Files
Nim/compiler/astdef.nim
2025-12-31 13:33:57 +01:00

1161 lines
47 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2025 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import
lineinfos, options, ropes, idents, int128
import std/[tables, hashes]
when defined(nimPreviewSlimSystem):
import std/assertions
export int128
import nodekinds
export nodekinds
type
TCallingConvention* = enum
ccNimCall = "nimcall" # nimcall, also the default
ccStdCall = "stdcall" # procedure is stdcall
ccCDecl = "cdecl" # cdecl
ccSafeCall = "safecall" # safecall
ccSysCall = "syscall" # system call
ccInline = "inline" # proc should be inlined
ccNoInline = "noinline" # proc should not be inlined
ccFastCall = "fastcall" # fastcall (pass parameters in registers)
ccThisCall = "thiscall" # thiscall (parameters are pushed right-to-left)
ccClosure = "closure" # proc has a closure
ccNoConvention = "noconv" # needed for generating proper C procs sometimes
ccMember = "member" # proc is a (cpp) member
TNodeKinds* = set[TNodeKind]
type
TSymFlag* = enum # 63 flags!
sfUsed, # read access of sym (for warnings) or simply used
sfExported, # symbol is exported from module
sfFromGeneric, # symbol is instantiation of a generic; this is needed
# for symbol file generation; such symbols should always
# be written into the ROD file
sfGlobal, # symbol is at global scope
sfForward, # symbol is forward declared
sfWasForwarded, # symbol had a forward declaration
# (implies it's too dangerous to patch its type signature)
sfImportc, # symbol is external; imported
sfExportc, # symbol is exported (under a specified name)
sfMangleCpp, # mangle as cpp (combines with `sfExportc`)
sfVolatile, # variable is volatile
sfRegister, # variable should be placed in a register
sfPure, # object is "pure" that means it has no type-information
# enum is "pure", its values need qualified access
# variable is "pure"; it's an explicit "global"
sfNoSideEffect, # proc has no side effects
sfSideEffect, # proc may have side effects; cannot prove it has none
sfMainModule, # module is the main module
sfSystemModule, # module is the system module
sfNoReturn, # proc never returns (an exit proc)
sfAddrTaken, # the variable's address is taken (ex- or implicitly);
# *OR*: a proc is indirectly called (used as first class)
sfCompilerProc, # proc is a compiler proc, that is a C proc that is
# needed for the code generator
sfEscapes # param escapes
# currently unimplemented
sfDiscriminant, # field is a discriminant in a record/object
sfRequiresInit, # field must be initialized during construction
sfDeprecated, # symbol is deprecated
sfExplain, # provide more diagnostics when this symbol is used
sfError, # usage of symbol should trigger a compile-time error
sfShadowed, # a symbol that was shadowed in some inner scope
sfThread, # proc will run as a thread
# variable is a thread variable
sfCppNonPod, # tells compiler to treat such types as non-pod's, so that
# `thread_local` is used instead of `__thread` for
# {.threadvar.} + `--threads`. Only makes sense for importcpp types.
# This has a performance impact so isn't set by default.
sfCompileTime, # proc can be evaluated at compile time
sfConstructor, # proc is a C++ constructor
sfDispatcher, # copied method symbol is the dispatcher
# deprecated and unused, except for the con
sfBorrow, # proc is borrowed
sfInfixCall, # symbol needs infix call syntax in target language;
# for interfacing with C++, JS
sfNamedParamCall, # symbol needs named parameter call syntax in target
# language; for interfacing with Objective C
sfDiscardable, # returned value may be discarded implicitly
sfOverridden, # proc is overridden
sfCallsite # A flag for template symbols to tell the
# compiler it should use line information from
# the calling side of the macro, not from the
# implementation.
sfGenSym # symbol is 'gensym'ed; do not add to symbol table
sfNonReloadable # symbol will be left as-is when hot code reloading is on -
# meaning that it won't be renamed and/or changed in any way
sfGeneratedOp # proc is a generated '='; do not inject destructors in it
# variable is generated closure environment; requires early
# destruction for --newruntime.
sfTemplateParam # symbol is a template parameter
sfCursor # variable/field is a cursor, see RFC 177 for details
sfInjectDestructors # whether the proc needs the 'injectdestructors' transformation
sfNeverRaises # proc can never raise an exception, not even OverflowDefect
# or out-of-memory
sfSystemRaisesDefect # proc in the system can raise defects
sfUsedInFinallyOrExcept # symbol is used inside an 'except' or 'finally'
sfSingleUsedTemp # For temporaries that we know will only be used once
sfNoalias # 'noalias' annotation, means C's 'restrict'
# for templates and macros, means cannot be called
# as a lone symbol (cannot use alias syntax)
sfEffectsDelayed # an 'effectsDelayed' parameter
sfGeneratedType # A anonymous generic type that is generated by the compiler for
# objects that do not have generic parameters in case one of the
# object fields has one.
#
# This is disallowed but can cause the typechecking to go into
# an infinite loop, this flag is used as a sentinel to stop it.
sfVirtual # proc is a C++ virtual function
sfByCopy # param is marked as pass bycopy
sfMember # proc is a C++ member of a type
sfCodegenDecl # type, proc, global or proc param is marked as codegenDecl
sfWasGenSym # symbol was 'gensym'ed
sfForceLift # variable has to be lifted into closure environment
sfDirty # template is not hygienic (old styled template) module,
# compiled from a dirty-buffer
sfCustomPragma # symbol is custom pragma template
sfBase, # a base method
sfGoto # var is used for 'goto' code generation
sfAnon, # symbol name that was generated by the compiler
# the compiler will avoid printing such names
# in user messages.
sfAllUntyped # macro or template is immediately expanded in a generic context
sfTemplateRedefinition # symbol is a redefinition of an earlier template
TSymFlags* = set[TSymFlag]
const
sfNoInit* = sfMainModule # don't generate code to init the variable
sfNoForward* = sfRegister
# forward declarations are not required (per module)
sfReorder* = sfForward
# reordering pass is enabled
sfCompileToCpp* = sfInfixCall # compile the module as C++ code
sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code
sfExperimental* = sfOverridden # module uses the .experimental switch
sfWrittenTo* = sfBorrow # param is assigned to
# currently unimplemented
sfCppMember* = { sfVirtual, sfMember, sfConstructor } # proc is a C++ member, meaning it will be attached to the type definition
const
# getting ready for the future expr/stmt merge
nkWhen* = nkWhenStmt
nkWhenExpr* = nkWhenStmt
nkEffectList* = nkArgList
# hacks ahead: an nkEffectList is a node with 4 children:
exceptionEffects* = 0 # exceptions at position 0
requiresEffects* = 1 # 'requires' annotation
ensuresEffects* = 2 # 'ensures' annotation
tagEffects* = 3 # user defined tag ('gc', 'time' etc.)
pragmasEffects* = 4 # not an effect, but a slot for pragmas in proc type
forbiddenEffects* = 5 # list of illegal effects
effectListLen* = 6 # list of effects list
nkLastBlockStmts* = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
# these must be last statements in a block
type
TTypeKind* = enum # order is important!
# Don't forget to change hti.nim if you make a change here
# XXX put this into an include file to avoid this issue!
# several types are no longer used (guess which), but a
# spot in the sequence is kept for backwards compatibility
# (apparently something with bootstrapping)
# if you need to add a type, they can apparently be reused
tyNone, tyBool, tyChar,
tyEmpty, tyAlias, tyNil, tyUntyped, tyTyped, tyTypeDesc,
tyGenericInvocation, # ``T[a, b]`` for types to invoke
tyGenericBody, # ``T[a, b, body]`` last parameter is the body
tyGenericInst, # ``T[a, b, realInstance]`` instantiated generic type
# realInstance will be a concrete type like tyObject
# unless this is an instance of a generic alias type.
# then realInstance will be the tyGenericInst of the
# completely (recursively) resolved alias.
tyGenericParam, # ``a`` in the above patterns
tyDistinct,
tyEnum,
tyOrdinal, # integer types (including enums and boolean)
tyArray,
tyObject,
tyTuple,
tySet,
tyRange,
tyPtr, tyRef,
tyVar,
tySequence,
tyProc,
tyPointer, tyOpenArray,
tyString, tyCstring, tyForward,
tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
tyFloat, tyFloat32, tyFloat64, tyFloat128,
tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
tyOwned, tySink, tyLent,
tyVarargs,
tyUncheckedArray
# An array with boundaries [0,+∞]
tyError # used as erroneous type (for idetools)
# as an erroneous node should match everything
tyBuiltInTypeClass
# Type such as the catch-all object, tuple, seq, etc
tyUserTypeClass
# the body of a user-defined type class
tyUserTypeClassInst
# Instance of a parametric user-defined type class.
# Structured similarly to tyGenericInst.
# tyGenericInst represents concrete types, while
# this is still a "generic param" that will bind types
# and resolves them during sigmatch and instantiation.
tyCompositeTypeClass
# Type such as seq[Number]
# The notes for tyUserTypeClassInst apply here as well
# sons[0]: the original expression used by the user.
# sons[1]: fully expanded and instantiated meta type
# (potentially following aliases)
tyInferred
# In the initial state `base` stores a type class constraining
# the types that can be inferred. After a candidate type is
# selected, it's stored in `last`. Between `base` and `last`
# there may be 0, 2 or more types that were also considered as
# possible candidates in the inference process (i.e. last will
# be updated to store a type best conforming to all candidates)
tyAnd, tyOr, tyNot
# boolean type classes such as `string|int`,`not seq`,
# `Sortable and Enumable`, etc
tyAnything
# a type class matching any type
tyStatic
# a value known at compile type (the underlying type is .base)
tyFromExpr
# This is a type representing an expression that depends
# on generic parameters (the expression is stored in t.n)
# It will be converted to a real type only during generic
# instantiation and prior to this it has the potential to
# be any type.
tyConcept
# new style concept.
tyVoid
# now different from tyEmpty, hurray!
tyIterable
static:
# remind us when TTypeKind stops to fit in a single 64-bit word
# assert TTypeKind.high.ord <= 63
discard
const
tyPureObject* = tyTuple
GcTypeKinds* = {tyRef, tySequence, tyString}
tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass,
tyUserTypeClass, tyUserTypeClassInst, tyConcept,
tyAnd, tyOr, tyNot, tyAnything}
tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyUntyped} + tyTypeClasses
tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst}
# consider renaming as `tyAbstractVarRange`
abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned}
abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
tyInferred, tySink, tyOwned} # xxx what about tyStatic?
type
TTypeKinds* = set[TTypeKind]
TNodeFlag* = enum
nfNone,
nfBase2, # nfBase10 is default, so not needed
nfBase8,
nfBase16,
nfAllConst, # used to mark complex expressions constant; easy to get rid of
# but unfortunately it has measurable impact for compilation
# efficiency
nfTransf, # node has been transformed
nfNoRewrite # node should not be transformed anymore
nfSem # node has been checked for semantics
nfLL # node has gone through lambda lifting
nfDotField # the call can use a dot operator
nfDotSetter # the call can use a setter dot operarator
nfExplicitCall # x.y() was used instead of x.y
nfExprCall # this is an attempt to call a regular expression
nfIsRef # this node is a 'ref' node; used for the VM
nfIsPtr # this node is a 'ptr' node; used for the VM
nfPreventCg # this node should be ignored by the codegen
nfBlockArg # this a stmtlist appearing in a call (e.g. a do block)
nfFromTemplate # a top-level node returned from a template
nfDefaultParam # an automatically inserter default parameter
nfDefaultRefsParam # a default param value references another parameter
# the flag is applied to proc default values and to calls
nfExecuteOnReload # A top-level statement that will be executed during reloads
nfLastRead # this node is a last read
nfFirstWrite # this node is a first write
nfHasComment # node has a comment
nfSkipFieldChecking # node skips field visable checking
nfDisabledOpenSym # temporary: node should be nkOpenSym but cannot
# because openSym experimental switch is disabled
# gives warning instead
nfLazyType # node has a lazy type
TNodeFlags* = set[TNodeFlag]
TTypeFlag* = enum # keep below 32 for efficiency reasons (now: 47)
tfVarargs, # procedure has C styled varargs
# tyArray type represeting a varargs list
tfNoSideEffect, # procedure type does not allow side effects
tfFinal, # is the object final?
tfInheritable, # is the object inheritable?
tfHasOwned, # type contains an 'owned' type and must be moved
tfEnumHasHoles, # enum cannot be mapped into a range
tfShallow, # type can be shallow copied on assignment
tfThread, # proc type is marked as ``thread``; alias for ``gcsafe``
tfFromGeneric, # type is an instantiation of a generic; this is needed
# because for instantiations of objects, structural
# type equality has to be used
tfUnresolved, # marks unresolved typedesc/static params: e.g.
# proc foo(T: typedesc, list: seq[T]): var T
# proc foo(L: static[int]): array[L, int]
# can be attached to ranges to indicate that the range
# can be attached to generic procs with free standing
# type parameters: e.g. proc foo[T]()
# depends on unresolved static params.
tfResolved # marks a user type class, after it has been bound to a
# concrete type (lastSon becomes the concrete type)
tfRetType, # marks return types in proc (used to detect type classes
# used as return types for return type inference)
tfCapturesEnv, # whether proc really captures some environment
tfByCopy, # pass object/tuple by copy (C backend)
tfByRef, # pass object/tuple by reference (C backend)
tfIterator, # type is really an iterator, not a tyProc
tfPartial, # type is declared as 'partial'
tfNotNil, # type cannot be 'nil'
tfRequiresInit, # type contains a "not nil" constraint somewhere or
# a `requiresInit` field, so the default zero init
# is not appropriate
tfNeedsFullInit, # object type marked with {.requiresInit.}
# all fields must be initialized
tfVarIsPtr, # 'var' type is translated like 'ptr' even in C++ mode
tfHasMeta, # type contains "wildcard" sub-types such as generic params
# or other type classes
tfHasGCedMem, # type contains GC'ed memory
tfPacked
tfHasStatic
tfGenericTypeParam
tfImplicitTypeParam
tfInferrableStatic
tfConceptMatchedTypeSym
tfExplicit # for typedescs, marks types explicitly prefixed with the
# `type` operator (e.g. type int)
tfWildcard # consider a proc like foo[T, I](x: Type[T, I])
# T and I here can bind to both typedesc and static types
# before this is determined, we'll consider them to be a
# wildcard type.
tfHasAsgn # type has overloaded assignment operator
tfBorrowDot # distinct type borrows '.'
tfTriggersCompileTime # uses the NimNode type which make the proc
# implicitly '.compiletime'
tfRefsAnonObj # used for 'ref object' and 'ptr object'
tfCovariant # covariant generic param mimicking a ptr type
tfWeakCovariant # covariant generic param mimicking a seq/array type
tfContravariant # contravariant generic param
tfCheckedForDestructor # type was checked for having a destructor.
# If it has one, t.destructor is not nil.
tfAcyclic # object type was annotated as .acyclic
tfIncompleteStruct # treat this type as if it had sizeof(pointer)
tfCompleteStruct
# (for importc types); type is fully specified, allowing to compute
# sizeof, alignof, offsetof at CT
tfExplicitCallConv
tfIsConstructor
tfEffectSystemWorkaround
tfIsOutParam
tfSendable
tfImplicitStatic
TTypeFlags* = set[TTypeFlag]
TSymKind* = enum # the different symbols (start with the prefix sk);
# order is important for the documentation generator!
skUnknown, # unknown symbol: used for parsing assembler blocks
# and first phase symbol lookup in generics
skConditional, # symbol for the preprocessor (may become obsolete)
skDynLib, # symbol represents a dynamic library; this is used
# internally; it does not exist in Nim code
skParam, # a parameter
skGenericParam, # a generic parameter; eq in ``proc x[eq=`==`]()``
skTemp, # a temporary variable (introduced by compiler)
skModule, # module identifier
skType, # a type
skVar, # a variable
skLet, # a 'let' symbol
skConst, # a constant
skResult, # special 'result' variable
skProc, # a proc
skFunc, # a func
skMethod, # a method
skIterator, # an iterator
skConverter, # a type converter
skMacro, # a macro
skTemplate, # a template; currently also misused for user-defined
# pragmas
skField, # a field in a record or object
skEnumField, # an identifier in an enum
skForVar, # a for loop variable
skLabel, # a label (for block statement)
skStub, # symbol is a stub and not yet loaded from the ROD
# file (it is loaded on demand, which may
# mean: never)
skPackage, # symbol is a package (used for canonicalization)
TSymKinds* = set[TSymKind]
const
routineKinds* = {skProc, skFunc, skMethod, skIterator,
skConverter, skMacro, skTemplate}
ExportableSymKinds* = {skVar, skLet, skConst, skType, skEnumField, skStub} + routineKinds
tfUnion* = tfNoSideEffect
tfGcSafe* = tfThread
tfObjHasKids* = tfEnumHasHoles
tfReturnsNew* = tfInheritable
tfNonConstExpr* = tfExplicitCallConv
## tyFromExpr where the expression shouldn't be evaluated as a static value
tfGenericHasDestructor* = tfExplicitCallConv
## tyGenericBody where an instance has a generated destructor
skError* = skUnknown
var
eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr, tfGcSafe, tfNoSideEffect, tfIsOutParam}
## type flags that are essential for type equality.
## This is now a variable because for emulation of version:1.0 we
## might exclude {tfGcSafe, tfNoSideEffect}.
type
TMagic* = enum # symbols that require compiler magic:
mNone,
mDefined, mDeclared, mDeclaredInScope, mCompiles, mArrGet, mArrPut, mAsgn,
mLow, mHigh, mSizeOf, mAlignOf, mOffsetOf, mTypeTrait,
mIs, mOf, mAddr, mType, mTypeOf,
mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mStatic,
mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst,
mInc, mDec, mOrd,
mNew, mNewFinalize, mNewSeq, mNewSeqOfCap,
mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
mIncl, mExcl, mCard, mChr,
mGCref, mGCunref,
mAddI, mSubI, mMulI, mDivI, mModI,
mSucc, mPred,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mAshrI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mLePtr, mLtPtr,
mXor, mEqCString, mEqProc,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot,
mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mImplies, mIff, mExists, mForall, mOld,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet,
mConStrStr, mSlice,
mDotDot, # this one is only necessary to give nice compile time warnings
mFields, mFieldPairs, mOmpParFor,
mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mExit,
mSetLengthStr, mSetLengthSeq,
mSetLengthSeqUninit,
mIsPartOf, mAstToStr, mParallel,
mSwap, mIsNil, mArrToSeq, mOpenArrayToSeq,
mNewString, mNewStringOfCap, mParseBiggestFloat,
mMove, mEnsureMove, mWasMoved, mDup, mDestroy, mTrace,
mDefault, mUnown, mFinished, mIsolate, mAccessEnv, mAccessTypeField,
mArray, mOpenArray, mRange, mSet, mSeq, mVarargs,
mRef, mPtr, mVar, mDistinct, mVoid, mTuple,
mOrdinal, mIterableType,
mInt, mInt8, mInt16, mInt32, mInt64,
mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
mFloat, mFloat32, mFloat64, mFloat128,
mBool, mChar, mString, mCstring,
mPointer, mNil, mExpr, mStmt, mTypeDesc,
mVoidType, mPNimrodNode, mSpawn, mDeepCopy,
mIsMainModule, mCompileDate, mCompileTime, mProcCall,
mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType,
mCompileOption, mCompileOptionArg,
mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel,
mNKind, mNSymKind,
mNccValue, mNccInc, mNcsAdd, mNcsIncl, mNcsLen, mNcsAt,
mNctPut, mNctLen, mNctGet, mNctHasNext, mNctNext,
mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal,
mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetStrVal, mNLineInfo,
mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mNSigHash, mNSizeOf,
mNBindSym, mNCallSite,
mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNGenSym,
mNHint, mNWarning, mNError,
mInstantiationInfo, mGetTypeInfo, mGetTypeInfoV2,
mNimvm, mIntDefine, mStrDefine, mBoolDefine, mGenericDefine, mRunnableExamples,
mException, mBuiltinType, mSymOwner, mUncheckedArray, mGetImplTransf,
mSymIsInstantiationOf, mNodeId, mPrivateAccess, mZeroDefault
const
# things that we can evaluate safely at compile time, even if not asked for it:
ctfeWhitelist* = {mNone, mSucc,
mPred, mInc, mDec, mOrd, mLengthOpenArray,
mLengthStr, mLengthArray, mLengthSeq,
mArrGet, mArrPut, mAsgn, mDestroy,
mIncl, mExcl, mCard, mChr,
mAddI, mSubI, mMulI, mDivI, mModI,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mEqProc, mLePtr, mLtPtr, mEqCString, mXor,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet,
mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mOpenArrayToSeq}
generatedMagics* = {mNone, mIsolate, mFinished, mOpenArrayToSeq}
## magics that are generated as normal procs in the backend
type
ItemId* = object
module*: int32
item*: int32
proc `$`*(x: ItemId): string =
"(module: " & $x.module & ", item: " & $x.item & ")"
proc `==`*(a, b: ItemId): bool {.inline.} =
a.item == b.item and a.module == b.module
proc hash*(x: ItemId): Hash =
var h: Hash = hash(x.module)
h = h !& hash(x.item)
result = !$h
type
PNode* = ref TNode
TNodeSeq* = seq[PNode]
PType* = ref TType
PSym* = ref TSym
TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes
when defined(useNodeIds):
id*: int
typField*: PType
info*: TLineInfo
flags*: TNodeFlags
case kind*: TNodeKind
of nkCharLit..nkUInt64Lit:
intVal*: BiggestInt
of nkFloatLit..nkFloat128Lit:
floatVal*: BiggestFloat
of nkStrLit..nkTripleStrLit:
strVal*: string
of nkSym:
sym*: PSym
of nkIdent:
ident*: PIdent
else:
sons*: TNodeSeq
when defined(nimsuggest):
endInfo*: TLineInfo
TStrTable* = object # a table[PIdent] of PSym
counter*: int
data*: seq[PSym]
# -------------- backend information -------------------------------
TLocKind* = enum
locNone, # no location
locTemp, # temporary location
locLocalVar, # location is a local variable
locGlobalVar, # location is a global variable
locParam, # location is a parameter
locField, # location is a record field
locExpr, # "location" is really an expression
locProc, # location is a proc (an address of a procedure)
locData, # location is a constant
locCall, # location is a call expression
locOther # location is something other
TLocFlag* = enum
lfIndirect, # backend introduced a pointer
lfNoDeepCopy, # no need for a deep copy
lfNoDecl, # do not declare it in C
lfDynamicLib, # link symbol to dynamic library
lfExportLib, # export symbol for dynamic library generation
lfHeader, # include header file for symbol
lfImportCompilerProc, # ``importc`` of a compilerproc
lfSingleUse # no location yet and will only be used once
lfEnforceDeref # a copyMem is required to dereference if this a
# ptr array due to C array limitations.
# See #1181, #6422, #11171
lfPrepareForMutation # string location is about to be mutated (V2)
TStorageLoc* = enum
OnUnknown, # location is unknown (stack, heap or static)
OnStatic, # in a static section
OnStack, # location is on hardware stack
OnHeap # location is on heap or global
# (reference counting needed)
TLocFlags* = set[TLocFlag]
TLoc* = object
k*: TLocKind # kind of location
storage*: TStorageLoc
flags*: TLocFlags # location's flags
lode*: PNode # Node where the location came from; can be faked
snippet*: Rope # C code snippet of location (code generators)
# ---------------- end of backend information ------------------------------
TLibKind* = enum
libHeader, libDynamic
TLib* = object # also misused for headers!
# keep in sync with PackedLib
kind*: TLibKind
generated*: bool # needed for the backends:
isOverridden*: bool
name*: Rope
path*: PNode # can be a string literal!
CompilesId* = int ## id that is used for the caching logic within
## ``system.compiles``. See the seminst module.
TInstantiation* = object
sym*: PSym
concreteTypes*: seq[PType]
genericParamsCount*: int # for terrible reasons `concreteTypes` contains all the types,
# so we need to know how many generic params there were
# this is not serialized for IC and that is fine.
compilesId*: CompilesId
PInstantiation* = ref TInstantiation
TScope* {.acyclic.} = object
depthLevel*: int
symbols*: TStrTable
parent*: PScope
allowPrivateAccess*: seq[PSym] # # enable access to private fields
optionStackLen*: int
PScope* = ref TScope
ItemState* = enum
Complete # completely in memory
Partial # partially in memory
Sealed # complete in memory, already written to NIF file, so further mutations are not allowed
PLib* = ref TLib
TSym* {.acyclic.} = object # Keep in sync with ast2nif.nim
itemId*: ItemId
# proc and type instantiations are cached in the generic symbol
state*: ItemState
case kindImpl*: TSymKind # Note: kept as 'kind' for case statement, but accessor checks state
of routineKinds:
#procInstCache*: seq[PInstantiation]
gcUnsafetyReasonImpl*: PSym # for better error messages regarding gcsafe
transformedBodyImpl*: PNode # cached body after transf pass
of skLet, skVar, skField, skForVar:
guardImpl*: PSym
bitsizeImpl*: int
alignmentImpl*: int # for alignment
else: nil
magicImpl*: TMagic
typImpl*: PType
name*: PIdent
infoImpl*: TLineInfo
when defined(nimsuggest):
endInfoImpl*: TLineInfo
hasUserSpecifiedTypeImpl*: bool # used for determining whether to display inlay type hints
ownerFieldImpl*: PSym
flagsImpl*: TSymFlags
astImpl*: PNode # syntax tree of proc, iterator, etc.:
# the whole proc including header; this is used
# for easy generation of proper error messages
# for variant record fields the discriminant
# expression
# for modules, it's a placeholder for compiler
# generated code that will be appended to the
# module after the sem pass (see appendToModule)
optionsImpl*: TOptions
positionImpl*: int # used for many different things:
# for enum fields its position;
# for fields its offset
# for parameters its position (starting with 0)
# for a conditional:
# 1 iff the symbol is defined, else 0
# (or not in symbol table)
# for modules, an unique index corresponding
# to the module's fileIdx
# for variables a slot index for the evaluator
offsetImpl*: int32 # offset of record field
disamb*: int32 # disambiguation number; the basic idea is that
# `<procname>__<module>_<disamb>` is unique
locImpl*: TLoc
annexImpl*: PLib # additional fields (seldom used, so we use a
# reference to another object to save space)
when hasFFI:
cnameImpl*: string # resolved C declaration name in importc decl, e.g.:
# proc fun() {.importc: "$1aux".} => cname = funaux
constraintImpl*: PNode # additional constraints like 'lit|result'; also
# misused for the codegenDecl and virtual pragmas in the hope
# it won't cause problems
# for skModule the string literal to output for
# deprecated modules.
instantiatedFromImpl*: PSym # for instances, the generic symbol where it came from.
when defined(nimsuggest):
allUsagesImpl*: seq[TLineInfo]
TTypeSeq* = seq[PType]
TTypeAttachedOp* = enum ## as usual, order is important here
attachedWasMoved,
attachedDestructor,
attachedAsgn,
attachedDup,
attachedSink,
attachedTrace,
attachedDeepCopy
TType* {.acyclic.} = object # \
# types are identical iff they have the
# same id; there may be multiple copies of a type
# in memory!
# Keep in sync with PackedType
itemId*: ItemId
kind*: TTypeKind # kind of type
state*: ItemState
uniqueId*: ItemId # due to a design mistake, we need to keep the real ID here as it
# is required by the --incremental:on mode.
callConvImpl*: TCallingConvention # for procs
flagsImpl*: TTypeFlags # flags of the type
sonsImpl*: TTypeSeq # base types, etc.
nImpl*: PNode # node for types:
# for range types a nkRange node
# for record types a nkRecord node
# for enum types a list of symbols
# if kind == tyInt: it is an 'int literal(x)' type
# for procs and tyGenericBody, it's the
# formal param list
# for concepts, the concept body
# else: unused
ownerFieldImpl*: PSym # the 'owner' of the type
symImpl*: PSym # types have the sym associated with them
# it is used for converting types to strings
sizeImpl*: BiggestInt # the size of the type in bytes
# -1 means that the size is unknown
alignImpl*: int16 # the type's alignment requirements
paddingAtEndImpl*: int16 #
locImpl*: TLoc
typeInstImpl*: PType # for generic instantiations the tyGenericInst that led to this
# type.
TPair* = object
key*, val*: RootRef
TPairSeq* = seq[TPair]
TIdPair*[T] = object
key*: ItemId
val*: T
TIdPairSeq*[T] = seq[TIdPair[T]]
TIdTable*[T] = object
counter*: int
data*: TIdPairSeq[T]
TNodePair* = object
h*: Hash # because it is expensive to compute!
key*: PNode
val*: int
TNodePairSeq* = seq[TNodePair]
TNodeTable* = object # the same as table[PNode] of int;
# nodes are compared by structure!
counter*: int
data*: TNodePairSeq
ignoreTypes*: bool
TObjectSeq* = seq[RootRef]
TObjectSet* = object
counter*: int
data*: TObjectSeq
TImplication* = enum
impUnknown, impNo, impYes
const
OverloadableSyms* = {skProc, skFunc, skMethod, skIterator,
skConverter, skModule, skTemplate, skMacro, skEnumField}
GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody,
tyGenericParam}
StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray,
tySet, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyOpenArray,
tyVarargs}
ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
# var x = expr
tyBool, tyChar, tyEnum, tyArray, tyObject,
tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc,
tyPointer,
tyOpenArray, tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64}
IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
tyFloat..tyFloat128, tyUInt..tyUInt64} # weird name because it contains tyFloat
ConstantDataTypes*: TTypeKinds = {tyArray, tySet,
tyTuple, tySequence}
NilableTypes*: TTypeKinds = {tyPointer, tyCstring, tyRef, tyPtr,
tyProc, tyError} # TODO
PtrLikeKinds*: TTypeKinds = {tyPointer, tyPtr} # for VM
PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16,
nfDotSetter, nfDotField,
nfIsRef, nfIsPtr, nfPreventCg, nfLL,
nfFromTemplate, nfDefaultRefsParam,
nfExecuteOnReload, nfLastRead,
nfFirstWrite, nfSkipFieldChecking,
nfDisabledOpenSym, nfLazyType}
namePos* = 0
patternPos* = 1 # empty except for term rewriting macros
genericParamsPos* = 2
paramsPos* = 3
pragmasPos* = 4
miscPos* = 5 # used for undocumented and hacky stuff
bodyPos* = 6 # position of body; use rodread.getBody() instead!
resultPos* = 7
dispatcherPos* = 8
nfAllFieldsSet* = nfBase2
nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice,
nkClosedSymChoice, nkOpenSym}
nkPragmaCallKinds* = {nkExprColonExpr, nkCall, nkCallStrLit}
nkLiterals* = {nkCharLit..nkTripleStrLit}
nkFloatLiterals* = {nkFloatLit..nkFloat128Lit}
nkLambdaKinds* = {nkLambda, nkDo}
declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef}
routineDefs* = declarativeDefs + {nkMacroDef, nkTemplateDef}
procDefs* = nkLambdaKinds + declarativeDefs
callableDefs* = nkLambdaKinds + routineDefs
nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice}
nkStrKinds* = {nkStrLit..nkTripleStrLit}
skLocalVars* = {skVar, skLet, skForVar, skParam, skResult}
skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator,
skMethod, skConverter}
defaultSize* = -1
defaultAlignment* = -1
defaultOffset* = -1
proc len*(n: PNode): int {.inline.} =
result = n.sons.len
proc safeLen*(n: PNode): int {.inline.} =
## works even for leaves.
if n.kind in {nkNone..nkNilLit}: result = 0
else: result = n.len
template `[]`*(n: PNode, i: int): PNode = n.sons[i]
template `[]=`*(n: PNode, i: int; x: PNode) = n.sons[i] = x
template `[]`*(n: PNode, i: BackwardsIndex): PNode = n[n.len - i.int]
template `[]=`*(n: PNode, i: BackwardsIndex; x: PNode) = n[n.len - i.int] = x
iterator items*(n: PNode): PNode =
for i in 0..<n.safeLen: yield n[i]
when defined(useNodeIds):
const nodeIdToDebug* = -1 # 2322968
var gNodeId: int
template newNodeImpl(info2) {.dirty.} =
result = PNode(kind: kind, info: info2)
when false:
# this would add overhead, so we skip it; it results in a small amount of leaked entries
# for old PNode that gets re-allocated at the same address as a PNode that
# has `nfHasComment` set (and an entry in that table). Only `nfHasComment`
# should be used to test whether a PNode has a comment; gconfig.comments
# can contain extra entries for deleted PNode's with comments.
gconfig.comments.del(cast[int](result))
template setIdMaybe() =
when defined(useNodeIds):
result.id = gNodeId
if result.id == nodeIdToDebug:
echo "KIND ", result.kind
writeStackTrace()
inc gNodeId
proc newNode*(kind: TNodeKind): PNode =
## new node with unknown line info, no type, and no children
newNodeImpl(unknownLineInfo)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode =
## new node with line info, type, and children
newNodeImpl(info)
if children > 0:
newSeq(result.sons, children)
setIdMaybe()
proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode =
## new node with line info, type, and no children
result = newNode(kind)
result.info = info
result.typField = typ
proc newNode*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode =
result = newNode(nkIdent)
result.ident = ident
result.info = info
proc newSymNode*(sym: PSym, info: TLineInfo): PNode =
result = newNode(nkSym)
result.sym = sym
result.typField = sym.typImpl
result.info = info
proc newStrNode*(kind: TNodeKind, strVal: string): PNode =
result = newNode(kind)
result.strVal = strVal
proc newStrNode*(strVal: string; info: TLineInfo): PNode =
result = newNodeI(nkStrLit, info)
result.strVal = strVal
# Hooks, converters, method dispatchers and enum-to-string generated procs need special
# handling for IC, they end up in IC indexes etc. Thus we "log" them in the module graph
# and to pass them around to the NIF writer. This is not very elegant but it works.
type
LogEntryKind* = enum
HookEntry, ConverterEntry, MethodEntry, EnumToStrEntry, GenericInstEntry
LogEntry* = object
kind*: LogEntryKind
op*: TTypeAttachedOp
isGeneric*: bool
module*: int # Which module this entry belongs to
key*: string
sym*: PSym
proc forcePartial*(s: PSym) =
## Resets all impl-fields to their default values and sets state to Partial.
## This is useful for creating a stub symbol that can be lazily loaded later.
## The fields itemId, name, and disamb are preserved.
s.state = Partial
case s.kindImpl
of routineKinds:
s.gcUnsafetyReasonImpl = nil
s.transformedBodyImpl = nil
of skLet, skVar, skField, skForVar:
s.guardImpl = nil
s.bitsizeImpl = 0
s.alignmentImpl = 0 # for alignment
else: discard
s.magicImpl = mNone
s.typImpl = nil
s.infoImpl = unknownLineInfo
s.ownerFieldImpl = nil
s.flagsImpl = {}
s.astImpl = nil
s.optionsImpl = {}
s.positionImpl = 0
s.offsetImpl = 0
s.locImpl = TLoc()
s.annexImpl = nil
s.constraintImpl = nil
s.instantiatedFromImpl = nil
when defined(nimsuggest):
s.endInfoImpl = unknownLineInfo
s.hasUserSpecifiedTypeImpl = false
s.allUsagesImpl = @[]
when hasFFI:
s.cnameImpl = ""
proc forcePartial*(t: PType) =
## Resets all impl-fields to their default values and sets state to Partial.
## This is useful for creating a stub type that can be lazily loaded later.
## The fields itemId, kind, uniqueId are preserved.
t.state = Partial
t.callConvImpl = ccNimCall
t.flagsImpl = {}
t.sonsImpl = @[]
t.nImpl = nil
t.ownerFieldImpl = nil
t.symImpl = nil
t.sizeImpl = defaultSize
t.alignImpl = defaultAlignment
t.paddingAtEndImpl = 0'i16
t.locImpl = TLoc()
t.typeInstImpl = nil
const # for all kind of hash tables:
GrowthFactor* = 2 # must be power of 2, > 0
StartSize* = 8 # must be power of 2, > 0
proc nextTry*(h, maxHash: Hash): Hash {.inline.} =
result = ((5 * h) + 1) and maxHash
# For any initial h in range(maxHash), repeating that maxHash times
# generates each int in range(maxHash) exactly once (see any text on
# random-number generation for proof).
proc mustRehash*(length, counter: int): bool =
assert(length > counter)
result = (length * 2 < counter * 3) or (length - counter < 4)
proc strTableContains*(t: TStrTable, n: PSym): bool =
var h: Hash = n.name.h and high(t.data) # start with real hash value
while t.data[h] != nil:
if (t.data[h] == n):
return true
h = nextTry(h, high(t.data))
result = false
proc strTableRawInsert(data: var seq[PSym], n: PSym) =
var h: Hash = n.name.h and high(data)
while data[h] != nil:
if data[h] == n:
# allowed for 'export' feature:
#InternalError(n.info, "StrTableRawInsert: " & n.name.s)
return
h = nextTry(h, high(data))
assert(data[h] == nil)
data[h] = n
proc symTabReplaceRaw(data: var seq[PSym], prevSym: PSym, newSym: PSym) =
assert prevSym.name.h == newSym.name.h
var h: Hash = prevSym.name.h and high(data)
while data[h] != nil:
if data[h] == prevSym:
data[h] = newSym
return
h = nextTry(h, high(data))
assert false
proc symTabReplace*(t: var TStrTable, prevSym: PSym, newSym: PSym) =
symTabReplaceRaw(t.data, prevSym, newSym)
proc strTableEnlarge(t: var TStrTable) =
var n: seq[PSym]
newSeq(n, t.data.len * GrowthFactor)
for i in 0..high(t.data):
if t.data[i] != nil: strTableRawInsert(n, t.data[i])
swap(t.data, n)
proc strTableAdd*(t: var TStrTable, n: PSym) =
if mustRehash(t.data.len, t.counter): strTableEnlarge(t)
strTableRawInsert(t.data, n)
inc(t.counter)
proc strTableInclReportConflict*(t: var TStrTable, n: PSym;
onConflictKeepOld = false): PSym =
# if `t` has a conflicting symbol (same identifier as `n`), return it
# otherwise return `nil`. Incl `n` to `t` unless `onConflictKeepOld = true`
# and a conflict was found.
assert n.name != nil
var h: Hash = n.name.h and high(t.data)
var replaceSlot = -1
while true:
var it = t.data[h]
if it == nil: break
# Semantic checking can happen multiple times thanks to templates
# and overloading: (var x=@[]; x).mapIt(it).
# So it is possible the very same sym is added multiple
# times to the symbol table which we allow here with the 'it == n' check.
if it.name.id == n.name.id:
if it == n: return nil
replaceSlot = h
h = nextTry(h, high(t.data))
if replaceSlot >= 0:
result = t.data[replaceSlot] # found it
if not onConflictKeepOld:
t.data[replaceSlot] = n # overwrite it with newer definition!
return result # but return the old one
elif mustRehash(t.data.len, t.counter):
strTableEnlarge(t)
strTableRawInsert(t.data, n)
else:
assert(t.data[h] == nil)
t.data[h] = n
inc(t.counter)
result = nil
proc strTableIncl*(t: var TStrTable, n: PSym;
onConflictKeepOld = false): bool {.discardable.} =
result = strTableInclReportConflict(t, n, onConflictKeepOld) != nil
proc strTableGet*(t: TStrTable, name: PIdent): PSym =
var h: Hash = name.h and high(t.data)
while true:
result = t.data[h]
if result == nil: break
if result.name.id == name.id: break
h = nextTry(h, high(t.data))