeMismatch) elif a.typ.kind notin {tyInt..tyInt64,tyEnum,tyBool,tyChar, tyFloat..tyFloat128,tyUInt8..tyUInt32}: LocalError(n.info, errOrdinalTypeExpected) elif enumHasHoles(a.typ): LocalError(n.info, errEnumXHasHoles, a.typ.sym.name.s) elif not leValue(a, b): LocalError(n.Info, errRangeIsEmpty) addSon(result.n, a) addSon(result.n, b) addSonSkipIntLit(result, b.typ) proc semRange(c: PContext, n: PNode, prev: PType): PType = result = nil if sonsLen(n) == 2: if isRange(n[1]): result = semRangeAux(c, n[1], prev) else: LocalError(n.sons[0].info, errRangeExpected) result = newOrPrevType(tyError, prev, c) else: LocalError(n.info, errXExpectsOneTypeParam, "range") result = newOrPrevType(tyError, prev, c) proc semArray(c: PContext, n: PNode, prev: PType): PType = var indx, base: PType result = newOrPrevType(tyArray, prev, c) if sonsLen(n) == 3: # 3 = length(array indx base) if isRange(n[1]): indx = semRangeAux(c, n[1], nil) else: indx = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, indx) if indx.kind == tyGenericInst: indx = lastSon(indx) if indx.kind != tyGenericParam: if not isOrdinalType(indx): LocalError(n.sons[1].info, errOrdinalTypeExpected) elif enumHasHoles(indx): LocalError(n.sons[1].info, errEnumXHasHoles, indx.sym.name.s) base = semTypeNode(c, n.sons[2], nil) addSonSkipIntLit(result, base) else: LocalError(n.info, errArrayExpectsTwoTypeParams) result = newOrPrevType(tyError, prev, c) proc semOrdinal(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tyOrdinal, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) if base.kind != tyGenericParam: if not isOrdinalType(base): LocalError(n.sons[1].info, errOrdinalTypeExpected) addSonSkipIntLit(result, base) else: LocalError(n.info, errXExpectsOneTypeParam, "ordinal") result = newOrPrevType(tyError, prev, c) proc semTypeIdent(c: PContext, n: PNode): PSym = if n.kind == nkSym: result = n.sym else: result = qualifiedLookup(c, n, {checkAmbiguity, checkUndeclared}) if result != nil: markUsed(n, result) if result.kind == skParam and result.typ.kind == tyTypeDesc: # This is a typedesc param. is it already bound? # it's not bound when it's also used as return type for example if result.typ.sonsLen > 0: let bound = result.typ.sons[0].sym if bound != nil: return bound return result if result.typ.sym == nil: LocalError(n.info, errTypeExpected) return errorSym(c, n) return result.typ.sym if result.kind != skType: # this implements the wanted ``var v: V, x: V`` feature ... var ov: TOverloadIter var amb = InitOverloadIter(ov, c, n) while amb != nil and amb.kind != skType: amb = nextOverloadIter(ov, c, n) if amb != nil: result = amb else: if result.kind != skError: LocalError(n.info, errTypeExpected) return errorSym(c, n) if result.typ.kind != tyGenericParam: # XXX get rid of this hack! var oldInfo = n.info reset(n[]) n.kind = nkSym n.sym = result n.info = oldInfo else: LocalError(n.info, errIdentifierExpected) result = errorSym(c, n) proc semTuple(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyTuple) var typ: PType result = newOrPrevType(tyTuple, prev, c) result.n = newNodeI(nkRecList, n.info) var check = initIntSet() var counter = 0 for i in countup(0, sonsLen(n) - 1): var a = n.sons[i] if (a.kind != nkIdentDefs): IllFormedAst(a) checkMinSonsLen(a, 3) var length = sonsLen(a) if a.sons[length - 2].kind != nkEmpty: typ = semTypeNode(c, a.sons[length - 2], nil) else: LocalError(a.info, errTypeExpected) typ = errorType(c) if a.sons[length - 1].kind != nkEmpty: LocalError(a.sons[length - 1].info, errInitHereNotAllowed) for j in countup(0, length - 3): var field = newSymG(skField, a.sons[j], c) field.typ = typ field.position = counter inc(counter) if ContainsOrIncl(check, field.name.id): LocalError(a.sons[j].info, errAttemptToRedefine, field.name.s) else: addSon(result.n, newSymNode(field)) addSonSkipIntLit(result, typ) proc semIdentVis(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym = # identifier with visibility if n.kind == nkPostfix: if sonsLen(n) == 2 and n.sons[0].kind == nkIdent: # for gensym'ed identifiers the identifier may already have been # transformed to a symbol and we need to use that here: result = newSymG(kind, n.sons[1], c) var v = n.sons[0].ident if sfExported in allowed and v.id == ord(wStar): incl(result.flags, sfExported) else: LocalError(n.sons[0].info, errInvalidVisibilityX, v.s) else: illFormedAst(n) else: result = newSymG(kind, n, c) proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym = if n.kind == nkPragmaExpr: checkSonsLen(n, 2) result = semIdentVis(c, kind, n.sons[0], allowed) case kind of skType: # process pragmas later, because result.typ has not been set yet of skField: pragma(c, result, n.sons[1], fieldPragmas) of skVar: pragma(c, result, n.sons[1], varPragmas) of skLet: pragma(c, result, n.sons[1], letPragmas) of skConst: pragma(c, result, n.sons[1], constPragmas) else: nil else: result = semIdentVis(c, kind, n, allowed) proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) = let ex = t[branchIndex][currentEx].skipConv for i in countup(1, branchIndex): for j in countup(0, sonsLen(t.sons[i]) - 2): if i == branchIndex and j == currentEx: break if overlap(t.sons[i].sons[j].skipConv, ex): LocalError(ex.info, errDuplicateCaseLabel) proc semBranchRange(c: PContext, t, a, b: PNode, covered: var biggestInt): PNode = checkMinSonsLen(t, 1) let ac = semConstExpr(c, a) let bc = semConstExpr(c, b) let at = fitNode(c, t.sons[0].typ, ac).skipConvTakeType let bt = fitNode(c, t.sons[0].typ, bc).skipConvTakeType result = newNodeI(nkRange, a.info) result.add(at) result.add(bt) if emptyRange(ac, bc): LocalError(b.info, errRangeIsEmpty) else: covered = covered + getOrdValue(bc) - getOrdValue(ac) + 1 proc SemCaseBranchRange(c: PContext, t, b: PNode, covered: var biggestInt): PNode = checkSonsLen(b, 3) result = semBranchRange(c, t, b.sons[1], b.sons[2], covered) proc semCaseBranchSetElem(c: PContext, t, b: PNode, covered: var biggestInt): PNode = if isRange(b): checkSonsLen(b, 3) result = semBranchRange(c, t, b.sons[1], b.sons[2], covered) elif b.kind == nkRange: checkSonsLen(b, 2) result = semBranchRange(c, t, b.sons[0], b.sons[1], covered) else: result = fitNode(c, t.sons[0].typ, b) inc(covered) proc semCaseBranch(c: PContext, t, branch: PNode, branchIndex: int, covered: var biggestInt) = for i in countup(0, sonsLen(branch) - 2): var b = branch.sons[i] if b.kind == nkRange: branch.sons[i] = b elif isRange(b): branch.sons[i] = semCaseBranchRange(c, t, b, covered) else: var r = semConstExpr(c, b) # for ``{}`` we want to trigger the type mismatch in ``fitNode``: if r.kind != nkCurly or len(r) == 0: checkMinSonsLen(t, 1) branch.sons[i] = fitNode(c, t.sons[0].typ, r) inc(covered) else: # constant sets have special rules # first element is special and will overwrite: branch.sons[i]: branch.sons[i] = semCaseBranchSetElem(c, t, r[0], covered) # other elements have to be added to ``branch`` for j in 1 .. 0x00007FFF: LocalError(n.info, errLenXinvalid, a.sons[0].sym.name.s) var chckCovered = true for i in countup(1, sonsLen(n) - 1): var b = copyTree(n.sons[i]) addSon(a, b) case n.sons[i].kind of nkOfBranch: checkMinSonsLen(b, 2) semCaseBranch(c, a, b, i, covered) of nkElse: chckCovered = false checkSonsLen(b, 1) else: illFormedAst(n) delSon(b, sonsLen(b) - 1) semRecordNodeAux(c, lastSon(n.sons[i]), check, pos, b, rectype) if chckCovered and (covered != lengthOrd(a.sons[0].typ)): localError(a.info, errNotAllCasesCovered) addSon(father, a) proc semRecordNodeAux(c: PContext, n: PNode, check: var TIntSet, pos: var int, father: PNode, rectype: PSym) = if n == nil: return case n.kind of nkRecWhen: var branch: PNode = nil # the branch to take for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it == nil: illFormedAst(n) var idx = 1 case it.kind of nkElifBranch: checkSonsLen(it, 2) if c.InGenericContext == 0: var e = semConstBoolExpr(c, it.sons[0]) if e.kind != nkIntLit: InternalError(e.info, "semRecordNodeAux") elif e.intVal != 0 and branch == nil: branch = it.sons[1] else: it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0])) of nkElse: checkSonsLen(it, 1) if branch == nil: branch = it.sons[0] idx = 0 else: illFormedAst(n) if c.InGenericContext > 0: # use a new check intset here for each branch: var newCheck: TIntSet assign(newCheck, check) var newPos = pos var newf = newNodeI(nkRecList, n.info) semRecordNodeAux(c, it.sons[idx], newcheck, newpos, newf, rectype) it.sons[idx] = if newf.len == 1: newf[0] else: newf if c.InGenericContext > 0: addSon(father, n) elif branch != nil: semRecordNodeAux(c, branch, check, pos, father, rectype) of nkRecCase: semRecordCase(c, n, check, pos, father, rectype) of nkNilLit: if father.kind != nkRecList: addSon(father, newNodeI(nkRecList, n.info)) of nkRecList: # attempt to keep the nesting at a sane level: var a = if father.kind == nkRecList: father else: copyNode(n) for i in countup(0, sonsLen(n) - 1): semRecordNodeAux(c, n.sons[i], check, pos, a, rectype) if a != father: addSon(father, a) of nkIdentDefs: checkMinSonsLen(n, 3) var length = sonsLen(n) var a: PNode if father.kind != nkRecList and length >= 4: a = newNodeI(nkRecList, n.info) else: a = ast.emptyNode if n.sons[length-1].kind != nkEmpty: localError(n.sons[length-1].info, errInitHereNotAllowed) var typ: PType if n.sons[length-2].kind == nkEmpty: LocalError(n.info, errTypeExpected) typ = errorType(c) else: typ = semTypeNode(c, n.sons[length-2], nil) for i in countup(0, sonsLen(n)-3): var f = semIdentWithPragma(c, skField, n.sons[i], {sfExported}) suggestSym(n.sons[i], f) f.typ = typ f.position = pos if (rectype != nil) and ({sfImportc, sfExportc} * rectype.flags != {}) and (f.loc.r == nil): f.loc.r = toRope(f.name.s) f.flags = f.flags + ({sfImportc, sfExportc} * rectype.flags) inc(pos) if ContainsOrIncl(check, f.name.id): localError(n.sons[i].info, errAttemptToRedefine, f.name.s) if a.kind == nkEmpty: addSon(father, newSymNode(f)) else: addSon(a, newSymNode(f)) if a.kind != nkEmpty: addSon(father, a) of nkEmpty: nil else: illFormedAst(n) proc addInheritedFieldsAux(c: PContext, check: var TIntSet, pos: var int, n: PNode) = case n.kind of nkRecCase: if (n.sons[0].kind != nkSym): InternalError(n.info, "addInheritedFieldsAux") addInheritedFieldsAux(c, check, pos, n.sons[0]) for i in countup(1, sonsLen(n) - 1): case n.sons[i].kind of nkOfBranch, nkElse: addInheritedFieldsAux(c, check, pos, lastSon(n.sons[i])) else: internalError(n.info, "addInheritedFieldsAux(record case branch)") of nkRecList: for i in countup(0, sonsLen(n) - 1): addInheritedFieldsAux(c, check, pos, n.sons[i]) of nkSym: Incl(check, n.sym.name.id) inc(pos) else: InternalError(n.info, "addInheritedFieldsAux()") proc addInheritedFields(c: PContext, check: var TIntSet, pos: var int, obj: PType) = if (sonsLen(obj) > 0) and (obj.sons[0] != nil): addInheritedFields(c, check, pos, obj.sons[0]) addInheritedFieldsAux(c, check, pos, obj.n) proc skipGenericInvokation(t: PType): PType {.inline.} = result = t if result.kind == tyGenericInvokation: result = result.sons[0] if result.kind == tyGenericBody: result = lastSon(result) proc semObjectNode(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyObject) var check = initIntSet() var pos = 0 var base: PType = nil # n.sons[0] contains the pragmas (if any). We process these later... checkSonsLen(n, 3) if n.sons[1].kind != nkEmpty: base = skipTypes(semTypeNode(c, n.sons[1].sons[0], nil), skipPtrs) var concreteBase = skipGenericInvokation(base) if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags: addInheritedFields(c, check, pos, concreteBase) else: if concreteBase.kind != tyError: localError(n.sons[1].info, errInheritanceOnlyWithNonFinalObjects) base = nil if n.kind != nkObjectTy: InternalError(n.info, "semObjectNode") result = newOrPrevType(tyObject, prev, c) rawAddSon(result, base) result.n = newNodeI(nkRecList, n.info) semRecordNodeAux(c, n.sons[2], check, pos, result.n, result.sym) if n.sons[0].kind != nkEmpty: # dummy symbol for `pragma`: var s = newSymS(skType, newIdentNode(getIdent("dummy"), n.info), c) s.typ = result pragma(c, s, n.sons[0], typePragmas) if base == nil and tfInheritable notin result.flags: incl(result.flags, tfFinal) proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) = if kind == skMacro and param.typ.kind != tyTypeDesc: # within a macro, every param has the type PNimrodNode! # and param.typ.kind in {tyTypeDesc, tyExpr, tyStmt}: let nn = getSysSym"PNimrodNode" var a = copySym(param) a.typ = nn.typ if sfGenSym notin a.flags: addDecl(c, a) else: if sfGenSym notin param.flags: addDecl(c, param) proc paramTypeClass(c: PContext, paramType: PType, procKind: TSymKind): tuple[typ: PType, id: PIdent] = # if typ is not-nil, the param should be turned into a generic param # if id is not nil, the generic param will bind just once (see below) case paramType.kind: of tyExpr: if paramType.sonsLen == 0: # proc(a, b: expr) # no constraints, treat like generic param result.typ = newTypeS(tyGenericParam, c) else: # proc(a: expr{string}, b: expr{nkLambda}) # overload on compile time values and AST trees result.typ = newTypeS(tyExpr, c) result.typ.sons = paramType.sons of tyTypeDesc: if tfInstantiated notin paramType.flags: result.typ = newTypeS(tyTypeDesc, c) result.typ.sons = paramType.sons of tyDistinct: result = paramTypeClass(c, paramType.lastSon, procKind) # disable the bindOnce behavior for the type class result.id = nil return of tyGenericBody: # type Foo[T] = object # proc x(a: Foo, b: Foo) result.typ = newTypeS(tyTypeClass, c) result.typ.addSonSkipIntLit(paramType) of tyTypeClass: result.typ = copyType(paramType, getCurrOwner(), false) else: nil # bindOnce by default if paramType.sym != nil: result.id = paramType.sym.name proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode, paramType: PType, paramName: string, info: TLineInfo): PType = result = paramType if procKind in {skMacro, skTemplate}: # generic param types in macros and templates affect overload # resolution, but don't work as generic params when it comes # to proc instantiation. We don't need to lift such params here. return ## Params having implicit generic types or pseudo types such as 'expr' ## need to be added to the generic params lists. ## 'expr' is different from 'expr{string}' so we must first call ## paramTypeClass to get the actual type we are going to use. var (typeClass, paramTypId) = paramTypeClass(c, paramType, procKind) let isAnon = paramTypId == nil if typeClass != nil: if isAnon: paramTypId = getIdent(paramName & ":type") if genericParams == nil: # genericParams is nil when the proc is being instantiated # the resolved type will be in scope then let s = searchInScopes(c, paramTypId) # tests/run/tinterf triggers this: if s != nil: result = s.typ else: LocalError(info, errCannotInstantiateX, paramName) result = errorType(c) else: block addImplicitGeneric: # is this a bindOnce type class already present in the param list? for i in countup(0, genericParams.len - 1): if genericParams.sons[i].sym.name.id == paramTypId.id: result = genericParams.sons[i].typ break addImplicitGeneric var s = newSym(skType, paramTypId, getCurrOwner(), info) if isAnon: s.flags.incl(sfAnon) s.linkTo(typeClass) s.position = genericParams.len genericParams.addSon(newSymNode(s)) result = typeClass proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType = if n.kind == nkCurlyExpr: result = semTypeNode(c, n.sons[0], nil) constraint = semNodeKindConstraints(n) else: result = semTypeNode(c, n, nil) proc semProcTypeNode(c: PContext, n, genericParams: PNode, prev: PType, kind: TSymKind): PType = var res: PNode cl: TIntSet checkMinSonsLen(n, 1) result = newOrPrevType(tyProc, prev, c) result.callConv = lastOptionEntry(c).defaultCC result.n = newNodeI(nkFormalParams, n.info) if genericParams != nil and sonsLen(genericParams) == 0: cl = initIntSet() rawAddSon(result, nil) # return type # result.n[0] used to be `nkType`, but now it's `nkEffectList` because # the effects are now stored in there too ... this is a bit hacky, but as # usual we desperately try to save memory: res = newNodeI(nkEffectList, n.info) addSon(result.n, res) var check = initIntSet() var counter = 0 for i in countup(1, n.len - 1): var a = n.sons[i] if a.kind != nkIdentDefs: IllFormedAst(a) checkMinSonsLen(a, 3) var typ: PType = nil def: PNode = nil constraint: PNode = nil length = sonsLen(a) hasType = a.sons[length-2].kind != nkEmpty hasDefault = a.sons[length-1].kind != nkEmpty if hasType: typ = semParamType(c, a.sons[length-2], constraint) if hasDefault: def = semExprWithType(c, a.sons[length-1]) # check type compability between def.typ and typ: if typ == nil: typ = def.typ elif def != nil: # and def.typ != nil and def.typ.kind != tyNone: # example code that triggers it: # proc sort[T](cmp: proc(a, b: T): int = cmp) if not containsGenericType(typ): def = fitNode(c, typ, def) if not (hasType or hasDefault): typ = newTypeS(tyExpr, c) if skipTypes(typ, {tyGenericInst}).kind == tyEmpty: continue for j in countup(0, length-3): var arg = newSymG(skParam, a.sons[j], c) var finalType = liftParamType(c, kind, genericParams, typ, arg.name.s, arg.info).skipIntLit arg.typ = finalType arg.position = counter arg.constraint = constraint inc(counter) if def != nil and def.kind != nkEmpty: arg.ast = copyTree(def) if ContainsOrIncl(check, arg.name.id): LocalError(a.sons[j].info, errAttemptToRedefine, arg.name.s) addSon(result.n, newSymNode(arg)) rawAddSon(result, finalType) addParamOrResult(c, arg, kind) if n.sons[0].kind != nkEmpty: var r = semTypeNode(c, n.sons[0], nil) # turn explicit 'void' return type into 'nil' because the rest of the # compiler only checks for 'nil': if skipTypes(r, {tyGenericInst}).kind != tyEmpty: if r.sym == nil or sfAnon notin r.sym.flags: r = liftParamType(c, kind, genericParams, r, "result", n.sons[0].info) r.flags.incl tfRetType result.sons[0] = skipIntLit(r) res.typ = result.sons[0] proc semStmtListType(c: PContext, n: PNode, prev: PType): PType = checkMinSonsLen(n, 1) var length = sonsLen(n) for i in countup(0, length - 2): n.sons[i] = semStmt(c, n.sons[i]) if length > 0: result = semTypeNode(c, n.sons[length - 1], prev) n.typ = result n.sons[length - 1].typ = result else: result = nil proc semBlockType(c: PContext, n: PNode, prev: PType): PType = Inc(c.p.nestedBlockCounter) checkSonsLen(n, 2) openScope(c) if n.sons[0].kind notin {nkEmpty, nkSym}: addDecl(c, newSymS(skLabel, n.sons[0], c)) result = semStmtListType(c, n.sons[1], prev) n.sons[1].typ = result n.typ = result closeScope(c) Dec(c.p.nestedBlockCounter) proc semGenericParamInInvokation(c: PContext, n: PNode): PType = # XXX hack 1022 for generics ... would have been nice if the compiler had # been designed with them in mind from start ... when false: if n.kind == nkSym: # for generics we need to lookup the type var again: var s = searchInScopes(c, n.sym.name) if s != nil: if s.kind == skType and s.typ != nil: var t = n.sym.typ echo "came here" return t else: echo "s is crap:" debug(s) else: echo "s is nil!!!!" result = semTypeNode(c, n, nil) proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType = result = newOrPrevType(tyGenericInvokation, prev, c) var isConcrete = true if s.typ == nil: LocalError(n.info, errCannotInstantiateX, s.name.s) return newOrPrevType(tyError, prev, c) elif s.typ.kind != tyGenericBody: isConcrete = false elif sonsLen(n) != sonsLen(s.typ): LocalError(n.info, errWrongNumberOfArguments) return newOrPrevType(tyError, prev, c) addSonSkipIntLit(result, s.typ) # iterate over arguments: for i in countup(1, sonsLen(n)-1): var elem = semGenericParamInInvokation(c, n.sons[i]) if containsGenericType(elem): isConcrete = false #if elem.kind in {tyGenericParam, tyGenericInvokation}: isConcrete = false if elem.isNil: rawAddSon(result, elem) else: addSonSkipIntLit(result, elem) if isConcrete: if s.ast == nil: LocalError(n.info, errCannotInstantiateX, s.name.s) result = newOrPrevType(tyError, prev, c) else: result = instGenericContainer(c, n, result) proc semTypeExpr(c: PContext, n: PNode): PType = var n = semExprWithType(c, n, {efDetermineType}) if n.kind == nkSym and n.sym.kind == skType: result = n.sym.typ else: LocalError(n.info, errTypeExpected, n.renderTree) proc freshType(res, prev: PType): PType {.inline.} = if prev.isNil: result = copyType(res, res.owner, keepId=false) else: result = res proc semTypeNode(c: PContext, n: PNode, prev: PType): PType = result = nil if gCmd == cmdIdeTools: suggestExpr(c, n) case n.kind of nkEmpty: nil of nkTypeOfExpr: # for ``type(countup(1,3))``, see ``tests/ttoseq``. checkSonsLen(n, 1) result = semExprWithType(c, n.sons[0], {efInTypeof}).typ of nkPar: if sonsLen(n) == 1: result = semTypeNode(c, n.sons[0], prev) else: # XXX support anon tuple here LocalError(n.info, errTypeExpected) result = newOrPrevType(tyError, prev, c) of nkCallKinds: if n[0].kind == nkIdent: let op = n.sons[0].ident if op.id in {ord(wAnd), ord(wOr)} or op.s == "|": checkSonsLen(n, 3) var t1 = semTypeNode(c, n.sons[1], nil) t2 = semTypeNode(c, n.sons[2], nil) if t1 == nil: LocalError(n.sons[1].info, errTypeExpected) result = newOrPrevType(tyError, prev, c) elif t2 == nil: LocalError(n.sons[2].info, errTypeExpected) result = newOrPrevType(tyError, prev, c) else: result = newTypeS(tyTypeClass, c) result.addSonSkipIntLit(t1) result.addSonSkipIntLit(t2) result.flags.incl(if op.id == ord(wAnd): tfAll else: tfAny) elif op.id == ord(wNot): checkSonsLen(n, 3) result = semTypeNode(c, n.sons[1], prev) if result.kind in NilableTypes and n.sons[2].kind == nkNilLit: result = freshType(result, prev) result.flags.incl(tfNotNil) else: LocalError(n.info, errGenerated, "invalid type") else: result = semTypeExpr(c, n) else: result = semTypeExpr(c, n) of nkWhenStmt: var whenResult = semWhen(c, n, false) if whenResult.kind == nkStmtList: whenResult.kind = nkStmtListType result = semTypeNode(c, whenResult, prev) of nkBracketExpr: checkMinSonsLen(n, 2) var s = semTypeIdent(c, n.sons[0]) case s.magic of mArray: result = semArray(c, n, prev) of mOpenArray: result = semContainer(c, n, tyOpenArray, "openarray", prev) of mRange: result = semRange(c, n, prev) of mSet: result = semSet(c, n, prev) of mOrdinal: result = semOrdinal(c, n, prev) of mSeq: result = semContainer(c, n, tySequence, "seq", prev) of mVarargs: result = semVarargs(c, n, prev) of mExpr, mTypeDesc: result = semTypeNode(c, n.sons[0], nil) if result != nil: result = copyType(result, getCurrOwner(), false) for i in countup(1, n.len - 1): result.rawAddSon(semTypeNode(c, n.sons[i], nil)) else: result = semGeneric(c, n, s, prev) of nkIdent, nkDotExpr, nkAccQuoted: var s = semTypeIdent(c, n) if s.typ == nil: if s.kind != skError: LocalError(n.info, errTypeExpected) result = newOrPrevType(tyError, prev, c) elif s.kind == skParam and s.typ.kind == tyTypeDesc: assert s.typ.len > 0 InternalAssert prev == nil result = s.typ.sons[0] elif prev == nil: result = s.typ else: assignType(prev, s.typ) # bugfix: keep the fresh id for aliases to integral types: if s.typ.kind notin {tyBool, tyChar, tyInt..tyInt64, tyFloat..tyFloat128, tyUInt..tyUInt64}: prev.id = s.typ.id result = prev of nkSym: if n.sym.kind == skType and n.sym.typ != nil: var t = n.sym.typ if prev == nil: result = t else: assignType(prev, t) result = prev markUsed(n, n.sym) else: if n.sym.kind != skError: LocalError(n.info, errTypeExpected) result = newOrPrevType(tyError, prev, c) of nkObjectTy: result = semObjectNode(c, n, prev) of nkTupleTy: result = semTuple(c, n, prev) of nkRefTy: result = semAnyRef(c, n, tyRef, prev) of nkPtrTy: result = semAnyRef(c, n, tyPtr, prev) of nkVarTy: result = semVarType(c, n, prev) of nkDistinctTy: result = semDistinct(c, n, prev) of nkProcTy, nkIteratorTy: if n.sonsLen == 0: result = newConstraint(c, tyProc) else: checkSonsLen(n, 2) openScope(c) result = semProcTypeNode(c, n.sons[0], nil, prev, skProc) # dummy symbol for `pragma`: var s = newSymS(skProc, newIdentNode(getIdent("dummy"), n.info), c) s.typ = result if n.sons[1].kind == nkEmpty or n.sons[1].len == 0: if result.callConv == ccDefault: result.callConv = ccClosure #Message(n.info, warnImplicitClosure, renderTree(n)) else: pragma(c, s, n.sons[1], procTypePragmas) when useEffectSystem: SetEffectsForProcType(result, n.sons[1]) closeScope(c) if n.kind == nkIteratorTy: result.flags.incl(tfIterator) result.callConv = ccClosure of nkEnumTy: result = semEnum(c, n, prev) of nkType: result = n.typ of nkStmtListType: result = semStmtListType(c, n, prev) of nkBlockType: result = semBlockType(c, n, prev) of nkSharedTy: checkSonsLen(n, 1) result = semTypeNode(c, n.sons[0], prev) result = freshType(result, prev) result.flags.incl(tfShared) else: LocalError(n.info, errTypeExpected) result = newOrPrevType(tyError, prev, c) proc setMagicType(m: PSym, kind: TTypeKind, size: int) = m.typ.kind = kind m.typ.align = size m.typ.size = size proc processMagicType(c: PContext, m: PSym) = case m.magic of mInt: setMagicType(m, tyInt, intSize) of mInt8: setMagicType(m, tyInt8, 1) of mInt16: setMagicType(m, tyInt16, 2) of mInt32: setMagicType(m, tyInt32, 4) of mInt64: setMagicType(m, tyInt64, 8) of mUInt: setMagicType(m, tyUInt, intSize) of mUInt8: setMagicType(m, tyUInt8, 1) of mUInt16: setMagicType(m, tyUInt16, 2) of mUInt32: setMagicType(m, tyUInt32, 4) of mUInt64: setMagicType(m, tyUInt64, 8) of mFloat: setMagicType(m, tyFloat, floatSize) of mFloat32: setMagicType(m, tyFloat32, 4) of mFloat64: setMagicType(m, tyFloat64, 8) of mFloat128: setMagicType(m, tyFloat128, 16) of mBool: setMagicType(m, tyBool, 1) of mChar: setMagicType(m, tyChar, 1) of mString: setMagicType(m, tyString, ptrSize) rawAddSon(m.typ, getSysType(tyChar)) of mCstring: setMagicType(m, tyCString, ptrSize) rawAddSon(m.typ, getSysType(tyChar)) of mPointer: setMagicType(m, tyPointer, ptrSize) of mEmptySet: setMagicType(m, tySet, 1) rawAddSon(m.typ, newTypeS(tyEmpty, c)) of mIntSetBaseType: setMagicType(m, tyRange, intSize) of mNil: setMagicType(m, tyNil, ptrSize) of mExpr: setMagicType(m, tyExpr, 0) of mStmt: setMagicType(m, tyStmt, 0) of mTypeDesc: setMagicType(m, tyTypeDesc, 0) of mVoidType: setMagicType(m, tyEmpty, 0) of mArray: setMagicType(m, tyArray, 0) of mOpenArray: setMagicType(m, tyOpenArray, 0) of mVarargs: setMagicType(m, tyVarargs, 0) of mRange: setMagicType(m, tyRange, 0) of mSet: setMagicType(m, tySet, 0) of mSeq: setMagicType(m, tySequence, 0) of mOrdinal: setMagicType(m, tyOrdinal, 0) of mPNimrodNode: nil else: LocalError(m.info, errTypeExpected) proc semGenericConstraints(c: PContext, n: PNode, result: PType) = var x = semTypeNode(c, n, nil) if x.kind in StructuralEquivTypes and ( sonsLen(x) == 0 or x.sons[0].kind in {tyGenericParam, tyEmpty}): x = newConstraint(c, x.kind) result.addSonSkipIntLit(x) proc semGenericParamList(c: PContext, n: PNode, father: PType = nil): PNode = result = copyNode(n) if n.kind != nkGenericParams: illFormedAst(n) return for i in countup(0, sonsLen(n)-1): var a = n.sons[i] if a.kind != nkIdentDefs: illFormedAst(n) var L = sonsLen(a) var def = a.sons[L-1] var typ: PType if a.sons[L-2].kind != nkEmpty: typ = newTypeS(tyGenericParam, c) semGenericConstraints(c, a.sons[L-2], typ) if sonsLen(typ) == 1 and typ.sons[0].kind == tyTypeDesc: typ = typ.sons[0] elif def.kind != nkEmpty: typ = newTypeS(tyExpr, c) else: typ = nil for j in countup(0, L-3): var s: PSym if typ == nil: s = newSymG(skType, a.sons[j], c) s.typ = newTypeS(tyGenericParam, c) else: case typ.kind of tyTypeDesc: s = newSymG(skType, a.sons[j], c) s.typ = newTypeS(tyGenericParam, c) of tyExpr: #echo "GENERIC EXPR ", a.info.toFileLineCol # not a type param, but an expression # proc foo[x: expr](bar: int) what is this? s = newSymG(skGenericParam, a.sons[j], c) s.typ = typ else: # This handles cases like proc foo[t: tuple] # XXX: we want to turn that into a type class s = newSymG(skType, a.sons[j], c) s.typ = typ if def.kind != nkEmpty: s.ast = def s.typ.sym = s if father != nil: addSonSkipIntLit(father, s.typ) s.position = i addSon(result, newSymNode(s)) if sfGenSym notin s.flags: addDecl(c, s)