Files
Nim/tests/gc/thavlak.nim
metagn 720d0aee5c add retries to testament, use it for GC tests (#24279)
Testament now retries a test by a specified amount if it fails in any
way other than an invalid spec. This is to deal with the flaky GC tests
on Windows CI that fail in many different ways, from the linker randomly
erroring, segfaults, etc.

Unfortunately I couldn't do this cleanly in testament's current code.
The proc `addResult`, which is the "final" proc called in a test run's
lifetime, is now wrapped in a proc `finishTest` that returns a bool
`true` if the test failed and has to be retried. This result is
propagated up from `cmpMsgs` and `compilerOutputTests` until it reaches
`testSpecHelper`, which handles these results by recursing if the test
has to be retried. Since calling `testSpecHelper` means "run this test
with one given configuration", this means every single matrix
option/target etc. receive an equal amount of retries each.

The result of `finishTest` is ignored in cases where it's known that it
won't be retried due to passing, being skipped, having an invalid spec
etc. It's also ignored in `testNimblePackages` because it's not
necessary for those specific tests yet and similar retry behavior is
already implemented for part of it.

This was a last resort for the flaky GC tests but they've been a problem
for years at this point, they give us more work to do and turn off
contributors. Ideally GC tests failing should mark as "needs review" in
the CI rather than "failed" but I don't know if Github supports
something like this.
2024-10-12 22:48:44 +02:00

443 lines
12 KiB
Nim

discard """
output: '''Welcome to LoopTesterApp, Nim edition
Constructing Simple CFG...
5000 dummy loops
Constructing CFG...
Performing Loop Recognition
1 Iteration
Another 3 iterations...
...
Found 1 loops (including artificial root node) (3)'''
retries: 2
"""
# bug #3184
import tables, sets
when not declared(withScratchRegion):
template withScratchRegion(body: untyped) = body
type
BasicBlock = ref object
inEdges: seq[BasicBlock]
outEdges: seq[BasicBlock]
name: int
proc newBasicBlock(name: int): BasicBlock =
result = BasicBlock(
inEdges: newSeq[BasicBlock](),
outEdges: newSeq[BasicBlock](),
name: name
)
proc hash(x: BasicBlock): int {.inline.} =
result = x.name
type
BasicBlockEdge = object
fr: BasicBlock
to: BasicBlock
Cfg = object
basicBlockMap: Table[int, BasicBlock]
edgeList: seq[BasicBlockEdge]
startNode: BasicBlock
proc newCfg(): Cfg =
result = Cfg(
basicBlockMap: initTable[int, BasicBlock](),
edgeList: newSeq[BasicBlockEdge](),
startNode: nil)
proc createNode(self: var Cfg, name: int): BasicBlock =
result = self.basicBlockMap.getOrDefault(name)
if result == nil:
result = newBasicBlock(name)
self.basicBlockMap.add name, result
if self.startNode == nil:
self.startNode = result
proc newBasicBlockEdge(cfg: var Cfg, fromName, toName: int) =
var result = BasicBlockEdge(
fr: cfg.createNode(fromName),
to: cfg.createNode(toName)
)
result.fr.outEdges.add(result.to)
result.to.inEdges.add(result.fr)
cfg.edgeList.add(result)
type
SimpleLoop = ref object
basicBlocks: seq[BasicBlock] # TODO: set here
children: seq[SimpleLoop] # TODO: set here
parent: SimpleLoop
header: BasicBlock
isRoot, isReducible: bool
counter, nestingLevel, depthLevel: int
proc setParent(self: SimpleLoop, parent: SimpleLoop) =
self.parent = parent
self.parent.children.add self
proc setHeader(self: SimpleLoop, bb: BasicBlock) =
self.basicBlocks.add(bb)
self.header = bb
proc setNestingLevel(self: SimpleLoop, level: int) =
self.nestingLevel = level
if level == 0: self.isRoot = true
var loopCounter: int = 0
type
Lsg = object
loops: seq[SimpleLoop]
root: SimpleLoop
proc createNewLoop(self: var Lsg): SimpleLoop =
result = SimpleLoop(
basicBlocks: newSeq[BasicBlock](),
children: newSeq[SimpleLoop](),
isReducible: true)
loopCounter += 1
result.counter = loopCounter
proc addLoop(self: var Lsg, l: SimpleLoop) =
self.loops.add l
proc newLsg(): Lsg =
result = Lsg(loops: newSeq[SimpleLoop](),
root: result.createNewLoop())
result.root.setNestingLevel(0)
result.addLoop(result.root)
type
UnionFindNode = ref object
parent {.cursor.}: UnionFindNode
bb: BasicBlock
l: SimpleLoop
dfsNumber: int
proc initNode(self: UnionFindNode, bb: BasicBlock, dfsNumber: int) =
self.parent = self
self.bb = bb
self.dfsNumber = dfsNumber
proc findSet(self: UnionFindNode): UnionFindNode =
var nodeList = newSeq[UnionFindNode]()
var it {.cursor.} = self
while it != it.parent:
var parent {.cursor.} = it.parent
if parent != parent.parent: nodeList.add it
it = parent
for iter in nodeList: iter.parent = it.parent
result = it
proc union(self: UnionFindNode, unionFindNode: UnionFindNode) =
self.parent = unionFindNode
const
BB_NONHEADER = 1 # a regular BB
BB_REDUCIBLE = 2 # reducible loop
BB_SELF = 3 # single BB loop
BB_IRREDUCIBLE = 4 # irreducible loop
BB_DEAD = 5 # a dead BB
# # Marker for uninitialized nodes.
UNVISITED = -1
# # Safeguard against pathologic algorithm behavior.
MAXNONBACKPREDS = (32 * 1024)
type
HavlakLoopFinder = object
cfg: Cfg
lsg: Lsg
proc newHavlakLoopFinder(cfg: Cfg, lsg: sink Lsg): HavlakLoopFinder =
result = HavlakLoopFinder(cfg: cfg, lsg: lsg)
proc isAncestor(w, v: int, last: seq[int]): bool =
w <= v and v <= last[w]
proc dfs(currentNode: BasicBlock, nodes: var seq[UnionFindNode],
number: var Table[BasicBlock, int],
last: var seq[int], current: int) =
var stack = @[(currentNode, current)]
while stack.len > 0:
let (currentNode, current) = stack.pop()
nodes[current].initNode(currentNode, current)
number[currentNode] = current
for target in currentNode.outEdges:
if number[target] == UNVISITED:
stack.add((target, current+1))
#result = dfs(target, nodes, number, last, result + 1)
last[number[currentNode]] = current
proc findLoops(self: var HavlakLoopFinder): int =
var startNode = self.cfg.startNode
if startNode == nil: return 0
var size = self.cfg.basicBlockMap.len
var nonBackPreds = newSeq[HashSet[int]]()
var backPreds = newSeq[seq[int]]()
var number = initTable[BasicBlock, int]()
var header = newSeq[int](size)
var types = newSeq[int](size)
var last = newSeq[int](size)
var nodes = newSeq[UnionFindNode]()
for i in 1..size:
nonBackPreds.add initHashSet[int](1)
backPreds.add newSeq[int]()
nodes.add(UnionFindNode())
# Step a:
# - initialize all nodes as unvisited.
# - depth-first traversal and numbering.
# - unreached BB's are marked as dead.
#
for v in self.cfg.basicBlockMap.values: number[v] = UNVISITED
dfs(startNode, nodes, number, last, 0)
# Step b:
# - iterate over all nodes.
#
# A backedge comes from a descendant in the DFS tree, and non-backedges
# from non-descendants (following Tarjan).
#
# - check incoming edges 'v' and add them to either
# - the list of backedges (backPreds) or
# - the list of non-backedges (nonBackPreds)
#
for w in 0 ..< size:
header[w] = 0
types[w] = BB_NONHEADER
var nodeW = nodes[w].bb
if nodeW != nil:
for nodeV in nodeW.inEdges:
var v = number[nodeV]
if v != UNVISITED:
if isAncestor(w, v, last):
backPreds[w].add v
else:
nonBackPreds[w].incl v
else:
types[w] = BB_DEAD
# Start node is root of all other loops.
header[0] = 0
# Step c:
#
# The outer loop, unchanged from Tarjan. It does nothing except
# for those nodes which are the destinations of backedges.
# For a header node w, we chase backward from the sources of the
# backedges adding nodes to the set P, representing the body of
# the loop headed by w.
#
# By running through the nodes in reverse of the DFST preorder,
# we ensure that inner loop headers will be processed before the
# headers for surrounding loops.
for w in countdown(size - 1, 0):
# this is 'P' in Havlak's paper
var nodePool = newSeq[UnionFindNode]()
var nodeW = nodes[w].bb
if nodeW != nil: # dead BB
# Step d:
for v in backPreds[w]:
if v != w:
nodePool.add nodes[v].findSet
else:
types[w] = BB_SELF
# Copy nodePool to workList.
#
var workList = newSeq[UnionFindNode]()
for x in nodePool: workList.add x
if nodePool.len != 0: types[w] = BB_REDUCIBLE
# work the list...
#
while workList.len > 0:
let x = workList[0]
workList.del(0)
# Step e:
#
# Step e represents the main difference from Tarjan's method.
# Chasing upwards from the sources of a node w's backedges. If
# there is a node y' that is not a descendant of w, w is marked
# the header of an irreducible loop, there is another entry
# into this loop that avoids w.
#
# The algorithm has degenerated. Break and
# return in this case.
#
var nonBackSize = nonBackPreds[x.dfsNumber].len
if nonBackSize > MAXNONBACKPREDS: return 0
for iter in nonBackPreds[x.dfsNumber]:
var y = nodes[iter]
var ydash = y.findSet
if not isAncestor(w, ydash.dfsNumber, last):
types[w] = BB_IRREDUCIBLE
nonBackPreds[w].incl ydash.dfsNumber
else:
if ydash.dfsNumber != w and not nodePool.contains(ydash):
workList.add ydash
nodePool.add ydash
# Collapse/Unionize nodes in a SCC to a single node
# For every SCC found, create a loop descriptor and link it in.
#
if nodePool.len > 0 or types[w] == BB_SELF:
var l = self.lsg.createNewLoop
l.setHeader(nodeW)
l.isReducible = types[w] != BB_IRREDUCIBLE
# At this point, one can set attributes to the loop, such as:
#
# the bottom node:
# iter = backPreds(w).begin();
# loop bottom is: nodes(iter).node;
#
# the number of backedges:
# backPreds(w).size()
#
# whether this loop is reducible:
# types(w) != BB_IRREDUCIBLE
#
nodes[w].l = l
for node in nodePool:
# Add nodes to loop descriptor.
header[node.dfsNumber] = w
node.union(nodes[w])
# Nested loops are not added, but linked together.
var nodeL = node.l
if nodeL != nil:
nodeL.setParent(l)
else:
l.basicBlocks.add node.bb
self.lsg.addLoop(l)
result = self.lsg.loops.len
type
LoopTesterApp = object
cfg: Cfg
lsg: Lsg
proc newLoopTesterApp(): LoopTesterApp =
result.cfg = newCfg()
result.lsg = newLsg()
proc buildDiamond(self: var LoopTesterApp, start: int): int =
newBasicBlockEdge(self.cfg, start, start + 1)
newBasicBlockEdge(self.cfg, start, start + 2)
newBasicBlockEdge(self.cfg, start + 1, start + 3)
newBasicBlockEdge(self.cfg, start + 2, start + 3)
result = start + 3
proc buildConnect(self: var LoopTesterApp, start1, end1: int) =
newBasicBlockEdge(self.cfg, start1, end1)
proc buildStraight(self: var LoopTesterApp, start, n: int): int =
for i in 0..n-1:
self.buildConnect(start + i, start + i + 1)
result = start + n
proc buildBaseLoop(self: var LoopTesterApp, from1: int): int =
let header = self.buildStraight(from1, 1)
let diamond1 = self.buildDiamond(header)
let d11 = self.buildStraight(diamond1, 1)
let diamond2 = self.buildDiamond(d11)
let footer = self.buildStraight(diamond2, 1)
self.buildConnect(diamond2, d11)
self.buildConnect(diamond1, header)
self.buildConnect(footer, from1)
result = self.buildStraight(footer, 1)
proc run(self: var LoopTesterApp) =
echo "Welcome to LoopTesterApp, Nim edition"
echo "Constructing Simple CFG..."
discard self.cfg.createNode(0)
discard self.buildBaseLoop(0)
discard self.cfg.createNode(1)
self.buildConnect(0, 2)
echo "5000 dummy loops"
for i in 1..5000:
withScratchRegion:
var h = newHavlakLoopFinder(self.cfg, newLsg())
discard h.findLoops
echo "Constructing CFG..."
var n = 2
when true: # not defined(gcOrc):
# currently cycle detection is so slow that we disable this part
for parlooptrees in 1..10:
discard self.cfg.createNode(n + 1)
self.buildConnect(2, n + 1)
n += 1
for i in 1..100:
var top = n
n = self.buildStraight(n, 1)
for j in 1..25: n = self.buildBaseLoop(n)
var bottom = self.buildStraight(n, 1)
self.buildConnect n, top
n = bottom
self.buildConnect(n, 1)
echo "Performing Loop Recognition\n1 Iteration"
var h = newHavlakLoopFinder(self.cfg, newLsg())
var loops = h.findLoops
echo "Another 3 iterations..."
var sum = 0
for i in 1..3:
withScratchRegion:
write stdout, "."
flushFile(stdout)
var hlf = newHavlakLoopFinder(self.cfg, newLsg())
sum += hlf.findLoops
#echo getOccupiedMem()
echo "\nFound ", loops, " loops (including artificial root node) (", sum, ")"
when false:
echo("Total memory available: " & formatSize(getTotalMem()) & " bytes")
echo("Free memory: " & formatSize(getFreeMem()) & " bytes")
proc main =
var l = newLoopTesterApp()
l.run
let mem = getOccupiedMem()
main()
when defined(gcOrc):
GC_fullCollect()
doAssert getOccupiedMem() == mem