Files
Nim/compiler/concepts.nim
elijahr 1324183c38 fix #17630: Implement cycle detection for recursive concepts (#25353)
fixes #17630

## Recursive Concept Cycle Detection

- Track (conceptId, typeId) pairs during matching to detect cycles
- Changed marker from IntSet to HashSet[ConceptTypePair]
- Removed unused depthCount field
- Added recursive concepts documentation to manual
- Added tests for recursive concepts, distinct chains, and co-dependent
concepts

## Fix Flaky `tasyncclosestall` Test

The macOS ARM64 CI jobs were failing due to a flaky async socket test
(unrelated to concepts).

The test only accepted `EBADF` as a valid error code when closing a
socket with pending writes. However, depending on timing, the kernel may
report `ECONNRESET` or `EPIPE` instead:

- **EBADF**: Socket was closed locally before kernel detected remote
state
- **ECONNRESET**: Remote peer sent RST packet (detected first)  
- **EPIPE**: Socket is no longer connected (broken pipe)

All three are valid disconnection errors. The fix accepts any of them,
making the test reliable across platforms.

---------

Co-authored-by: Andreas Rumpf <araq4k@proton.me>
2025-12-20 08:56:10 +01:00

644 lines
22 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2020 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## New styled concepts for Nim. See https://github.com/nim-lang/RFCs/issues/168
## for details. Note this is a first implementation and only the "Concept matching"
## section has been implemented.
import ast, astalgo, semdata, lookups, lineinfos, idents, msgs, renderer, types, layeredtable
import std/[intsets, sets]
when defined(nimPreviewSlimSystem):
import std/assertions
const
logBindings = when defined(debugConcepts): true else: false
## Code dealing with Concept declarations
## --------------------------------------
proc declareSelf(c: PContext; info: TLineInfo) =
## Adds the magical 'Self' symbols to the current scope.
let ow = getCurrOwner(c)
let s = newSym(skType, getIdent(c.cache, "Self"), c.idgen, ow, info)
s.typ = newType(tyTypeDesc, c.idgen, ow)
s.typ.incl {tfUnresolved, tfPacked}
s.typ.add newType(tyEmpty, c.idgen, ow)
addDecl(c, s, info)
proc semConceptDecl(c: PContext; n: PNode): PNode =
## Recursive helper for semantic checking for the concept declaration.
## Currently we only support (possibly empty) lists of statements
## containing 'proc' declarations and the like.
case n.kind
of nkStmtList, nkStmtListExpr:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = semConceptDecl(c, n[i])
of nkProcDef..nkIteratorDef, nkFuncDef:
result = c.semExpr(c, n, {efWantStmt})
of nkTypeClassTy:
result = shallowCopy(n)
for i in 0..<n.len-1:
result[i] = n[i]
result[^1] = semConceptDecl(c, n[^1])
of nkCommentStmt:
result = n
else:
localError(c.config, n.info, "unexpected construct in the new-styled concept: " & renderTree(n))
result = n
proc semConceptDeclaration*(c: PContext; n: PNode): PNode =
## Semantic checking for the concept declaration. Runs
## when we process the concept itself, not its matching process.
assert n.kind == nkTypeClassTy
inc c.inConceptDecl
openScope(c)
declareSelf(c, n.info)
result = semConceptDecl(c, n)
rawCloseScope(c)
dec c.inConceptDecl
## Concept matching
## ----------------
type
MatchFlags* = enum
mfDontBind # Do not bind generic parameters
mfCheckGeneric # formal <- formal comparison as opposed to formal <- operand
ConceptTypePair = tuple[conceptId, typeId: ItemId]
## Pair of (concept type id, implementation type id) used for cycle detection
MatchCon = object ## Context we pass around during concept matching.
bindings: LayeredIdTable
marker: HashSet[ConceptTypePair] ## Tracks (concept, type) pairs being checked to detect cycles.
potentialImplementation: PType ## the concrete type that might match the concept we try to match.
magic: TMagic ## mArrGet and mArrPut is wrong in system.nim and
## cannot be fixed that easily.
## Thus we special case it here.
concpt: PType ## current concept being evaluated
flags: set[MatchFlags]
MatchKind = enum
mkNoMatch, mkSubset, mkSame
const
asymmetricConceptParamMods = {tyVar, tySink, tyLent, tyOwned, tyAlias, tyInferred} # param modifiers that to not have to match implementation -> concept
bindableTypes = {tyGenericParam, tyOr, tyTypeDesc}
proc conceptMatchNode(c: PContext; n: PNode; m: var MatchCon): bool
proc matchType(c: PContext; fo, ao: PType; m: var MatchCon): bool
proc matchReturnType(c: PContext; f, a: PType; m: var MatchCon): bool
proc processConcept(c: PContext; concpt, invocation: PType, bindings: var LayeredIdTable; m: var MatchCon): bool
proc existingBinding(m: MatchCon; key: PType): PType =
## checks if we bound the type variable 'key' already to some
## concrete type.
result = m.bindings.lookup(key)
if result == nil:
result = key
const
ignorableForArgType = {tyVar, tySink, tyLent, tyOwned, tyAlias, tyInferred}
proc unrollGenericParam(param: PType): PType =
result = param.skipTypes(ignorableForArgType)
while result.kind in {tyGenericParam, tyTypeDesc} and result.hasElementType and result.elementType.kind != tyNone:
result = result.elementType
proc bindParam(c: PContext, m: var MatchCon; key, v: PType): bool {. discardable .} =
if v.kind == tyTypeDesc:
return false
var value = unrollGenericParam(v)
if value.kind == tyGenericParam:
value = existingBinding(m, value)
if value.kind == tyGenericParam:
if value.hasElementType:
value = value.elementType
else:
return true
if value.kind == tyStatic:
return false
if m.magic in {mArrPut, mArrGet} and value.kind in arrPutGetMagicApplies:
value = value.last
let old = existingBinding(m, key)
if old != key:
# check previously bound value
if not matchType(c, old, value, m):
return false
elif key.hasElementType and not key.elementType.isNil and key.elementType.kind != tyNone:
# check constaint
if matchType(c, unrollGenericParam(key), value, m) == false:
return false
when logBindings: echo "bind table adding '", key, "', ", value
assert value != nil
assert value.kind != tyVoid
m.bindings.put(key, value)
return true
proc defSignatureType(n: PNode): PType = n[0].sym.typ
proc conceptBody*(n: PType): PNode = n.n.lastSon
proc acceptsAllTypes(t: PType): bool=
result = false
if t.kind == tyAnything:
result = true
elif t.kind == tyGenericParam:
if tfImplicitTypeParam in t.flags:
result = true
if not t.hasElementType or t.elementType.kind == tyNone:
result = true
proc procDefSignature(s: PSym): PNode {. deprecated .} =
var nc = s.ast.copyNode()
for i in 0 .. 5:
nc.add s.ast[i]
nc
proc matchKids(c: PContext; f, a: PType; m: var MatchCon, start=0): bool=
result = true
for i in start ..< f.kidsLen - ord(f.kind in {tyGenericInst, tyGenericInvocation}):
if not matchType(c, f[i], a[i], m): return false
iterator traverseTyOr(t: PType): PType {. closure .}=
for i in t.kids:
case i.kind:
of tyGenericParam:
if i.hasElementType:
for s in traverseTyOr(i.elementType):
yield s
else:
yield i
else:
yield i
proc matchConceptToImpl(c: PContext, f, potentialImpl: PType; m: var MatchCon): bool =
assert not(potentialImpl.reduceToBase.kind == tyConcept)
let concpt = f.reduceToBase
# Handle self-referential concepts: when a concept references itself in its body
# (e.g., `A = concept; proc test(x: Self, y: A)`), the inner type A has n=nil.
# We detect this by checking if the concept has the same symbol name as the
# one we're currently matching and has no body (n=nil).
if concpt.n.isNil:
if concpt.sym != nil and m.concpt.sym != nil and
concpt.sym == m.concpt.sym:
# Self-reference: check if potentialImpl matches what we're already checking
return potentialImpl.id == m.potentialImplementation.id
# Concept without body that's not a self-reference - cannot match
return false
# Cycle detection: track (concept, type) pairs to prevent infinite recursion.
# Returns true on cycle (coinductive semantics) to support co-dependent concepts.
let pair: ConceptTypePair = (concpt.itemId, potentialImpl.itemId)
if pair in m.marker:
return true
m.marker.incl pair
var efPot = potentialImpl
if potentialImpl.isSelf:
if m.concpt.n == concpt.n:
m.marker.excl pair
return true
efPot = m.potentialImplementation
var oldBindings = m.bindings
m.bindings = newTypeMapLayer(m.bindings)
let oldPotentialImplementation = m.potentialImplementation
m.potentialImplementation = efPot
let oldConcept = m.concpt
m.concpt = concpt
var invocation: PType = nil
if f.kind in {tyGenericInvocation, tyGenericInst}:
invocation = f
result = processConcept(c, concpt, invocation, oldBindings, m)
m.potentialImplementation = oldPotentialImplementation
m.concpt = oldConcept
m.bindings = oldBindings
m.marker.excl pair
proc cmpConceptDefs(c: PContext, fn, an: PNode, m: var MatchCon): bool=
if fn.kind != an.kind:
return false
if fn[namePos].sym.name != an[namePos].sym.name:
return false
let
ft = fn.defSignatureType
at = an.defSignatureType
if ft.len != at.len:
return false
for i in 1 ..< ft.n.len:
m.bindings = m.bindings.newTypeMapLayer()
let aType = at.n[i].typ
let fType = ft.n[i].typ
if aType.isSelf and fType.isSelf:
continue
if not matchType(c, fType, aType, m):
m.bindings.setToPreviousLayer()
return false
result = true
if not matchReturnType(c, ft.returnType, at.returnType, m):
m.bindings.setToPreviousLayer()
result = false
proc conceptsMatch(c: PContext, fc, ac: PType; m: var MatchCon): MatchKind =
# XXX: In the future this may need extra parameters to carry info for container types
if fc.n == ac.n:
# This will have to take generic parameters into account at some point
return mkSame
let
fn = fc.conceptBody
an = ac.conceptBody
sameLen = fc.len == ac.len
var match = false
for fdef in fn:
var cmpResult = false
for ia, ndef in an:
match = cmpConceptDefs(c, fdef, ndef, m)
if match:
break
if not match:
return mkNoMatch
return mkSubset
proc isObjectSubtype(f, a: PType): bool =
var t = a
result = false
while t != nil:
t = t.baseClass
if t == nil:
break
t = t.skipTypes({tyPtr,tyRef})
if t == nil:
break
if t.kind != tyObject:
break
if sameObjectTypes(f, t):
result = true
break
proc matchType(c: PContext; fo, ao: PType; m: var MatchCon): bool =
## The heart of the concept matching process. 'f' is the formal parameter of some
## routine inside the concept that we're looking for. 'a' is the formal parameter
## of a routine that might match.
var
a = ao
f = fo
if a.isSelf:
if m.magic in {mArrPut, mArrGet}:
return false
a = m.potentialImplementation
if a.kind in bindableTypes:
a = existingBinding(m, ao)
if a == ao and a.kind == tyGenericParam and a.hasElementType and a.elementType.kind != tyNone:
a = a.elementType
if f.isConcept:
if a.acceptsAllTypes:
return false
if a.skipTypes(ignorableForArgType).isConcept:
# if f is a subset of a then any match to a will also match f. Not the other way around
return conceptsMatch(c, a.reduceToBase, f.reduceToBase, m) >= mkSubset
else:
return matchConceptToImpl(c, f, a, m)
result = false
case f.kind
of tyAlias:
result = matchType(c, f.skipModifier, a, m)
of tyTypeDesc:
if isSelf(f):
let ua = a.skipTypes(asymmetricConceptParamMods)
if m.magic in {mArrPut, mArrGet}:
if m.potentialImplementation.reduceToBase.kind in arrPutGetMagicApplies:
bindParam(c, m, a, last m.potentialImplementation)
result = true
#elif ua.isConcept:
# result = matchType(c, m.concpt, ua, m)
else:
result = matchType(c, a.skipTypes(ignorableForArgType), m.potentialImplementation, m)
else:
if a.kind == tyTypeDesc:
if not(a.hasElementType) or a.elementType.kind == tyNone:
result = true
elif f.hasElementType:
result = matchType(c, f.elementType, a.elementType, m)
of tyVar, tySink, tyLent, tyOwned:
# modifiers in the concept must be there in the actual implementation
# too but not vice versa.
if a.kind == f.kind:
result = matchType(c, f.elementType, a.elementType, m)
elif m.magic == mArrPut:
result = matchType(c, f.elementType, a, m)
of tyEnum, tyObject, tyDistinct:
if a.kind in ignorableForArgType:
result = matchType(c, f, a.skipTypes(ignorableForArgType), m)
else:
if a.kind == tyGenericInst:
# tyOr does this to generic typeclasses
result = a.base.sym == f.sym
else:
result = sameType(f, a)
if not result and f.kind == tyObject and a.kind == tyObject:
result = isObjectSubtype(f, a)
of tyEmpty, tyString, tyCstring, tyPointer, tyNil, tyUntyped, tyTyped, tyVoid:
result = a.skipTypes(ignorableForArgType).kind == f.kind
of tyBool, tyChar, tyInt..tyUInt64:
let ak = a.skipTypes(ignorableForArgType)
result = ak.kind == f.kind or ak.kind == tyOrdinal or
(ak.kind == tyGenericParam and ak.hasElementType and ak.elementType.kind == tyOrdinal)
of tyArray, tyTuple, tyVarargs, tyOpenArray, tyRange, tySequence, tyRef, tyPtr:
if f.kind == tyArray and f.kidsLen == 3 and a.kind == tyArray:
# XXX: this is a work-around!
# system.nim creates these for the magic array typeclass
result = true
else:
let ak = a.skipTypes(ignorableForArgType - {f.kind})
if ak.kind == f.kind:
if f.base.kind == tyNone:
result = true
elif f.kidsLen == ak.kidsLen:
result = matchKids(c, f, ak, m)
of tyGenericInvocation, tyGenericInst:
result = false
let ea = a.skipTypes(ignorableForArgType)
if ea.kind in {tyGenericInst, tyGenericInvocation}:
var
k1 = f.kidsLen - ord(f.kind == tyGenericInst)
k2 = ea.kidsLen - ord(ea.kind == tyGenericInst)
if sameType(f.genericHead, ea.genericHead) and k1 == k2:
result = true
for i in 1 ..< k2:
if not matchType(c, f[i], ea[i], m):
result = false
break
elif f.kind == tyGenericInvocation:
# bind potential generic constraints into body
let body = f.base
for i in 1 ..< len(f):
bindParam(c,m,body[i-1], f[i])
result = matchType(c, body, a, m)
else: # tyGenericInst
result = matchType(c, f.last, a, m)
of tyOrdinal:
result = isOrdinalType(a, allowEnumWithHoles = false) or a.kind == tyGenericParam
of tyStatic:
var scomp = f.base
if scomp.kind == tyGenericParam:
if f.base.kidsLen > 0:
scomp = scomp.base
if a.kind == tyStatic:
result = matchType(c, scomp, a.base, m)
else:
result = matchType(c, scomp, a, m)
of tyGenericParam:
if a.acceptsAllTypes:
discard bindParam(c, m, f, a)
result = f.acceptsAllTypes
else:
result = bindParam(c, m, f, a)
of tyAnything:
result = true
of tyNot:
if a.kind == tyNot:
result = matchType(c, f.elementType, a.elementType, m)
else:
m.bindings = m.bindings.newTypeMapLayer()
result = not matchType(c, f.elementType, a, m)
m.bindings.setToPreviousLayer()
of tyAnd:
m.bindings = m.bindings.newTypeMapLayer()
result = true
for ff in traverseTyOr(f):
let r = matchType(c, ff, a, m)
if not r:
m.bindings.setToPreviousLayer()
result = false
break
of tyGenericBody:
var ak = a
if a.kind == tyGenericBody:
ak = last(a)
result = matchType(c, last(f), ak, m)
of tyCompositeTypeClass:
if a.kind == tyCompositeTypeClass:
result = matchKids(c, f, a, m)
else:
result = matchType(c, last(f), a, m)
of tyBuiltInTypeClass:
let target = f.genericHead.kind
result = a.skipTypes(ignorableForArgType).reduceToBase.kind == target
of tyOr:
if a.kind == tyOr:
var covered = 0
for ff in traverseTyOr(f):
for aa in traverseTyOr(a):
m.bindings = m.bindings.newTypeMapLayer()
let r = matchType(c, ff, aa, m)
if r:
inc covered
break
m.bindings.setToPreviousLayer()
result = covered >= a.kidsLen
else:
for ff in f.kids:
m.bindings = m.bindings.newTypeMapLayer()
result = matchType(c, ff, a, m)
if result: break # and remember the binding!
m.bindings.setToPreviousLayer()
of tySet:
result = false
if a.kind == tySet:
result = matchType(c, f.elementType, a.elementType, m)
else:
result = false
if result and ao.kind == tyGenericParam:
let bf = if f.isSelf: m.potentialImplementation else: f
if bindParam(c, m, ao, bf):
when logBindings: echo " ^ reverse binding"
proc checkConstraint(c: PContext; f, a: PType; m: var MatchCon): bool =
result = matchType(c, f, a, m) or matchType(c, a, f, m)
proc matchReturnType(c: PContext; f, a: PType; m: var MatchCon): bool =
## Like 'matchType' but with extra logic dealing with proc return types
## which can be nil or the 'void' type.
if f.isEmptyType:
result = a.isEmptyType
elif a == nil:
result = false
else:
result = checkConstraint(c, f, a, m)
proc matchSym(c: PContext; candidate: PSym, n: PNode; m: var MatchCon): bool =
## Checks if 'candidate' matches 'n' from the concept body. 'n' is a nkProcDef
## or similar.
# watch out: only add bindings after a completely successful match.
m.bindings = m.bindings.newTypeMapLayer()
let can = candidate.typ.n
let con = defSignatureType(n).n
if can.len < con.len:
# too few arguments, cannot be a match:
return false
if can.len > con.len:
# too many arguments (not optional)
for i in con.len ..< can.len:
if can[i].sym.ast == nil:
return false
when defined(debugConcepts):
echo "considering: ", renderTree(candidate.procDefSignature), " ", candidate.magic
let common = min(can.len, con.len)
for i in 1 ..< common:
if not checkConstraint(c, con[i].typ, can[i].typ, m):
m.bindings.setToPreviousLayer()
return false
if not matchReturnType(c, n.defSignatureType.returnType, candidate.typ.returnType, m):
m.bindings.setToPreviousLayer()
return false
# all other parameters have to be optional parameters:
for i in common ..< can.len:
assert can[i].kind == nkSym
if can[i].sym.ast == nil:
# has too many arguments one of which is not optional:
m.bindings.setToPreviousLayer()
return false
return true
proc matchSyms(c: PContext, n: PNode; kinds: set[TSymKind]; m: var MatchCon): bool =
## Walk the current scope, extract candidates which the same name as 'n[namePos]',
## 'n' is the nkProcDef or similar from the concept that we try to match.
result = false
var candidates = searchScopes(c, n[namePos].sym.name, kinds)
searchImportsAll(c, n[namePos].sym.name, kinds, candidates)
for candidate in candidates:
m.magic = candidate.magic
if matchSym(c, candidate, n, m):
result = true
break
proc conceptMatchNode(c: PContext; n: PNode; m: var MatchCon): bool =
## Traverse the concept's AST ('n') and see if every declaration inside 'n'
## can be matched with the current scope.
case n.kind
of nkStmtList, nkStmtListExpr:
for i in 0..<n.len:
if not conceptMatchNode(c, n[i], m):
return false
return true
of nkProcDef, nkFuncDef:
# procs match any of: proc, template, macro, func, method, converter.
# The others are more specific.
# XXX: Enforce .noSideEffect for 'nkFuncDef'? But then what are the use cases...
const filter = {skProc, skTemplate, skMacro, skFunc, skMethod, skConverter}
result = matchSyms(c, n, filter, m)
of nkTemplateDef:
result = matchSyms(c, n, {skTemplate}, m)
of nkMacroDef:
result = matchSyms(c, n, {skMacro}, m)
of nkConverterDef:
result = matchSyms(c, n, {skConverter}, m)
of nkMethodDef:
result = matchSyms(c, n, {skMethod}, m)
of nkIteratorDef:
result = matchSyms(c, n, {skIterator}, m)
of nkCommentStmt:
result = true
else:
# error was reported earlier.
result = false
proc fixBindings(bindings: var LayeredIdTable; concpt: PType; invocation: PType; m: var MatchCon) =
# invocation != nil means we have a non-atomic concept:
if invocation != nil and invocation.kind == tyGenericInvocation:
assert concpt.sym.typ.kind == tyGenericBody
for i in 0 .. concpt.sym.typ.len - 1:
let thisSym = concpt.sym.typ[i]
if lookup(bindings, thisSym) != nil:
# dont trust the bindings over existing ones
continue
let found = m.bindings.lookup(thisSym)
if found != nil:
when logBindings: echo "Invocation bind: ", thisSym, " ", found
bindings.put(thisSym, found)
# bind even more generic parameters
let genBody = invocation.base
assert genBody.kind == tyGenericBody
for i in FirstGenericParamAt ..< invocation.kidsLen:
let bpram = genBody[i - 1]
if lookup(bindings, invocation[i]) != nil:
# dont trust the bindings over existing ones
continue
let boundV = lookup(bindings, bpram)
when logBindings: echo "generic body bind: '", invocation[i], "' '", boundV, "'"
if boundV != nil:
bindings.put(invocation[i], boundV)
bindings.put(concpt, m.potentialImplementation)
proc processConcept(c: PContext; concpt, invocation: PType, bindings: var LayeredIdTable; m: var MatchCon): bool =
m.bindings = m.bindings.newTypeMapLayer()
if invocation != nil and invocation.kind == tyGenericInst:
let genericBody = invocation.base
for i in 1..<invocation.kidsLen-1:
# instGenericContainer can bind `tyVoid`
if invocation[i].kind != tyVoid:
bindParam(c, m, genericBody[i-1], invocation[i])
result = conceptMatchNode(c, concpt.conceptBody, m)
if result and mfDontBind notin m.flags:
fixBindings(bindings, concpt, invocation, m)
proc conceptMatch*(c: PContext; concpt, arg: PType; bindings: var LayeredIdTable; invocation: PType, flags: set[MatchFlags] = {}): bool =
## Entry point from sigmatch. 'concpt' is the concept we try to match (here still a PType but
## we extract its AST via 'concpt.n.lastSon'). 'arg' is the type that might fulfill the
## concept's requirements. If so, we return true and fill the 'bindings' with pairs of
## (typeVar, instance) pairs. ('typeVar' is usually simply written as a generic 'T'.)
## 'invocation' can be nil for atomic concepts. For non-atomic concepts, it contains the
## `C[S, T]` parent type that we look for. We need this because we need to store bindings
## for 'S' and 'T' inside 'bindings' on a successful match. It is very important that
## we do not add any bindings at all on an unsuccessful match!
var m = MatchCon(bindings: bindings, potentialImplementation: arg, concpt: concpt, flags: flags, marker: initHashSet[ConceptTypePair]())
if arg.isConcept:
result = conceptsMatch(c, concpt.reduceToBase, arg.reduceToBase, m) >= mkSubset
elif arg.acceptsAllTypes:
# XXX: I think this is wrong, or at least partially wrong. Can still test ambiguous types
result = false
elif mfCheckGeneric in m.flags:
# prioritize concepts the least. Specifically if the arg is not a catch all as per above
result = true
else:
result = processConcept(c, concpt, invocation, bindings, m)