# # # The Nimrod Compiler # (c) Copyright 2012 Andreas Rumpf # # See the file "copying.txt", included in this # distribution, for details about the copyright. # # this module does the semantic checking of type declarations # included from sem.nim proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType = if prev == nil: result = newTypeS(kind, c) else: result = prev if result.kind == tyForward: result.kind = kind proc newConstraint(c: PContext, k: TTypeKind): PType = result = newTypeS(tyBuiltInTypeClass, c) result.addSonSkipIntLit(newTypeS(k, c)) proc semEnum(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyEnum) var counter, x: BiggestInt e: PSym base: PType counter = 0 base = nil result = newOrPrevType(tyEnum, prev, c) result.n = newNodeI(nkEnumTy, n.info) checkMinSonsLen(n, 1) if n.sons[0].kind != nkEmpty: base = semTypeNode(c, n.sons[0].sons[0], nil) if base.kind != tyEnum: localError(n.sons[0].info, errInheritanceOnlyWithEnums) counter = lastOrd(base) + 1 rawAddSon(result, base) let isPure = result.sym != nil and sfPure in result.sym.flags var hasNull = false for i in countup(1, sonsLen(n) - 1): case n.sons[i].kind of nkEnumFieldDef: e = newSymS(skEnumField, n.sons[i].sons[0], c) var v = semConstExpr(c, n.sons[i].sons[1]) var strVal: PNode = nil case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind of tyTuple: if sonsLen(v) == 2: strVal = v.sons[1] # second tuple part is the string value if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCString}: x = getOrdValue(v.sons[0]) # first tuple part is the ordinal else: localError(strVal.info, errStringLiteralExpected) else: localError(v.info, errWrongNumberOfVariables) of tyString, tyCString: strVal = v x = counter else: x = getOrdValue(v) if i != 1: if x != counter: incl(result.flags, tfEnumHasHoles) if x < counter: localError(n.sons[i].info, errInvalidOrderInEnumX, e.name.s) x = counter e.ast = strVal # might be nil counter = x of nkSym: e = n.sons[i].sym of nkIdent: e = newSymS(skEnumField, n.sons[i], c) else: illFormedAst(n) e.typ = result e.position = int(counter) if e.position == 0: hasNull = true if result.sym != nil and sfExported in result.sym.flags: incl(e.flags, sfUsed) incl(e.flags, sfExported) if not isPure: strTableAdd(c.module.tab, e) addSon(result.n, newSymNode(e)) if sfGenSym notin e.flags and not isPure: addDecl(c, e) inc(counter) if not hasNull: incl(result.flags, tfNeedsInit) proc semSet(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tySet, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) if base.kind == tyGenericInst: base = lastSon(base) if base.kind != tyGenericParam: if not isOrdinalType(base): localError(n.info, errOrdinalTypeExpected) elif lengthOrd(base) > MaxSetElements: localError(n.info, errSetTooBig) else: localError(n.info, errXExpectsOneTypeParam, "set") addSonSkipIntLit(result, errorType(c)) proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string, prev: PType): PType = result = newOrPrevType(kind, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) else: localError(n.info, errXExpectsOneTypeParam, kindStr) addSonSkipIntLit(result, errorType(c)) proc semVarargs(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tyVarargs, prev, c) if sonsLen(n) == 2 or sonsLen(n) == 3: var base = semTypeNode(c, n.sons[1], nil) addSonSkipIntLit(result, base) if sonsLen(n) == 3: result.n = newIdentNode(considerAcc(n.sons[2]), n.sons[2].info) else: localError(n.info, errXExpectsOneTypeParam, "varargs") addSonSkipIntLit(result, errorType(c)) proc semAnyRef(c: PContext, n: PNode, kind: TTypeKind, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(kind, prev, c) var base = semTypeNode(c, n.sons[0], nil) addSonSkipIntLit(result, base) else: result = newConstraint(c, kind) proc semVarType(c: PContext, n: PNode, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(tyVar, prev, c) var base = semTypeNode(c, n.sons[0], nil) if base.kind == tyVar: localError(n.info, errVarVarTypeNotAllowed) base = base.sons[0] addSonSkipIntLit(result, base) else: result = newConstraint(c, tyVar) proc semDistinct(c: PContext, n: PNode, prev: PType): PType = if sonsLen(n) == 1: result = newOrPrevType(tyDistinct, prev, c) addSonSkipIntLit(result, semTypeNode(c, n.sons[0], nil)) else: result = newConstraint(c, tyDistinct) proc semRangeAux(c: PContext, n: PNode, prev: PType): PType = assert isRange(n) checkSonsLen(n, 3) result = newOrPrevType(tyRange, prev, c) result.n = newNodeI(nkRange, n.info) if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty): localError(n.info, errRangeIsEmpty) var a = semConstExpr(c, n[1]) var b = semConstExpr(c, n[2]) if not sameType(a.typ, b.typ): localError(n.info, errPureTypeMismatch) elif a.typ.kind notin {tyInt..tyInt64,tyEnum,tyBool,tyChar, tyFloat..tyFloat128,tyUInt8..tyUInt32}: localError(n.info, errOrdinalTypeExpected) elif enumHasHoles(a.typ): localError(n.info, errEnumXHasHoles, a.typ.sym.name.s) elif not leValue(a, b): localError(n.info, errRangeIsEmpty) addSon(result.n, a) addSon(result.n, b) addSonSkipIntLit(result, b.typ) proc semRange(c: PContext, n: PNode, prev: PType): PType = result = nil if sonsLen(n) == 2: if isRange(n[1]): result = semRangeAux(c, n[1], prev) let n = result.n if n.sons[0].kind in {nkCharLit..nkUInt64Lit}: if n.sons[0].intVal > 0 or n.sons[1].intVal < 0: incl(result.flags, tfNeedsInit) elif n.sons[0].floatVal > 0.0 or n.sons[1].floatVal < 0.0: incl(result.flags, tfNeedsInit) else: localError(n.sons[0].info, errRangeExpected) result = newOrPrevType(tyError, prev, c) else: localError(n.info, errXExpectsOneTypeParam, "range") result = newOrPrevType(tyError, prev, c) proc nMinusOne(n: PNode): PNode = result = newNode(nkCall, n.info, @[ newSymNode(getSysMagic("<", mUnaryLt)), n]) proc semArray(c: PContext, n: PNode, prev: PType): PType = var indx, base: PType result = newOrPrevType(tyArray, prev, c) if sonsLen(n) == 3: # 3 = length(array indx base) if isRange(n[1]): indx = semRangeAux(c, n[1], nil) else: let e = semExprWithType(c, n.sons[1], {efDetermineType}) if e.typ.kind == tyFromExpr: indx = e.typ elif e.kind in {nkIntLit..nkUInt64Lit}: indx = makeRangeType(c, 0, e.intVal-1, n.info, e.typ) elif e.kind == nkSym and e.typ.kind == tyStatic: if e.sym.ast != nil: return semArray(c, e.sym.ast, nil) internalAssert c.inGenericContext > 0 if not isOrdinalType(e.typ.lastSon): localError(n[1].info, errOrdinalTypeExpected) indx = e.typ elif e.kind in nkCallKinds and hasGenericArguments(e): if not isOrdinalType(e.typ): localError(n[1].info, errOrdinalTypeExpected) # This is an int returning call, depending on an # yet unknown generic param (see tgenericshardcases). # We are going to construct a range type that will be # properly filled-out in semtypinst (see how tyStaticExpr # is handled there). let intType = getSysType(tyInt) indx = newTypeS(tyRange, c) indx.sons = @[intType] indx.n = newNode(nkRange, n.info, @[ newIntTypeNode(nkIntLit, 0, intType), makeStaticExpr(c, e.nMinusOne)]) else: indx = e.typ.skipTypes({tyTypeDesc}) addSonSkipIntLit(result, indx) if indx.kind == tyGenericInst: indx = lastSon(indx) if indx.kind notin {tyGenericParam, tyStatic, tyFromExpr}: if not isOrdinalType(indx): localError(n.sons[1].info, errOrdinalTypeExpected) elif enumHasHoles(indx): localError(n.sons[1].info, errEnumXHasHoles, indx.sym.name.s) base = semTypeNode(c, n.sons[2], nil) addSonSkipIntLit(result, base) else: localError(n.info, errArrayExpectsTwoTypeParams) result = newOrPrevType(tyError, prev, c) proc semOrdinal(c: PContext, n: PNode, prev: PType): PType = result = newOrPrevType(tyOrdinal, prev, c) if sonsLen(n) == 2: var base = semTypeNode(c, n.sons[1], nil) if base.kind != tyGenericParam: if not isOrdinalType(base): localError(n.sons[1].info, errOrdinalTypeExpected) addSonSkipIntLit(result, base) else: localError(n.info, errXExpectsOneTypeParam, "ordinal") result = newOrPrevType(tyError, prev, c) proc semTypeIdent(c: PContext, n: PNode): PSym = if n.kind == nkSym: result = n.sym else: result = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared}) if result != nil: markUsed(n, result) if result.kind == skParam and result.typ.kind == tyTypeDesc: # This is a typedesc param. is it already bound? # it's not bound when it's used multiple times in the # proc signature for example if c.inGenericInst > 0: let bound = result.typ.sons[0].sym if bound != nil: return bound return result if result.typ.sym == nil: localError(n.info, errTypeExpected) return errorSym(c, n) result = result.typ.sym.copySym result.typ = copyType(result.typ, result.typ.owner, true) result.typ.flags.incl tfUnresolved if result.kind != skType: # this implements the wanted ``var v: V, x: V`` feature ... var ov: TOverloadIter var amb = initOverloadIter(ov, c, n) while amb != nil and amb.kind != skType: amb = nextOverloadIter(ov, c, n) if amb != nil: result = amb else: if result.kind != skError: localError(n.info, errTypeExpected) return errorSym(c, n) if result.typ.kind != tyGenericParam: # XXX get rid of this hack! var oldInfo = n.info reset(n[]) n.kind = nkSym n.sym = result n.info = oldInfo else: localError(n.info, errIdentifierExpected) result = errorSym(c, n) proc semTuple(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyTuple) var typ: PType result = newOrPrevType(tyTuple, prev, c) result.n = newNodeI(nkRecList, n.info) var check = initIntSet() var counter = 0 for i in countup(0, sonsLen(n) - 1): var a = n.sons[i] if (a.kind != nkIdentDefs): illFormedAst(a) checkMinSonsLen(a, 3) var length = sonsLen(a) if a.sons[length - 2].kind != nkEmpty: typ = semTypeNode(c, a.sons[length - 2], nil) else: localError(a.info, errTypeExpected) typ = errorType(c) if a.sons[length - 1].kind != nkEmpty: localError(a.sons[length - 1].info, errInitHereNotAllowed) for j in countup(0, length - 3): var field = newSymG(skField, a.sons[j], c) field.typ = typ field.position = counter inc(counter) if containsOrIncl(check, field.name.id): localError(a.sons[j].info, errAttemptToRedefine, field.name.s) else: addSon(result.n, newSymNode(field)) addSonSkipIntLit(result, typ) if gCmd == cmdPretty: checkDef(a.sons[j], field) proc semIdentVis(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym = # identifier with visibility if n.kind == nkPostfix: if sonsLen(n) == 2 and n.sons[0].kind == nkIdent: # for gensym'ed identifiers the identifier may already have been # transformed to a symbol and we need to use that here: result = newSymG(kind, n.sons[1], c) var v = n.sons[0].ident if sfExported in allowed and v.id == ord(wStar): incl(result.flags, sfExported) else: localError(n.sons[0].info, errInvalidVisibilityX, v.s) else: illFormedAst(n) else: result = newSymG(kind, n, c) proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode, allowed: TSymFlags): PSym = if n.kind == nkPragmaExpr: checkSonsLen(n, 2) result = semIdentVis(c, kind, n.sons[0], allowed) case kind of skType: # process pragmas later, because result.typ has not been set yet of skField: pragma(c, result, n.sons[1], fieldPragmas) of skVar: pragma(c, result, n.sons[1], varPragmas) of skLet: pragma(c, result, n.sons[1], letPragmas) of skConst: pragma(c, result, n.sons[1], constPragmas) else: discard else: result = semIdentVis(c, kind, n, allowed) if gCmd == cmdPretty: checkDef(n, result) proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) = let ex = t[branchIndex][currentEx].skipConv for i in countup(1, branchIndex): for j in countup(0, sonsLen(t.sons[i]) - 2): if i == branchIndex and j == currentEx: break if overlap(t.sons[i].sons[j].skipConv, ex): localError(ex.info, errDuplicateCaseLabel) proc semBranchRange(c: PContext, t, a, b: PNode, covered: var BiggestInt): PNode = checkMinSonsLen(t, 1) let ac = semConstExpr(c, a) let bc = semConstExpr(c, b) let at = fitNode(c, t.sons[0].typ, ac).skipConvTakeType let bt = fitNode(c, t.sons[0].typ, bc).skipConvTakeType result = newNodeI(nkRange, a.info) result.add(at) result.add(bt) if emptyRange(ac, bc): localError(b.info, errRangeIsEmpty) else: covered = covered + getOrdValue(bc) - getOrdValue(ac) + 1 proc semCaseBranchRange(c: PContext, t, b: PNode, covered: var BiggestInt): PNode = checkSonsLen(b, 3) result = semBranchRange(c, t, b.sons[1], b.sons[2], covered) proc semCaseBranchSetElem(c: PContext, t, b: PNode, covered: var BiggestInt): PNode = if isRange(b): checkSonsLen(b, 3) result = semBranchRange(c, t, b.sons[1], b.sons[2], covered) elif b.kind == nkRange: checkSonsLen(b, 2) result = semBranchRange(c, t, b.sons[0], b.sons[1], covered) else: result = fitNode(c, t.sons[0].typ, b) inc(covered) proc semCaseBranch(c: PContext, t, branch: PNode, branchIndex: int, covered: var BiggestInt) = for i in countup(0, sonsLen(branch) - 2): var b = branch.sons[i] if b.kind == nkRange: branch.sons[i] = b elif isRange(b): branch.sons[i] = semCaseBranchRange(c, t, b, covered) else: var r = semConstExpr(c, b) # for ``{}`` we want to trigger the type mismatch in ``fitNode``: if r.kind != nkCurly or len(r) == 0: checkMinSonsLen(t, 1) branch.sons[i] = skipConv(fitNode(c, t.sons[0].typ, r)) inc(covered) else: # constant sets have special rules # first element is special and will overwrite: branch.sons[i]: branch.sons[i] = semCaseBranchSetElem(c, t, r[0], covered) # other elements have to be added to ``branch`` for j in 1 .. 0x00007FFF: localError(n.info, errLenXinvalid, a.sons[0].sym.name.s) var chckCovered = true for i in countup(1, sonsLen(n) - 1): var b = copyTree(n.sons[i]) addSon(a, b) case n.sons[i].kind of nkOfBranch: checkMinSonsLen(b, 2) semCaseBranch(c, a, b, i, covered) of nkElse: chckCovered = false checkSonsLen(b, 1) else: illFormedAst(n) delSon(b, sonsLen(b) - 1) semRecordNodeAux(c, lastSon(n.sons[i]), check, pos, b, rectype) if chckCovered and (covered != lengthOrd(a.sons[0].typ)): localError(a.info, errNotAllCasesCovered) addSon(father, a) proc semRecordNodeAux(c: PContext, n: PNode, check: var TIntSet, pos: var int, father: PNode, rectype: PType) = if n == nil: return case n.kind of nkRecWhen: var branch: PNode = nil # the branch to take for i in countup(0, sonsLen(n) - 1): var it = n.sons[i] if it == nil: illFormedAst(n) var idx = 1 case it.kind of nkElifBranch: checkSonsLen(it, 2) if c.inGenericContext == 0: var e = semConstBoolExpr(c, it.sons[0]) if e.kind != nkIntLit: internalError(e.info, "semRecordNodeAux") elif e.intVal != 0 and branch == nil: branch = it.sons[1] else: it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0])) of nkElse: checkSonsLen(it, 1) if branch == nil: branch = it.sons[0] idx = 0 else: illFormedAst(n) if c.inGenericContext > 0: # use a new check intset here for each branch: var newCheck: TIntSet assign(newCheck, check) var newPos = pos var newf = newNodeI(nkRecList, n.info) semRecordNodeAux(c, it.sons[idx], newCheck, newPos, newf, rectype) it.sons[idx] = if newf.len == 1: newf[0] else: newf if c.inGenericContext > 0: addSon(father, n) elif branch != nil: semRecordNodeAux(c, branch, check, pos, father, rectype) of nkRecCase: semRecordCase(c, n, check, pos, father, rectype) of nkNilLit: if father.kind != nkRecList: addSon(father, newNodeI(nkRecList, n.info)) of nkRecList: # attempt to keep the nesting at a sane level: var a = if father.kind == nkRecList: father else: copyNode(n) for i in countup(0, sonsLen(n) - 1): semRecordNodeAux(c, n.sons[i], check, pos, a, rectype) if a != father: addSon(father, a) of nkIdentDefs: checkMinSonsLen(n, 3) var length = sonsLen(n) var a: PNode if father.kind != nkRecList and length>=4: a = newNodeI(nkRecList, n.info) else: a = ast.emptyNode if n.sons[length-1].kind != nkEmpty: localError(n.sons[length-1].info, errInitHereNotAllowed) var typ: PType if n.sons[length-2].kind == nkEmpty: localError(n.info, errTypeExpected) typ = errorType(c) else: typ = semTypeNode(c, n.sons[length-2], nil) propagateToOwner(rectype, typ) let rec = rectype.sym for i in countup(0, sonsLen(n)-3): var f = semIdentWithPragma(c, skField, n.sons[i], {sfExported}) suggestSym(n.sons[i], f) f.typ = typ f.position = pos if (rec != nil) and ({sfImportc, sfExportc} * rec.flags != {}) and (f.loc.r == nil): f.loc.r = toRope(f.name.s) f.flags = f.flags + ({sfImportc, sfExportc} * rec.flags) inc(pos) if containsOrIncl(check, f.name.id): localError(n.sons[i].info, errAttemptToRedefine, f.name.s) if a.kind == nkEmpty: addSon(father, newSymNode(f)) else: addSon(a, newSymNode(f)) if a.kind != nkEmpty: addSon(father, a) of nkEmpty: discard else: illFormedAst(n) proc addInheritedFieldsAux(c: PContext, check: var TIntSet, pos: var int, n: PNode) = case n.kind of nkRecCase: if (n.sons[0].kind != nkSym): internalError(n.info, "addInheritedFieldsAux") addInheritedFieldsAux(c, check, pos, n.sons[0]) for i in countup(1, sonsLen(n) - 1): case n.sons[i].kind of nkOfBranch, nkElse: addInheritedFieldsAux(c, check, pos, lastSon(n.sons[i])) else: internalError(n.info, "addInheritedFieldsAux(record case branch)") of nkRecList: for i in countup(0, sonsLen(n) - 1): addInheritedFieldsAux(c, check, pos, n.sons[i]) of nkSym: incl(check, n.sym.name.id) inc(pos) else: internalError(n.info, "addInheritedFieldsAux()") proc addInheritedFields(c: PContext, check: var TIntSet, pos: var int, obj: PType) = if (sonsLen(obj) > 0) and (obj.sons[0] != nil): addInheritedFields(c, check, pos, obj.sons[0]) addInheritedFieldsAux(c, check, pos, obj.n) proc skipGenericInvokation(t: PType): PType {.inline.} = result = t if result.kind == tyGenericInvokation: result = result.sons[0] if result.kind == tyGenericBody: result = lastSon(result) proc semObjectNode(c: PContext, n: PNode, prev: PType): PType = if n.sonsLen == 0: return newConstraint(c, tyObject) var check = initIntSet() var pos = 0 var base: PType = nil # n.sons[0] contains the pragmas (if any). We process these later... checkSonsLen(n, 3) if n.sons[1].kind != nkEmpty: base = skipTypes(semTypeNode(c, n.sons[1].sons[0], nil), skipPtrs) var concreteBase = skipGenericInvokation(base).skipTypes(skipPtrs) if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags: addInheritedFields(c, check, pos, concreteBase) else: if concreteBase.kind != tyError: localError(n.sons[1].info, errInheritanceOnlyWithNonFinalObjects) base = nil if n.kind != nkObjectTy: internalError(n.info, "semObjectNode") result = newOrPrevType(tyObject, prev, c) rawAddSon(result, base) result.n = newNodeI(nkRecList, n.info) semRecordNodeAux(c, n.sons[2], check, pos, result.n, result) if n.sons[0].kind != nkEmpty: # dummy symbol for `pragma`: var s = newSymS(skType, newIdentNode(getIdent("dummy"), n.info), c) s.typ = result pragma(c, s, n.sons[0], typePragmas) if base == nil and tfInheritable notin result.flags: incl(result.flags, tfFinal) proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) = if kind == skMacro and param.typ.kind notin {tyTypeDesc, tyStatic}: # within a macro, every param has the type PNimrodNode! # and param.typ.kind in {tyTypeDesc, tyExpr, tyStmt}: let nn = getSysSym"PNimrodNode" var a = copySym(param) a.typ = nn.typ if sfGenSym notin a.flags: addDecl(c, a) else: if sfGenSym notin param.flags: addDecl(c, param) let typedescId = getIdent"typedesc" template shouldHaveMeta(t) = internalAssert tfHasMeta in t.flags # result.lastSon.flags.incl tfHasMeta proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode, paramType: PType, paramName: string, info: TLineInfo, anon = false): PType = if paramType == nil: return # (e.g. proc return type) proc addImplicitGenericImpl(typeClass: PType, typId: PIdent): PType = let finalTypId = if typId != nil: typId else: getIdent(paramName & ":type") if genericParams == nil: # This happens with anonymous proc types appearing in signatures # XXX: we need to lift these earlier return # is this a bindOnce type class already present in the param list? for i in countup(0, genericParams.len - 1): if genericParams.sons[i].sym.name.id == finalTypId.id: return genericParams.sons[i].typ let owner = if typeClass.sym != nil: typeClass.sym else: getCurrOwner() var s = newSym(skType, finalTypId, owner, info) if typId == nil: s.flags.incl(sfAnon) s.linkTo(typeClass) typeClass.flags.incl tfImplicitTypeParam s.position = genericParams.len genericParams.addSon(newSymNode(s)) result = typeClass # XXX: There are codegen errors if this is turned into a nested proc template liftingWalk(typ: PType, anonFlag = false): expr = liftParamType(c, procKind, genericParams, typ, paramName, info, anonFlag) #proc liftingWalk(paramType: PType, anon = false): PType = var paramTypId = if not anon and paramType.sym != nil: paramType.sym.name else: nil template addImplicitGeneric(e: expr): expr = addImplicitGenericImpl(e, paramTypId) case paramType.kind: of tyAnything: result = addImplicitGeneric(newTypeS(tyGenericParam, c)) of tyStatic: # proc(a: expr{string}, b: expr{nkLambda}) # overload on compile time values and AST trees result = addImplicitGeneric(c.newTypeWithSons(tyStatic, paramType.sons)) result.flags.incl tfHasStatic of tyTypeDesc: if tfUnresolved notin paramType.flags: # naked typedescs are not bindOnce types if paramType.sonsLen == 0 and paramTypId != nil and paramTypId.id == typedescId.id: paramTypId = nil result = addImplicitGeneric(c.newTypeWithSons(tyTypeDesc, paramType.sons)) of tyDistinct: if paramType.sonsLen == 1: # disable the bindOnce behavior for the type class result = liftingWalk(paramType.sons[0], true) of tySequence, tySet, tyArray, tyOpenArray, tyVar, tyPtr, tyRef, tyProc: # XXX: this is a bit strange, but proc(s: seq) # produces tySequence(tyGenericParam, tyNone). # This also seems to be true when creating aliases # like: type myseq = distinct seq. # Maybe there is another better place to associate # the seq type class with the seq identifier. if paramType.kind == tySequence and paramType.lastSon.kind == tyNone: let typ = c.newTypeWithSons(tyBuiltInTypeClass, @[newTypeS(paramType.kind, c)]) result = addImplicitGeneric(typ) else: for i in 0 .. 0: result = liftingWalk(paramType.lastSon) else: result = addImplicitGeneric(newTypeS(tyAnything, c)) else: discard # result = liftingWalk(paramType) proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType = if n.kind == nkCurlyExpr: result = semTypeNode(c, n.sons[0], nil) constraint = semNodeKindConstraints(n) else: result = semTypeNode(c, n, nil) proc semProcTypeNode(c: PContext, n, genericParams: PNode, prev: PType, kind: TSymKind): PType = var res: PNode cl: TIntSet checkMinSonsLen(n, 1) result = newOrPrevType(tyProc, prev, c) result.callConv = lastOptionEntry(c).defaultCC result.n = newNodeI(nkFormalParams, n.info) if genericParams != nil and sonsLen(genericParams) == 0: cl = initIntSet() rawAddSon(result, nil) # return type # result.n[0] used to be `nkType`, but now it's `nkEffectList` because # the effects are now stored in there too ... this is a bit hacky, but as # usual we desperately try to save memory: res = newNodeI(nkEffectList, n.info) addSon(result.n, res) var check = initIntSet() var counter = 0 for i in countup(1, n.len - 1): var a = n.sons[i] if a.kind != nkIdentDefs: illFormedAst(a) checkMinSonsLen(a, 3) var typ: PType = nil def: PNode = nil constraint: PNode = nil length = sonsLen(a) hasType = a.sons[length-2].kind != nkEmpty hasDefault = a.sons[length-1].kind != nkEmpty if hasType: typ = semParamType(c, a.sons[length-2], constraint) if hasDefault: def = semExprWithType(c, a.sons[length-1]) # check type compability between def.typ and typ: if typ == nil: typ = def.typ elif def != nil: # and def.typ != nil and def.typ.kind != tyNone: # example code that triggers it: # proc sort[T](cmp: proc(a, b: T): int = cmp) if not containsGenericType(typ): def = fitNode(c, typ, def) if not (hasType or hasDefault): let tdef = if kind in {skTemplate, skMacro}: tyExpr else: tyAnything typ = newTypeS(tdef, c) if skipTypes(typ, {tyGenericInst}).kind == tyEmpty: continue for j in countup(0, length-3): var arg = newSymG(skParam, a.sons[j], c) let lifted = liftParamType(c, kind, genericParams, typ, arg.name.s, arg.info) let finalType = if lifted != nil: lifted else: typ.skipIntLit arg.typ = finalType arg.position = counter arg.constraint = constraint inc(counter) if def != nil and def.kind != nkEmpty: arg.ast = copyTree(def) if containsOrIncl(check, arg.name.id): localError(a.sons[j].info, errAttemptToRedefine, arg.name.s) addSon(result.n, newSymNode(arg)) rawAddSon(result, finalType) addParamOrResult(c, arg, kind) if gCmd == cmdPretty: checkDef(a.sons[j], arg) if n.sons[0].kind != nkEmpty: var r = semTypeNode(c, n.sons[0], nil) # turn explicit 'void' return type into 'nil' because the rest of the # compiler only checks for 'nil': if skipTypes(r, {tyGenericInst}).kind != tyEmpty: if r.sym == nil or sfAnon notin r.sym.flags: let lifted = liftParamType(c, kind, genericParams, r, "result", n.sons[0].info) if lifted != nil: r = lifted r.flags.incl tfRetType result.sons[0] = skipIntLit(r) res.typ = result.sons[0] proc semStmtListType(c: PContext, n: PNode, prev: PType): PType = checkMinSonsLen(n, 1) var length = sonsLen(n) for i in countup(0, length - 2): n.sons[i] = semStmt(c, n.sons[i]) if length > 0: result = semTypeNode(c, n.sons[length - 1], prev) n.typ = result n.sons[length - 1].typ = result else: result = nil proc semBlockType(c: PContext, n: PNode, prev: PType): PType = inc(c.p.nestedBlockCounter) checkSonsLen(n, 2) openScope(c) if n.sons[0].kind notin {nkEmpty, nkSym}: addDecl(c, newSymS(skLabel, n.sons[0], c)) result = semStmtListType(c, n.sons[1], prev) n.sons[1].typ = result n.typ = result closeScope(c) dec(c.p.nestedBlockCounter) proc semGenericParamInInvokation(c: PContext, n: PNode): PType = result = semTypeNode(c, n, nil) proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType = result = newOrPrevType(tyGenericInvokation, prev, c) addSonSkipIntLit(result, s.typ) template addToResult(typ) = if typ.isNil: internalAssert false rawAddSon(result, typ) else: addSonSkipIntLit(result, typ) if s.typ == nil: localError(n.info, errCannotInstantiateX, s.name.s) return newOrPrevType(tyError, prev, c) elif s.typ.kind == tyForward: for i in countup(1, sonsLen(n)-1): var elem = semGenericParamInInvokation(c, n.sons[i]) addToResult(elem) elif s.typ.kind != tyGenericBody: #we likely got code of the form TypeA[TypeB] where TypeA is #not generic. localError(n.info, errNoGenericParamsAllowedForX, s.name.s) return newOrPrevType(tyError, prev, c) else: var m = newCandidate(c, s, n) matches(c, n, copyTree(n), m) if m.state != csMatch: var err = "cannot instantiate " & typeToString(s.typ) & "\n" & "got: (" & describeArgs(c, n) & ")\n" & "but expected: (" & describeArgs(c, s.typ.n, 0) & ")" localError(n.info, errGenerated, err) return newOrPrevType(tyError, prev, c) var isConcrete = true for i in 1 ..