mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 08:54:53 +00:00
1074 lines
43 KiB
Nim
1074 lines
43 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This module implements semantic checking for calls.
|
|
# included from sem.nim
|
|
|
|
from std/algorithm import sort
|
|
|
|
|
|
proc sameMethodDispatcher(a, b: PSym): bool =
|
|
result = false
|
|
if a.kind == skMethod and b.kind == skMethod:
|
|
var aa = lastSon(a.ast)
|
|
var bb = lastSon(b.ast)
|
|
if aa.kind == nkSym and bb.kind == nkSym:
|
|
if aa.sym == bb.sym:
|
|
result = true
|
|
else:
|
|
discard
|
|
# generics have no dispatcher yet, so we need to compare the method
|
|
# names; however, the names are equal anyway because otherwise we
|
|
# wouldn't even consider them to be overloaded. But even this does
|
|
# not work reliably! See tmultim6 for an example:
|
|
# method collide[T](a: TThing, b: TUnit[T]) is instantiated and not
|
|
# method collide[T](a: TUnit[T], b: TThing)! This means we need to
|
|
# *instantiate* every candidate! However, we don't keep more than 2-3
|
|
# candidates around so we cannot implement that for now. So in order
|
|
# to avoid subtle problems, the call remains ambiguous and needs to
|
|
# be disambiguated by the programmer; this way the right generic is
|
|
# instantiated.
|
|
|
|
proc determineType(c: PContext, s: PSym)
|
|
|
|
proc initCandidateSymbols(c: PContext, headSymbol: PNode,
|
|
initialBinding: PNode,
|
|
filter: TSymKinds,
|
|
best, alt: var TCandidate,
|
|
o: var TOverloadIter,
|
|
diagnostics: bool): seq[tuple[s: PSym, scope: int]] =
|
|
## puts all overloads into a seq and prepares best+alt
|
|
result = @[]
|
|
var symx = initOverloadIter(o, c, headSymbol)
|
|
while symx != nil:
|
|
if symx.kind in filter:
|
|
result.add((symx, o.lastOverloadScope))
|
|
elif symx.kind == skGenericParam:
|
|
#[
|
|
This code handles looking up a generic parameter when it's a static callable.
|
|
For instance:
|
|
proc name[T: static proc()]() = T()
|
|
name[proc() = echo"hello"]()
|
|
]#
|
|
for paramSym in searchScopesAll(c, symx.name, {skConst}):
|
|
let paramTyp = paramSym.typ
|
|
if paramTyp.n.kind == nkSym and paramTyp.n.sym.kind in filter:
|
|
result.add((paramTyp.n.sym, o.lastOverloadScope))
|
|
|
|
symx = nextOverloadIter(o, c, headSymbol)
|
|
if result.len > 0:
|
|
best = initCandidate(c, result[0].s, initialBinding,
|
|
result[0].scope, diagnostics)
|
|
alt = initCandidate(c, result[0].s, initialBinding,
|
|
result[0].scope, diagnostics)
|
|
best.state = csNoMatch
|
|
|
|
proc isAttachableRoutineTo(prc: PSym, arg: PType): bool =
|
|
result = false
|
|
if arg.owner != prc.owner: return false
|
|
for i in 1 ..< prc.typ.len:
|
|
if prc.typ.n[i].kind == nkSym and prc.typ.n[i].sym.ast != nil:
|
|
# has default value, parameter is not considered in type attachment
|
|
continue
|
|
let t = nominalRoot(prc.typ[i])
|
|
if t != nil and t.itemId == arg.itemId:
|
|
# parameter `i` is a nominal type in this module
|
|
# attachable if the nominal root `t` has the same id as `arg`
|
|
return true
|
|
|
|
proc addTypeBoundSymbols(graph: ModuleGraph, arg: PType, name: PIdent,
|
|
filter: TSymKinds, marker: var IntSet,
|
|
syms: var seq[tuple[s: PSym, scope: int]]) =
|
|
# add type bound ops for `name` based on the argument type `arg`
|
|
if arg != nil:
|
|
# argument must be typed first, meaning arguments always
|
|
# matching `untyped` are ignored
|
|
let t = nominalRoot(arg)
|
|
if t != nil and t.owner.kind == skModule:
|
|
# search module for routines attachable to `t`
|
|
let module = t.owner
|
|
var iter = default(ModuleIter)
|
|
var s = initModuleIter(iter, graph, module, name)
|
|
while s != nil:
|
|
if s.kind in filter and s.isAttachableRoutineTo(t) and
|
|
not containsOrIncl(marker, s.id):
|
|
# least priority scope, less than explicit imports:
|
|
syms.add((s, -2))
|
|
s = nextModuleIter(iter, graph)
|
|
|
|
proc pickBestCandidate(c: PContext, headSymbol: PNode,
|
|
n, orig: PNode,
|
|
initialBinding: PNode,
|
|
filter: TSymKinds,
|
|
best, alt: var TCandidate,
|
|
errors: var CandidateErrors,
|
|
diagnosticsFlag: bool,
|
|
errorsEnabled: bool, flags: TExprFlags) =
|
|
# `matches` may find new symbols, so keep track of count
|
|
var symCount = c.currentScope.symbols.counter
|
|
|
|
var o: TOverloadIter = default(TOverloadIter)
|
|
# https://github.com/nim-lang/Nim/issues/21272
|
|
# prevent mutation during iteration by storing them in a seq
|
|
# luckily `initCandidateSymbols` does just that
|
|
var syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
|
|
best, alt, o, diagnosticsFlag)
|
|
if len(syms) == 0:
|
|
return
|
|
let allowTypeBoundOps = typeBoundOps in c.features and
|
|
# qualified or bound symbols cannot refer to type bound ops
|
|
headSymbol.kind in {nkIdent, nkAccQuoted, nkOpenSymChoice, nkOpenSym}
|
|
var symMarker = initIntSet()
|
|
for s in syms:
|
|
symMarker.incl(s.s.id)
|
|
# current overload being considered
|
|
var sym = syms[0].s
|
|
let name = sym.name
|
|
var scope = syms[0].scope
|
|
|
|
if allowTypeBoundOps:
|
|
for a in 1 ..< n.len:
|
|
# for every already typed argument, add type bound ops
|
|
let arg = n[a]
|
|
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
|
|
|
|
# starts at 1 because 0 is already done with setup, only needs checking
|
|
var nextSymIndex = 1
|
|
var z: TCandidate # current candidate
|
|
while true:
|
|
determineType(c, sym)
|
|
z = initCandidate(c, sym, initialBinding, scope, diagnosticsFlag)
|
|
# this is kinda backwards as without a check here the described
|
|
# problems in recalc would not happen, but instead it 100%
|
|
# does check forever in some cases
|
|
if c.currentScope.symbols.counter == symCount:
|
|
# may introduce new symbols with caveats described in recalc branch
|
|
matches(c, n, orig, z)
|
|
|
|
if allowTypeBoundOps:
|
|
# this match may have given some arguments new types,
|
|
# in which case add their type bound ops as well
|
|
# type bound ops of arguments always matching `untyped` are not considered
|
|
for x in z.newlyTypedOperands:
|
|
let arg = n[x]
|
|
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
|
|
|
|
if z.state == csMatch:
|
|
# little hack so that iterators are preferred over everything else:
|
|
if sym.kind == skIterator:
|
|
if not (efWantIterator notin flags and efWantIterable in flags):
|
|
inc(z.exactMatches, 200)
|
|
else:
|
|
dec(z.exactMatches, 200)
|
|
case best.state
|
|
of csEmpty, csNoMatch: best = z
|
|
of csMatch:
|
|
var cmp = cmpCandidates(best, z)
|
|
if cmp < 0: best = z # x is better than the best so far
|
|
elif cmp == 0: alt = z # x is as good as the best so far
|
|
elif errorsEnabled or z.diagnosticsEnabled:
|
|
errors.add(CandidateError(
|
|
sym: sym,
|
|
firstMismatch: z.firstMismatch,
|
|
diagnostics: z.diagnostics))
|
|
else:
|
|
# this branch feels like a ticking timebomb
|
|
# one of two bad things could happen
|
|
# 1) new symbols are discovered but the loop ends before we recalc
|
|
# 2) new symbols are discovered and resemmed forever
|
|
# not 100% sure if these are possible though as they would rely
|
|
# on somehow introducing a new overload during overload resolution
|
|
|
|
# Symbol table has been modified. Restart and pre-calculate all syms
|
|
# before any further candidate init and compare. SLOW, but rare case.
|
|
syms = initCandidateSymbols(c, headSymbol, initialBinding, filter,
|
|
best, alt, o, diagnosticsFlag)
|
|
symMarker = initIntSet()
|
|
for s in syms:
|
|
symMarker.incl(s.s.id)
|
|
if allowTypeBoundOps:
|
|
for a in 1 ..< n.len:
|
|
# for every already typed argument, add type bound ops
|
|
let arg = n[a]
|
|
addTypeBoundSymbols(c.graph, arg.typ, name, filter, symMarker, syms)
|
|
# reset counter because syms may be in a new order
|
|
symCount = c.currentScope.symbols.counter
|
|
nextSymIndex = 0
|
|
|
|
# just in case, should be impossible though
|
|
if syms.len == 0:
|
|
break
|
|
|
|
if nextSymIndex > high(syms):
|
|
# we have reached the end
|
|
break
|
|
|
|
# advance to next sym
|
|
sym = syms[nextSymIndex].s
|
|
scope = syms[nextSymIndex].scope
|
|
inc(nextSymIndex)
|
|
|
|
|
|
proc effectProblem(f, a: PType; result: var string; c: PContext) =
|
|
if f.kind == tyProc and a.kind == tyProc:
|
|
if tfThread in f.flags and tfThread notin a.flags:
|
|
result.add "\n This expression is not GC-safe. Annotate the " &
|
|
"proc with {.gcsafe.} to get extended error information."
|
|
elif tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
|
|
result.add "\n This expression can have side effects. Annotate the " &
|
|
"proc with {.noSideEffect.} to get extended error information."
|
|
else:
|
|
case compatibleEffects(f, a)
|
|
of efCompat: discard
|
|
of efRaisesDiffer:
|
|
result.add "\n The `.raises` requirements differ."
|
|
of efRaisesUnknown:
|
|
result.add "\n The `.raises` requirements differ. Annotate the " &
|
|
"proc with {.raises: [].} to get extended error information."
|
|
of efTagsDiffer:
|
|
result.add "\n The `.tags` requirements differ."
|
|
of efTagsUnknown:
|
|
result.add "\n The `.tags` requirements differ. Annotate the " &
|
|
"proc with {.tags: [].} to get extended error information."
|
|
of efEffectsDelayed:
|
|
result.add "\n The `.effectsOf` annotations differ."
|
|
of efTagsIllegal:
|
|
result.add "\n The `.forbids` requirements caught an illegal tag."
|
|
when defined(drnim):
|
|
if not c.graph.compatibleProps(c.graph, f, a):
|
|
result.add "\n The `.requires` or `.ensures` properties are incompatible."
|
|
|
|
proc presentFailedCandidates(c: PContext, n: PNode, errors: CandidateErrors):
|
|
(TPreferedDesc, string) =
|
|
var prefer = preferName
|
|
# to avoid confusing errors like:
|
|
# got (SslPtr, SocketHandle)
|
|
# but expected one of:
|
|
# openssl.SSL_set_fd(ssl: SslPtr, fd: SocketHandle): cint
|
|
# we do a pre-analysis. If all types produce the same string, we will add
|
|
# module information.
|
|
let proto = describeArgs(c, n, 1, preferName)
|
|
for err in errors:
|
|
var errProto = ""
|
|
let n = err.sym.typ.n
|
|
for i in 1..<n.len:
|
|
var p = n[i]
|
|
if p.kind == nkSym:
|
|
errProto.add(typeToString(p.sym.typ, preferName))
|
|
if i != n.len-1: errProto.add(", ")
|
|
# else: ignore internal error as we're already in error handling mode
|
|
if errProto == proto:
|
|
prefer = preferModuleInfo
|
|
break
|
|
|
|
# we pretend procs are attached to the type of the first
|
|
# argument in order to remove plenty of candidates. This is
|
|
# comparable to what C# does and C# is doing fine.
|
|
var filterOnlyFirst = false
|
|
if optShowAllMismatches notin c.config.globalOptions and verboseTypeMismatch in c.config.legacyFeatures:
|
|
for err in errors:
|
|
if err.firstMismatch.arg > 1:
|
|
filterOnlyFirst = true
|
|
break
|
|
|
|
var maybeWrongSpace = false
|
|
|
|
var candidatesAll: seq[string] = @[]
|
|
var candidates = ""
|
|
var skipped = 0
|
|
for err in errors:
|
|
candidates.setLen 0
|
|
if filterOnlyFirst and err.firstMismatch.arg == 1:
|
|
inc skipped
|
|
continue
|
|
|
|
if verboseTypeMismatch notin c.config.legacyFeatures:
|
|
candidates.add "[" & $err.firstMismatch.arg & "] "
|
|
|
|
if err.sym.kind in routineKinds and err.sym.ast != nil:
|
|
candidates.add(renderTree(err.sym.ast,
|
|
{renderNoBody, renderNoComments, renderNoPragmas}))
|
|
else:
|
|
candidates.add(getProcHeader(c.config, err.sym, prefer))
|
|
candidates.addDeclaredLocMaybe(c.config, err.sym)
|
|
candidates.add("\n")
|
|
const genericParamMismatches = {kGenericParamTypeMismatch, kExtraGenericParam, kMissingGenericParam}
|
|
let isGenericMismatch = err.firstMismatch.kind in genericParamMismatches
|
|
var argList = n
|
|
if isGenericMismatch and n[0].kind == nkBracketExpr:
|
|
argList = n[0]
|
|
let nArg =
|
|
if err.firstMismatch.arg < argList.len:
|
|
argList[err.firstMismatch.arg]
|
|
else:
|
|
nil
|
|
let nameParam = if err.firstMismatch.formal != nil: err.firstMismatch.formal.name.s else: ""
|
|
if n.len > 1:
|
|
if verboseTypeMismatch notin c.config.legacyFeatures:
|
|
case err.firstMismatch.kind
|
|
of kUnknownNamedParam:
|
|
if nArg == nil:
|
|
candidates.add(" unknown named parameter")
|
|
else:
|
|
candidates.add(" unknown named parameter: " & $nArg[0])
|
|
candidates.add "\n"
|
|
of kAlreadyGiven:
|
|
candidates.add(" named param already provided: " & $nArg[0])
|
|
candidates.add "\n"
|
|
of kPositionalAlreadyGiven:
|
|
candidates.add(" positional param was already given as named param")
|
|
candidates.add "\n"
|
|
of kExtraArg:
|
|
candidates.add(" extra argument given")
|
|
candidates.add "\n"
|
|
of kMissingParam:
|
|
candidates.add(" missing parameter: " & nameParam)
|
|
candidates.add "\n"
|
|
of kExtraGenericParam:
|
|
candidates.add(" extra generic param given")
|
|
candidates.add "\n"
|
|
of kMissingGenericParam:
|
|
candidates.add(" missing generic parameter: " & nameParam)
|
|
candidates.add "\n"
|
|
of kVarNeeded:
|
|
doAssert nArg != nil
|
|
doAssert err.firstMismatch.formal != nil
|
|
candidates.add " expression '"
|
|
candidates.add renderNotLValue(nArg)
|
|
candidates.add "' is immutable, not 'var'"
|
|
candidates.add "\n"
|
|
of kTypeMismatch:
|
|
doAssert nArg != nil
|
|
if nArg.kind in nkSymChoices:
|
|
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
|
|
let wanted = err.firstMismatch.formal.typ
|
|
doAssert err.firstMismatch.formal != nil
|
|
doAssert wanted != nil
|
|
let got = nArg.typ
|
|
if got != nil and got.kind == tyProc and wanted.kind == tyProc:
|
|
# These are proc mismatches so,
|
|
# add the extra explict detail of the mismatch
|
|
candidates.add " expression '"
|
|
candidates.add renderTree(nArg)
|
|
candidates.add "' is of type: "
|
|
candidates.addTypeDeclVerboseMaybe(c.config, got)
|
|
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
|
|
effectProblem(wanted, got, candidates, c)
|
|
candidates.add "\n"
|
|
of kGenericParamTypeMismatch:
|
|
let pos = err.firstMismatch.arg
|
|
doAssert n[0].kind == nkBracketExpr and pos < n[0].len
|
|
let arg = n[0][pos]
|
|
doAssert arg != nil
|
|
var wanted = err.firstMismatch.formal.typ
|
|
if wanted.kind == tyGenericParam and wanted.genericParamHasConstraints:
|
|
wanted = wanted.genericConstraint
|
|
let got = arg.typ.skipTypes({tyTypeDesc})
|
|
doAssert err.firstMismatch.formal != nil
|
|
doAssert wanted != nil
|
|
doAssert got != nil
|
|
candidates.add " generic parameter mismatch, expected "
|
|
candidates.addTypeDeclVerboseMaybe(c.config, wanted)
|
|
candidates.add " but got '"
|
|
candidates.add renderTree(arg)
|
|
candidates.add "' of type: "
|
|
candidates.addTypeDeclVerboseMaybe(c.config, got)
|
|
if nArg.kind in nkSymChoices:
|
|
candidates.add "\n"
|
|
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
|
|
if got != nil and got.kind == tyProc and wanted.kind == tyProc:
|
|
# These are proc mismatches so,
|
|
# add the extra explict detail of the mismatch
|
|
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
|
|
if got != nil:
|
|
effectProblem(wanted, got, candidates, c)
|
|
candidates.add "\n"
|
|
of kUnknown: discard "do not break 'nim check'"
|
|
else:
|
|
candidates.add(" first type mismatch at position: " & $err.firstMismatch.arg)
|
|
if err.firstMismatch.kind in genericParamMismatches:
|
|
candidates.add(" in generic parameters")
|
|
# candidates.add "\n reason: " & $err.firstMismatch.kind # for debugging
|
|
case err.firstMismatch.kind
|
|
of kUnknownNamedParam:
|
|
if nArg == nil:
|
|
candidates.add("\n unknown named parameter")
|
|
else:
|
|
candidates.add("\n unknown named parameter: " & $nArg[0])
|
|
of kAlreadyGiven: candidates.add("\n named param already provided: " & $nArg[0])
|
|
of kPositionalAlreadyGiven: candidates.add("\n positional param was already given as named param")
|
|
of kExtraArg: candidates.add("\n extra argument given")
|
|
of kMissingParam: candidates.add("\n missing parameter: " & nameParam)
|
|
of kExtraGenericParam:
|
|
candidates.add("\n extra generic param given")
|
|
of kMissingGenericParam:
|
|
candidates.add("\n missing generic parameter: " & nameParam)
|
|
of kTypeMismatch, kGenericParamTypeMismatch, kVarNeeded:
|
|
doAssert nArg != nil
|
|
var wanted = err.firstMismatch.formal.typ
|
|
if isGenericMismatch and wanted.kind == tyGenericParam and
|
|
wanted.genericParamHasConstraints:
|
|
wanted = wanted.genericConstraint
|
|
doAssert err.firstMismatch.formal != nil
|
|
candidates.add("\n required type for " & nameParam & ": ")
|
|
candidates.addTypeDeclVerboseMaybe(c.config, wanted)
|
|
candidates.add "\n but expression '"
|
|
if err.firstMismatch.kind == kVarNeeded:
|
|
candidates.add renderNotLValue(nArg)
|
|
candidates.add "' is immutable, not 'var'"
|
|
else:
|
|
candidates.add renderTree(nArg)
|
|
candidates.add "' is of type: "
|
|
var got = nArg.typ
|
|
if isGenericMismatch: got = got.skipTypes({tyTypeDesc})
|
|
candidates.addTypeDeclVerboseMaybe(c.config, got)
|
|
if nArg.kind in nkSymChoices:
|
|
candidates.add "\n"
|
|
candidates.add ambiguousIdentifierMsg(nArg, indent = 2)
|
|
doAssert wanted != nil
|
|
if got != nil:
|
|
if got.kind == tyProc and wanted.kind == tyProc:
|
|
# These are proc mismatches so,
|
|
# add the extra explict detail of the mismatch
|
|
candidates.addPragmaAndCallConvMismatch(wanted, got, c.config)
|
|
effectProblem(wanted, got, candidates, c)
|
|
|
|
of kUnknown: discard "do not break 'nim check'"
|
|
candidates.add "\n"
|
|
if err.firstMismatch.arg == 1 and nArg != nil and
|
|
nArg.kind == nkTupleConstr and n.kind == nkCommand:
|
|
maybeWrongSpace = true
|
|
for diag in err.diagnostics:
|
|
candidates.add(diag & "\n")
|
|
candidatesAll.add candidates
|
|
candidatesAll.sort # fix #13538
|
|
candidates = join(candidatesAll)
|
|
if skipped > 0:
|
|
candidates.add($skipped & " other mismatching symbols have been " &
|
|
"suppressed; compile with --showAllMismatches:on to see them\n")
|
|
if maybeWrongSpace:
|
|
candidates.add("maybe misplaced space between " & renderTree(n[0]) & " and '(' \n")
|
|
|
|
result = (prefer, candidates)
|
|
|
|
const
|
|
errTypeMismatch = "type mismatch: got <"
|
|
errButExpected = "but expected one of:"
|
|
errExpectedPosition = "Expected one of (first mismatch at [position]):"
|
|
errUndeclaredField = "undeclared field: '$1'"
|
|
errUndeclaredRoutine = "attempting to call undeclared routine: '$1'"
|
|
errBadRoutine = "attempting to call routine: '$1'$2"
|
|
errAmbiguousCallXYZ = "ambiguous call; both $1 and $2 match for: $3"
|
|
|
|
proc describeParamList(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
|
|
result = "Expression: " & $n
|
|
for i in startIdx..<n.len:
|
|
result.add "\n [" & $i & "] " & renderTree(n[i]) & ": "
|
|
result.add describeArg(c, n, i, startIdx, prefer)
|
|
result.add "\n"
|
|
|
|
template legacynotFoundError(c: PContext, n: PNode, errors: CandidateErrors) =
|
|
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
|
|
var result = errTypeMismatch
|
|
result.add(describeArgs(c, n, 1, prefer))
|
|
result.add('>')
|
|
if candidates != "":
|
|
result.add("\n" & errButExpected & "\n" & candidates)
|
|
localError(c.config, n.info, result & "\nexpression: " & $n)
|
|
|
|
proc notFoundError*(c: PContext, n: PNode, errors: CandidateErrors) =
|
|
# Gives a detailed error message; this is separated from semOverloadedCall,
|
|
# as semOverloadedCall is already pretty slow (and we need this information
|
|
# only in case of an error).
|
|
if c.config.m.errorOutputs == {}:
|
|
# fail fast:
|
|
globalError(c.config, n.info, "type mismatch")
|
|
return
|
|
# see getMsgDiagnostic:
|
|
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
|
|
let ident = considerQuotedIdent(c, n[0], n).s
|
|
let sym = n[1].typ.typSym
|
|
var typeHint = ""
|
|
if sym == nil:
|
|
discard
|
|
else:
|
|
typeHint = " for type " & getProcHeader(c.config, sym)
|
|
localError(c.config, n.info, errUndeclaredField % ident & typeHint)
|
|
return
|
|
if errors.len == 0:
|
|
if n[0].kind in nkIdentKinds:
|
|
let ident = considerQuotedIdent(c, n[0], n).s
|
|
localError(c.config, n.info, errUndeclaredRoutine % ident)
|
|
else:
|
|
localError(c.config, n.info, "expression '$1' cannot be called" % n[0].renderTree)
|
|
return
|
|
|
|
if verboseTypeMismatch in c.config.legacyFeatures:
|
|
legacynotFoundError(c, n, errors)
|
|
else:
|
|
let (prefer, candidates) = presentFailedCandidates(c, n, errors)
|
|
var result = "type mismatch\n"
|
|
result.add describeParamList(c, n, 1, prefer)
|
|
if candidates != "":
|
|
result.add("\n" & errExpectedPosition & "\n" & candidates)
|
|
localError(c.config, n.info, result)
|
|
|
|
proc getMsgDiagnostic(c: PContext, flags: TExprFlags, n, f: PNode): string =
|
|
result = ""
|
|
if c.compilesContextId > 0:
|
|
# we avoid running more diagnostic when inside a `compiles(expr)`, to
|
|
# errors while running diagnostic (see test D20180828T234921), and
|
|
# also avoid slowdowns in evaluating `compiles(expr)`.
|
|
discard
|
|
else:
|
|
var o: TOverloadIter = default(TOverloadIter)
|
|
var sym = initOverloadIter(o, c, f)
|
|
while sym != nil:
|
|
result &= "\n found $1" % [getSymRepr(c.config, sym)]
|
|
sym = nextOverloadIter(o, c, f)
|
|
|
|
let ident = considerQuotedIdent(c, f, n).s
|
|
if nfExplicitCall notin n.flags and {nfDotField, nfDotSetter} * n.flags != {}:
|
|
let sym = n[1].typ.typSym
|
|
var typeHint = ""
|
|
if sym == nil:
|
|
# Perhaps we're in a `compiles(foo.bar)` expression, or
|
|
# in a concept, e.g.:
|
|
# ExplainedConcept {.explain.} = concept x
|
|
# x.foo is int
|
|
# We could use: `(c.config $ n[1].info)` to get more context.
|
|
discard
|
|
else:
|
|
typeHint = " for type " & getProcHeader(c.config, sym)
|
|
let suffix = if result.len > 0: " " & result else: ""
|
|
result = errUndeclaredField % ident & typeHint & suffix
|
|
else:
|
|
if result.len == 0: result = errUndeclaredRoutine % ident
|
|
else: result = errBadRoutine % [ident, result]
|
|
|
|
proc resolveOverloads(c: PContext, n, orig: PNode,
|
|
filter: TSymKinds, flags: TExprFlags,
|
|
errors: var CandidateErrors,
|
|
errorsEnabled: bool): TCandidate =
|
|
result = default(TCandidate)
|
|
var initialBinding: PNode
|
|
var alt: TCandidate = default(TCandidate)
|
|
var f = n[0]
|
|
if f.kind == nkBracketExpr:
|
|
# fill in the bindings:
|
|
semOpAux(c, f)
|
|
initialBinding = f
|
|
f = f[0]
|
|
else:
|
|
initialBinding = nil
|
|
|
|
pickBestCandidate(c, f, n, orig, initialBinding,
|
|
filter, result, alt, errors, efExplain in flags,
|
|
errorsEnabled, flags)
|
|
|
|
var dummyErrors: CandidateErrors = @[]
|
|
template pickSpecialOp(headSymbol) =
|
|
pickBestCandidate(c, headSymbol, n, orig, initialBinding,
|
|
filter, result, alt, dummyErrors, efExplain in flags,
|
|
false, flags)
|
|
|
|
let overloadsState = result.state
|
|
if overloadsState != csMatch:
|
|
if nfDotField in n.flags:
|
|
internalAssert c.config, f.kind in nkIdentKinds and n.len >= 2
|
|
|
|
# leave the op head symbol empty,
|
|
# we are going to try multiple variants
|
|
n.sons[0..1] = [nil, n[1], f]
|
|
orig.sons[0..1] = [nil, orig[1], f]
|
|
|
|
template tryOp(x) =
|
|
let op = newIdentNode(getIdent(c.cache, x), n.info)
|
|
n[0] = op
|
|
orig[0] = op
|
|
pickSpecialOp(op)
|
|
|
|
if nfExplicitCall in n.flags:
|
|
tryOp ".()"
|
|
|
|
if result.state in {csEmpty, csNoMatch}:
|
|
tryOp "."
|
|
|
|
elif nfDotSetter in n.flags and f.kind == nkIdent and n.len == 3:
|
|
# we need to strip away the trailing '=' here:
|
|
let calleeName = newIdentNode(getIdent(c.cache, f.ident.s[0..^2]), n.info)
|
|
let callOp = newIdentNode(getIdent(c.cache, ".="), n.info)
|
|
n.sons[0..1] = [callOp, n[1], calleeName]
|
|
orig.sons[0..1] = [callOp, orig[1], calleeName]
|
|
pickSpecialOp(callOp)
|
|
|
|
if overloadsState == csEmpty and result.state == csEmpty:
|
|
if efNoUndeclared notin flags: # for tests/pragmas/tcustom_pragma.nim
|
|
result.state = csNoMatch
|
|
if c.inGenericContext > 0 and nfExprCall in n.flags:
|
|
# untyped expression calls end up here, see #24099
|
|
return
|
|
# xxx adapt/use errorUndeclaredIdentifierHint(c, n, f.ident)
|
|
localError(c.config, n.info, getMsgDiagnostic(c, flags, n, f))
|
|
return
|
|
elif result.state != csMatch:
|
|
if nfExprCall in n.flags:
|
|
localError(c.config, n.info, "expression '$1' cannot be called" %
|
|
renderTree(n, {renderNoComments}))
|
|
else:
|
|
if {nfDotField, nfDotSetter} * n.flags != {}:
|
|
# clean up the inserted ops
|
|
n.sons.delete(2)
|
|
n[0] = f
|
|
return
|
|
if alt.state == csMatch and cmpCandidates(result, alt) == 0 and
|
|
not sameMethodDispatcher(result.calleeSym, alt.calleeSym):
|
|
internalAssert c.config, result.state == csMatch
|
|
#writeMatches(result)
|
|
#writeMatches(alt)
|
|
if c.config.m.errorOutputs == {}:
|
|
# quick error message for performance of 'compiles' built-in:
|
|
globalError(c.config, n.info, errGenerated, "ambiguous call")
|
|
elif c.config.errorCounter == 0:
|
|
# don't cascade errors
|
|
var args = "("
|
|
for i in 1..<n.len:
|
|
if i > 1: args.add(", ")
|
|
args.add(typeToString(n[i].typ))
|
|
args.add(")")
|
|
|
|
localError(c.config, n.info, errAmbiguousCallXYZ % [
|
|
getProcHeader(c.config, result.calleeSym),
|
|
getProcHeader(c.config, alt.calleeSym),
|
|
args])
|
|
|
|
proc bracketNotFoundError(c: PContext; n: PNode; flags: TExprFlags) =
|
|
var errors: CandidateErrors = @[]
|
|
let headSymbol = n[0]
|
|
block:
|
|
# we build a closed symchoice of all `[]` overloads for their errors,
|
|
# except add a custom error for the magics which always match
|
|
var choice = newNodeIT(nkClosedSymChoice, headSymbol.info, newTypeS(tyNone, c))
|
|
var o: TOverloadIter = default(TOverloadIter)
|
|
var symx = initOverloadIter(o, c, headSymbol)
|
|
while symx != nil:
|
|
if symx.kind in routineKinds:
|
|
if symx.magic in {mArrGet, mArrPut}:
|
|
errors.add(CandidateError(sym: symx,
|
|
firstMismatch: MismatchInfo(),
|
|
diagnostics: @[],
|
|
enabled: false))
|
|
else:
|
|
choice.add newSymNode(symx, headSymbol.info)
|
|
symx = nextOverloadIter(o, c, headSymbol)
|
|
n[0] = choice
|
|
# copied from semOverloadedCallAnalyzeEffects, might be overkill:
|
|
const baseFilter = {skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}
|
|
let filter =
|
|
if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
|
|
baseFilter + {skIterator}
|
|
else: baseFilter
|
|
# this will add the errors:
|
|
var r = resolveOverloads(c, n, n, filter, flags, errors, true)
|
|
if errors.len == 0:
|
|
localError(c.config, n.info, "could not resolve: " & $n)
|
|
else:
|
|
notFoundError(c, n, errors)
|
|
|
|
proc instGenericConvertersArg*(c: PContext, a: PNode, x: TCandidate) =
|
|
let a = if a.kind == nkHiddenDeref: a[0] else: a
|
|
if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
|
|
let s = a[0].sym
|
|
if s.isGenericRoutineStrict:
|
|
var src = s.typ.firstParamType
|
|
var convMatch = newCandidate(c, src)
|
|
var arg = a[1]
|
|
if arg.kind in {nkHiddenAddr, nkHiddenSubConv}: arg = arg[^1]
|
|
let srca = typeRel(convMatch, src, arg.typ)
|
|
if srca notin {isEqual, isGeneric, isSubtype}:
|
|
internalError(c.config, a.info, "generic converter failed rematch")
|
|
let finalCallee = generateInstance(c, s, convMatch.bindings, a.info)
|
|
a[0].sym = finalCallee
|
|
a[0].typ = finalCallee.typ
|
|
#a.typ = finalCallee.typ.returnType
|
|
|
|
proc instGenericConvertersSons*(c: PContext, n: PNode, x: TCandidate) =
|
|
assert n.kind in nkCallKinds
|
|
if x.genericConverter:
|
|
for i in 1..<n.len:
|
|
instGenericConvertersArg(c, n[i], x)
|
|
|
|
proc markConvertersUsed*(c: PContext, n: PNode) =
|
|
assert n.kind in nkCallKinds
|
|
for i in 1..<n.len:
|
|
var a = n[i]
|
|
if a == nil: continue
|
|
if a.kind == nkHiddenDeref: a = a[0]
|
|
if a.kind == nkHiddenCallConv and a[0].kind == nkSym:
|
|
markUsed(c, a.info, a[0].sym)
|
|
|
|
proc indexTypesMatch(c: PContext, f, a: PType, arg: PNode): PNode =
|
|
var m = newCandidate(c, f)
|
|
result = paramTypesMatch(m, f, a, arg, nil)
|
|
if m.genericConverter and result != nil:
|
|
instGenericConvertersArg(c, result, m)
|
|
|
|
proc inferWithMetatype(c: PContext, formal: PType,
|
|
arg: PNode, coerceDistincts = false): PNode =
|
|
var m = newCandidate(c, formal)
|
|
m.coerceDistincts = coerceDistincts
|
|
result = paramTypesMatch(m, formal, arg.typ, arg, nil)
|
|
if m.genericConverter and result != nil:
|
|
instGenericConvertersArg(c, result, m)
|
|
if result != nil:
|
|
# This almost exactly replicates the steps taken by the compiler during
|
|
# param matching. It performs an embarrassing amount of back-and-forth
|
|
# type jugling, but it's the price to pay for consistency and correctness
|
|
result.typ = generateTypeInstance(c, m.bindings, arg.info,
|
|
formal.skipTypes({tyCompositeTypeClass}))
|
|
else:
|
|
typeMismatch(c.config, arg.info, formal, arg.typ, arg)
|
|
# error correction:
|
|
result = copyTree(arg)
|
|
result.typ = formal
|
|
|
|
proc updateDefaultParams(c: PContext, call: PNode) =
|
|
# In generic procs, the default parameter may be unique for each
|
|
# instantiation (see tlateboundgenericparams).
|
|
# After a call is resolved, we need to re-assign any default value
|
|
# that was used during sigmatch. sigmatch is responsible for marking
|
|
# the default params with `nfDefaultParam` and `instantiateProcType`
|
|
# computes correctly the default values for each instantiation.
|
|
let calleeParams = call[0].sym.typ.n
|
|
for i in 1..<call.len:
|
|
if nfDefaultParam in call[i].flags:
|
|
let formal = calleeParams[i].sym
|
|
let def = formal.ast
|
|
if nfDefaultRefsParam in def.flags: call.flags.incl nfDefaultRefsParam
|
|
# mirrored with sigmatch:
|
|
if def.kind == nkEmpty:
|
|
# The default param value is set to empty in `instantiateProcType`
|
|
# when the type of the default expression doesn't match the type
|
|
# of the instantiated proc param:
|
|
pushInfoContext(c.config, call.info, call[0].sym.detailedInfo)
|
|
typeMismatch(c.config, def.info, formal.typ, def.typ, formal.ast)
|
|
popInfoContext(c.config)
|
|
def.typ = errorType(c)
|
|
call[i] = def
|
|
|
|
proc getCallLineInfo(n: PNode): TLineInfo =
|
|
case n.kind
|
|
of nkAccQuoted, nkBracketExpr, nkCall, nkCallStrLit, nkCommand:
|
|
if len(n) > 0:
|
|
return getCallLineInfo(n[0])
|
|
of nkDotExpr:
|
|
if len(n) > 1:
|
|
return getCallLineInfo(n[1])
|
|
else:
|
|
discard
|
|
result = n.info
|
|
|
|
proc inheritBindings(c: PContext, x: var TCandidate, expectedType: PType) =
|
|
## Helper proc to inherit bound generic parameters from expectedType into x.
|
|
## Does nothing if 'inferGenericTypes' isn't in c.features.
|
|
if inferGenericTypes notin c.features: return
|
|
if expectedType == nil or x.callee.returnType == nil: return # required for inference
|
|
|
|
var
|
|
flatUnbound: seq[PType] = @[]
|
|
flatBound: seq[PType] = @[]
|
|
# seq[(result type, expected type)]
|
|
var typeStack = newSeq[(PType, PType)]()
|
|
|
|
template stackPut(a, b) =
|
|
## skips types and puts the skipped version on stack
|
|
# It might make sense to skip here one by one. It's not part of the main
|
|
# type reduction because the right side normally won't be skipped
|
|
const toSkip = {tyVar, tyLent, tyStatic, tyCompositeTypeClass, tySink}
|
|
let
|
|
x = a.skipTypes(toSkip)
|
|
y = if a.kind notin toSkip: b
|
|
else: b.skipTypes(toSkip)
|
|
typeStack.add((x, y))
|
|
|
|
stackPut(x.callee.returnType, expectedType)
|
|
|
|
while typeStack.len() > 0:
|
|
let (t, u) = typeStack.pop()
|
|
if t == u or t == nil or u == nil or t.kind == tyAnything or u.kind == tyAnything:
|
|
continue
|
|
case t.kind
|
|
of ConcreteTypes, tyGenericInvocation, tyUncheckedArray:
|
|
# XXX This logic makes no sense for `tyUncheckedArray`
|
|
# nested, add all the types to stack
|
|
let
|
|
startIdx = if u.kind in ConcreteTypes: 0 else: 1
|
|
endIdx = min(u.kidsLen() - startIdx, t.kidsLen())
|
|
|
|
for i in startIdx ..< endIdx:
|
|
# early exit with current impl
|
|
if t[i] == nil or u[i] == nil: return
|
|
stackPut(t[i], u[i])
|
|
of tyGenericParam:
|
|
let prebound = x.bindings.lookup(t)
|
|
if prebound != nil:
|
|
continue # Skip param, already bound
|
|
|
|
# fully reduced generic param, bind it
|
|
if t notin flatUnbound:
|
|
flatUnbound.add(t)
|
|
flatBound.add(u)
|
|
else:
|
|
discard
|
|
# update bindings
|
|
for i in 0 ..< flatUnbound.len():
|
|
x.bindings.put(flatUnbound[i], flatBound[i])
|
|
|
|
proc semResolvedCall(c: PContext, x: var TCandidate,
|
|
n: PNode, flags: TExprFlags;
|
|
expectedType: PType = nil): PNode =
|
|
assert x.state == csMatch
|
|
var finalCallee = x.calleeSym
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, finalCallee, isGenericInstance = false)
|
|
onUse(info, finalCallee, isGenericInstance = false)
|
|
assert finalCallee.ast != nil
|
|
if x.matchedErrorType:
|
|
markUsed(c, info, finalCallee, isGenericInstance = true)
|
|
onUse(info, finalCallee, isGenericInstance = true)
|
|
if x.matchedErrorType:
|
|
result = x.call
|
|
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
|
|
if containsGenericType(result.typ):
|
|
result.typ = newTypeS(tyError, c)
|
|
incl result.typ, tfCheckedForDestructor
|
|
return
|
|
let gp = finalCallee.ast[genericParamsPos]
|
|
if gp.isGenericParams:
|
|
if x.calleeSym.kind notin {skMacro, skTemplate}:
|
|
if x.calleeSym.magic in {mArrGet, mArrPut}:
|
|
finalCallee = x.calleeSym
|
|
else:
|
|
c.inheritBindings(x, expectedType)
|
|
finalCallee = generateInstance(c, x.calleeSym, x.bindings, n.info)
|
|
else:
|
|
# For macros and templates, the resolved generic params
|
|
# are added as normal params.
|
|
c.inheritBindings(x, expectedType)
|
|
for s in instantiateGenericParamList(c, gp, x.bindings):
|
|
case s.kind
|
|
of skConst:
|
|
if not s.astdef.isNil:
|
|
x.call.add s.astdef
|
|
else:
|
|
x.call.add c.graph.emptyNode
|
|
of skType:
|
|
var tn = newSymNode(s, n.info)
|
|
# this node will be used in template substitution,
|
|
# pretend this is an untyped node and let regular sem handle the type
|
|
# to prevent problems where a generic parameter is treated as a value
|
|
tn.typ = nil
|
|
x.call.add tn
|
|
else:
|
|
internalAssert c.config, false
|
|
markUsed(c, info, finalCallee, isGenericInstance = true)
|
|
onUse(info, finalCallee, isGenericInstance = true)
|
|
|
|
result = x.call
|
|
instGenericConvertersSons(c, result, x)
|
|
markConvertersUsed(c, result)
|
|
result[0] = newSymNode(finalCallee, getCallLineInfo(result[0]))
|
|
if finalCallee.magic notin {mArrGet, mArrPut}:
|
|
result.typ = finalCallee.typ.returnType
|
|
updateDefaultParams(c, result)
|
|
|
|
proc canDeref(n: PNode): bool {.inline.} =
|
|
result = n.len >= 2 and (let t = n[1].typ;
|
|
t != nil and t.skipTypes({tyGenericInst, tyAlias, tySink}).kind in {tyPtr, tyRef})
|
|
|
|
proc tryDeref(n: PNode): PNode =
|
|
result = newNodeI(nkHiddenDeref, n.info)
|
|
result.typ = n.typ.skipTypes(abstractInst)[0]
|
|
result.add n
|
|
|
|
proc semOverloadedCall(c: PContext, n, nOrig: PNode,
|
|
filter: TSymKinds, flags: TExprFlags;
|
|
expectedType: PType = nil): PNode =
|
|
var errors: CandidateErrors = @[] # if efExplain in flags: @[] else: nil
|
|
var r = resolveOverloads(c, n, nOrig, filter, flags, errors, efExplain in flags)
|
|
if r.state == csMatch:
|
|
# this may be triggered, when the explain pragma is used
|
|
if errors.len > 0:
|
|
let (_, candidates) = presentFailedCandidates(c, n, errors)
|
|
message(c.config, n.info, hintUserRaw,
|
|
"Non-matching candidates for " & renderTree(n) & "\n" &
|
|
candidates)
|
|
result = semResolvedCall(c, r, n, flags, expectedType)
|
|
else:
|
|
if c.inGenericContext > 0 and c.matchedConcept == nil:
|
|
result = semGenericStmt(c, n)
|
|
result.typ = makeTypeFromExpr(c, result.copyTree)
|
|
elif efNoUndeclared in flags:
|
|
result = nil
|
|
elif efExplain notin flags:
|
|
# repeat the overload resolution,
|
|
# this time enabling all the diagnostic output (this should fail again)
|
|
result = semOverloadedCall(c, n, nOrig, filter, flags + {efExplain})
|
|
else:
|
|
result = nil
|
|
notFoundError(c, n, errors)
|
|
|
|
proc explicitGenericInstError(c: PContext; n: PNode): PNode =
|
|
localError(c.config, getCallLineInfo(n), errCannotInstantiateX % renderTree(n))
|
|
result = n
|
|
|
|
proc explicitGenericSym(c: PContext, n: PNode, s: PSym, errors: var CandidateErrors, doError: bool): PNode =
|
|
if s.kind in {skTemplate, skMacro}:
|
|
internalError c.config, n.info, "cannot get explicitly instantiated symbol of " &
|
|
(if s.kind == skTemplate: "template" else: "macro")
|
|
# binding has to stay 'nil' for this to work!
|
|
var m = newCandidate(c, s, nil)
|
|
matchGenericParams(m, n, s)
|
|
if m.state != csMatch:
|
|
# state is csMatch only if *all* generic params were matched,
|
|
# including implicit parameters
|
|
if doError:
|
|
errors.add(CandidateError(
|
|
sym: s,
|
|
firstMismatch: m.firstMismatch,
|
|
diagnostics: m.diagnostics))
|
|
return nil
|
|
var newInst = generateInstance(c, s, m.bindings, n.info)
|
|
newInst.typ.excl tfUnresolved
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, s, isGenericInstance = false)
|
|
onUse(info, s, isGenericInstance = false)
|
|
markUsed(c, info, newInst, isGenericInstance = true)
|
|
onUse(info, newInst, isGenericInstance = true)
|
|
result = newSymNode(newInst, info)
|
|
|
|
proc setGenericParams(c: PContext, n, expectedParams: PNode) =
|
|
## sems generic params in subscript expression
|
|
for i in 1..<n.len:
|
|
let
|
|
constraint =
|
|
if expectedParams != nil and i <= expectedParams.len:
|
|
expectedParams[i - 1].typ
|
|
else:
|
|
nil
|
|
e = semExprWithType(c, n[i], expectedType = constraint)
|
|
if e.typ == nil:
|
|
n[i].typ = errorType(c)
|
|
else:
|
|
n[i].typ = e.typ.skipTypes({tyTypeDesc})
|
|
|
|
proc explicitGenericInstantiation(c: PContext, n: PNode, s: PSym, doError: bool): PNode =
|
|
assert n.kind == nkBracketExpr
|
|
setGenericParams(c, n, s.ast[genericParamsPos])
|
|
var s = s
|
|
var a = n[0]
|
|
var errors: CandidateErrors = @[]
|
|
if a.kind == nkSym:
|
|
# common case; check the only candidate has the right
|
|
# number of generic type parameters:
|
|
result = explicitGenericSym(c, n, s, errors, doError)
|
|
if result == nil:
|
|
if c.inGenericContext > 0:
|
|
# same as in semOverloadedCall, make expression untyped,
|
|
# may have failed match due to unresolved types
|
|
result = semGenericStmt(c, n)
|
|
result.typ = makeTypeFromExpr(c, result.copyTree)
|
|
elif doError:
|
|
notFoundError(c, n, errors)
|
|
elif a.kind in {nkClosedSymChoice, nkOpenSymChoice}:
|
|
# choose the generic proc with the proper number of type parameters.
|
|
result = newNodeI(a.kind, getCallLineInfo(n))
|
|
for i in 0..<a.len:
|
|
var candidate = a[i].sym
|
|
if candidate.kind in {skProc, skMethod, skConverter,
|
|
skFunc, skIterator}:
|
|
let x = explicitGenericSym(c, n, candidate, errors, doError)
|
|
if x != nil: result.add(x)
|
|
elif c.inGenericContext > 0:
|
|
# same as in semOverloadedCall, make expression untyped,
|
|
# may have failed match due to unresolved types
|
|
# any failing match stops building the symchoice for correctness,
|
|
# can also make it untyped from the start
|
|
result = semGenericStmt(c, n)
|
|
result.typ = makeTypeFromExpr(c, result.copyTree)
|
|
return
|
|
# get rid of nkClosedSymChoice if not ambiguous:
|
|
if result.len == 0:
|
|
result = nil
|
|
if doError:
|
|
notFoundError(c, n, errors)
|
|
else:
|
|
# probably unreachable: we are trying to instantiate `a` which is not
|
|
# a sym/symchoice
|
|
if doError:
|
|
result = explicitGenericInstError(c, n)
|
|
else:
|
|
result = nil
|
|
|
|
proc searchForBorrowProc(c: PContext, startScope: PScope, fn: PSym): tuple[s: PSym, state: TBorrowState] =
|
|
# Searches for the fn in the symbol table. If the parameter lists are suitable
|
|
# for borrowing the sym in the symbol table is returned, else nil.
|
|
# New approach: generate fn(x, y, z) where x, y, z have the proper types
|
|
# and use the overloading resolution mechanism:
|
|
const desiredTypes = abstractVar + {tyCompositeTypeClass} - {tyTypeDesc, tyDistinct}
|
|
|
|
template getType(isDistinct: bool; t: PType):untyped =
|
|
if isDistinct: t.baseOfDistinct(c.graph, c.idgen) else: t
|
|
|
|
result = default(tuple[s: PSym, state: TBorrowState])
|
|
var call = newNodeI(nkCall, fn.info)
|
|
var hasDistinct = false
|
|
var isDistinct: bool
|
|
var x: PType
|
|
var t: PType
|
|
call.add(newIdentNode(fn.name, fn.info))
|
|
for i in 1..<fn.typ.n.len:
|
|
let param = fn.typ.n[i]
|
|
#[.
|
|
# We only want the type not any modifiers such as `ptr`, `var`, `ref` ...
|
|
# tyCompositeTypeClass is here for
|
|
# when using something like:
|
|
type Foo[T] = distinct int
|
|
proc `$`(f: Foo): string {.borrow.}
|
|
# We want to skip the `Foo` to get `int`
|
|
]#
|
|
t = skipTypes(param.typ, desiredTypes)
|
|
isDistinct = t.kind == tyDistinct or param.typ.kind == tyDistinct
|
|
if t.kind == tyGenericInvocation and t.genericHead.last.kind == tyDistinct:
|
|
result.state = bsGeneric
|
|
return
|
|
if isDistinct: hasDistinct = true
|
|
if param.typ.kind == tyVar:
|
|
x = newTypeS(param.typ.kind, c)
|
|
x.addSonSkipIntLit(getType(isDistinct, t), c.idgen)
|
|
else:
|
|
x = getType(isDistinct, t)
|
|
var s = copySym(param.sym, c.idgen)
|
|
s.typ = x
|
|
s.info = param.info
|
|
call.add(newSymNode(s))
|
|
if hasDistinct:
|
|
let filter = if fn.kind in {skProc, skFunc}: {skProc, skFunc} else: {fn.kind}
|
|
var resolved = semOverloadedCall(c, call, call, filter, {})
|
|
if resolved != nil:
|
|
result.s = resolved[0].sym
|
|
result.state = bsMatch
|
|
if not compareTypes(result.s.typ.returnType, fn.typ.returnType, dcEqIgnoreDistinct, {IgnoreFlags}):
|
|
result.state = bsReturnNotMatch
|
|
elif result.s.magic in {mArrPut, mArrGet}:
|
|
# cannot borrow these magics for now
|
|
result.state = bsNotSupported
|
|
else:
|
|
result.state = bsNoDistinct
|