mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
fixes #24673 The problem is that there is no way to distinguish `cint`, `cint`, etc ctypes with Nim types. So `when T is cint | clong | clonglong:` is true for types derived from `int`, `int32` and `int64`. In this PR, it fixes the branch to avoid erros for `Natural`
1388 lines
49 KiB
Nim
1388 lines
49 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## *Constructive mathematics is naturally typed.* -- Simon Thompson
|
|
##
|
|
## Basic math routines for Nim.
|
|
##
|
|
## Note that the trigonometric functions naturally operate on radians.
|
|
## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
|
|
## provide conversion between radians and degrees.
|
|
|
|
runnableExamples:
|
|
from std/fenv import epsilon
|
|
from std/random import rand
|
|
|
|
proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
|
|
# Generates values from a normal distribution.
|
|
# Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
|
|
var u1: float
|
|
var u2: float
|
|
while true:
|
|
u1 = rand(1.0)
|
|
u2 = rand(1.0)
|
|
if u1 > epsilon(float): break
|
|
let mag = sigma * sqrt(-2 * ln(u1))
|
|
let z0 = mag * cos(2 * PI * u2) + mu
|
|
let z1 = mag * sin(2 * PI * u2) + mu
|
|
(z0, z1)
|
|
|
|
echo generateGaussianNoise()
|
|
|
|
## This module is available for the `JavaScript target
|
|
## <backends.html#backends-the-javascript-target>`_.
|
|
##
|
|
## See also
|
|
## ========
|
|
## * `complex module <complex.html>`_ for complex numbers and their
|
|
## mathematical operations
|
|
## * `rationals module <rationals.html>`_ for rational numbers and their
|
|
## mathematical operations
|
|
## * `fenv module <fenv.html>`_ for handling of floating-point rounding
|
|
## and exceptions (overflow, zero-divide, etc.)
|
|
## * `random module <random.html>`_ for a fast and tiny random number generator
|
|
## * `stats module <stats.html>`_ for statistical analysis
|
|
## * `strformat module <strformat.html>`_ for formatting floats for printing
|
|
## * `system module <system.html>`_ for some very basic and trivial math operators
|
|
## (`shr`, `shl`, `xor`, `clamp`, etc.)
|
|
|
|
|
|
import std/private/since
|
|
{.push debugger: off.} # the user does not want to trace a part
|
|
# of the standard library!
|
|
|
|
import std/[bitops, fenv]
|
|
import system/countbits_impl
|
|
|
|
when defined(nimPreviewSlimSystem):
|
|
import std/assertions
|
|
|
|
|
|
when not defined(js) and not defined(nimscript): # C
|
|
proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
|
|
# a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
|
|
|
|
proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
|
|
proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
|
|
|
|
proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
|
|
|
|
# don't export `c_frexp` in the future and remove `c_frexp2`.
|
|
func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
|
|
importc: "frexpf", header: "<math.h>".}
|
|
func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
|
|
importc: "frexp", header: "<math.h>".}
|
|
|
|
type
|
|
div_t {.importc, header: "<stdlib.h>".} = object
|
|
quot: cint
|
|
rem: cint
|
|
ldiv_t {.importc, header: "<stdlib.h>".} = object
|
|
quot: clong
|
|
rem: clong
|
|
lldiv_t {.importc, header: "<stdlib.h>".} = object
|
|
quot: clonglong
|
|
rem: clonglong
|
|
|
|
when cint isnot clong:
|
|
func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
|
|
when clong isnot clonglong:
|
|
func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
|
|
func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
|
|
func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} =
|
|
## Specialized instructions for computing both division and modulus.
|
|
## Return structure is: (quotient, remainder)
|
|
runnableExamples:
|
|
doAssert divmod(5, 2) == (2, 1)
|
|
doAssert divmod(5, -3) == (-1, 2)
|
|
when T is cint | clong | clonglong:
|
|
when compileOption("overflowChecks"):
|
|
if y == 0:
|
|
raise new(DivByZeroDefect)
|
|
elif (x == T.low and int64(y) == -1):
|
|
raise new(OverflowDefect)
|
|
let res = divmod_c(x, y)
|
|
result[0] = res.quot
|
|
result[1] = res.rem
|
|
else:
|
|
result[0] = x div y
|
|
result[1] = x mod y
|
|
|
|
func binom*(n, k: int): int =
|
|
## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
|
|
runnableExamples:
|
|
doAssert binom(6, 2) == 15
|
|
doAssert binom(-6, 2) == 1
|
|
doAssert binom(6, 0) == 1
|
|
|
|
if k <= 0: return 1
|
|
if 2 * k > n: return binom(n, n - k)
|
|
result = n
|
|
for i in countup(2, k):
|
|
result = (result * (n + 1 - i)) div i
|
|
|
|
func createFactTable[N: static[int]]: array[N, int] =
|
|
result[0] = 1
|
|
for i in 1 ..< N:
|
|
result[i] = result[i - 1] * i
|
|
|
|
func fac*(n: int): int =
|
|
## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
|
|
## a non-negative integer `n`.
|
|
##
|
|
## **See also:**
|
|
## * `prod func <#prod,openArray[T]>`_
|
|
runnableExamples:
|
|
doAssert fac(0) == 1
|
|
doAssert fac(4) == 24
|
|
doAssert fac(10) == 3628800
|
|
|
|
const factTable =
|
|
when sizeof(int) == 2:
|
|
createFactTable[5]()
|
|
elif sizeof(int) == 4:
|
|
createFactTable[13]()
|
|
else:
|
|
createFactTable[21]()
|
|
assert(n >= 0, $n & " must not be negative.")
|
|
assert(n < factTable.len, $n & " is too large to look up in the table")
|
|
factTable[n]
|
|
|
|
{.push checks: off, line_dir: off, stack_trace: off.}
|
|
|
|
when defined(posix) and not defined(genode) and not defined(macosx):
|
|
{.passl: "-lm".}
|
|
|
|
const
|
|
PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number).
|
|
TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI).
|
|
E* = 2.71828182845904523536028747 ## Euler's number.
|
|
|
|
MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## `float64` type.
|
|
MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## `float32` type.
|
|
MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
|
|
## meaningful digits
|
|
## after the decimal point
|
|
## for Nim's `float` type.
|
|
MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
|
|
## `float` type (= 2^-1022).
|
|
RadPerDeg = PI / 180.0 ## Number of radians per degree.
|
|
|
|
type
|
|
FloatClass* = enum ## Describes the class a floating point value belongs to.
|
|
## This is the type that is returned by the
|
|
## `classify func <#classify,float>`_.
|
|
fcNormal, ## value is an ordinary nonzero floating point value
|
|
fcSubnormal, ## value is a subnormal (a very small) floating point value
|
|
fcZero, ## value is zero
|
|
fcNegZero, ## value is the negative zero
|
|
fcNan, ## value is Not a Number (NaN)
|
|
fcInf, ## value is positive infinity
|
|
fcNegInf ## value is negative infinity
|
|
|
|
func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
|
|
## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
|
|
## Works even with `--passc:-ffast-math`.
|
|
runnableExamples:
|
|
doAssert NaN.isNaN
|
|
doAssert not Inf.isNaN
|
|
doAssert not isNaN(3.1415926)
|
|
|
|
template fn: untyped = result = x != x
|
|
when nimvm: fn()
|
|
else:
|
|
when defined(js) or defined(nimscript): fn()
|
|
else: result = c_isnan(x)
|
|
|
|
when defined(js):
|
|
import std/private/jsutils
|
|
|
|
proc toBitsImpl(x: float): array[2, uint32] =
|
|
let buffer = newArrayBuffer(8)
|
|
let a = newFloat64Array(buffer)
|
|
let b = newUint32Array(buffer)
|
|
a[0] = x
|
|
{.emit: "`result` = `b`;".}
|
|
# result = cast[array[2, uint32]](b)
|
|
|
|
proc jsSetSign(x: float, sgn: bool): float =
|
|
let buffer = newArrayBuffer(8)
|
|
let a = newFloat64Array(buffer)
|
|
let b = newUint32Array(buffer)
|
|
a[0] = x
|
|
{.emit: """
|
|
function updateBit(num, bitPos, bitVal) {
|
|
return (num & ~(1 << bitPos)) | (bitVal << bitPos);
|
|
}
|
|
`b`[1] = updateBit(`b`[1], 31, `sgn`);
|
|
`result` = `a`[0];
|
|
""".}
|
|
|
|
proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
|
|
## Returns true if `x` is negative, false otherwise.
|
|
runnableExamples:
|
|
doAssert not signbit(0.0)
|
|
doAssert signbit(-0.0)
|
|
doAssert signbit(-0.1)
|
|
doAssert not signbit(0.1)
|
|
|
|
when defined(js):
|
|
let uintBuffer = toBitsImpl(x)
|
|
result = (uintBuffer[1] shr 31) != 0
|
|
else:
|
|
result = c_signbit(x) != 0
|
|
|
|
func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
|
|
## Returns a value with the magnitude of `x` and the sign of `y`;
|
|
## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
|
|
runnableExamples:
|
|
doAssert copySign(10.0, 1.0) == 10.0
|
|
doAssert copySign(10.0, -1.0) == -10.0
|
|
doAssert copySign(-Inf, -0.0) == -Inf
|
|
doAssert copySign(NaN, 1.0).isNaN
|
|
doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
|
|
|
|
# TODO: use signbit for examples
|
|
when defined(js):
|
|
let uintBuffer = toBitsImpl(y)
|
|
let sgn = (uintBuffer[1] shr 31) != 0
|
|
result = jsSetSign(x, sgn)
|
|
else:
|
|
when nimvm: # not exact but we have a vmops for recent enough nim
|
|
if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
|
|
result = abs(x)
|
|
elif y <= 0.0:
|
|
result = -abs(x)
|
|
else: # must be NaN
|
|
result = abs(x)
|
|
else: result = c_copysign(x, y)
|
|
|
|
func classify*(x: float): FloatClass =
|
|
## Classifies a floating point value.
|
|
##
|
|
## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
|
|
runnableExamples:
|
|
doAssert classify(0.3) == fcNormal
|
|
doAssert classify(0.0) == fcZero
|
|
doAssert classify(0.3 / 0.0) == fcInf
|
|
doAssert classify(-0.3 / 0.0) == fcNegInf
|
|
doAssert classify(5.0e-324) == fcSubnormal
|
|
|
|
# JavaScript and most C compilers have no classify:
|
|
if isNan(x): return fcNan
|
|
if x == 0.0:
|
|
if 1.0 / x == Inf:
|
|
return fcZero
|
|
else:
|
|
return fcNegZero
|
|
if x * 0.5 == x:
|
|
if x > 0.0: return fcInf
|
|
else: return fcNegInf
|
|
if abs(x) < MinFloatNormal:
|
|
return fcSubnormal
|
|
return fcNormal
|
|
|
|
func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
|
|
since: (1, 5), inline.} =
|
|
## Checks if two float values are almost equal, using the
|
|
## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
|
|
##
|
|
## `unitsInLastPlace` is the max number of
|
|
## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
|
|
## difference tolerated when comparing two numbers. The larger the value, the
|
|
## more error is allowed. A `0` value means that two numbers must be exactly the
|
|
## same to be considered equal.
|
|
##
|
|
## The machine epsilon has to be scaled to the magnitude of the values used
|
|
## and multiplied by the desired precision in ULPs unless the difference is
|
|
## subnormal.
|
|
##
|
|
# taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
|
|
runnableExamples:
|
|
doAssert almostEqual(PI, 3.14159265358979)
|
|
doAssert almostEqual(Inf, Inf)
|
|
doAssert not almostEqual(NaN, NaN)
|
|
|
|
if x == y:
|
|
# short circuit exact equality -- needed to catch two infinities of
|
|
# the same sign. And perhaps speeds things up a bit sometimes.
|
|
return true
|
|
let diff = abs(x - y)
|
|
result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
|
|
diff < minimumPositiveValue(T)
|
|
|
|
func isPowerOfTwo*(x: int): bool =
|
|
## Returns `true`, if `x` is a power of two, `false` otherwise.
|
|
##
|
|
## Zero and negative numbers are not a power of two.
|
|
##
|
|
## **See also:**
|
|
## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
|
|
runnableExamples:
|
|
doAssert isPowerOfTwo(16)
|
|
doAssert not isPowerOfTwo(5)
|
|
doAssert not isPowerOfTwo(0)
|
|
doAssert not isPowerOfTwo(-16)
|
|
|
|
return (x > 0) and ((x and (x - 1)) == 0)
|
|
|
|
func nextPowerOfTwo*(x: int): int =
|
|
## Returns `x` rounded up to the nearest power of two.
|
|
##
|
|
## Zero and negative numbers get rounded up to 1.
|
|
##
|
|
## **See also:**
|
|
## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
|
|
runnableExamples:
|
|
doAssert nextPowerOfTwo(16) == 16
|
|
doAssert nextPowerOfTwo(5) == 8
|
|
doAssert nextPowerOfTwo(0) == 1
|
|
doAssert nextPowerOfTwo(-16) == 1
|
|
|
|
result = x - 1
|
|
when defined(cpu64):
|
|
result = result or (result shr 32)
|
|
when sizeof(int) > 2:
|
|
result = result or (result shr 16)
|
|
when sizeof(int) > 1:
|
|
result = result or (result shr 8)
|
|
result = result or (result shr 4)
|
|
result = result or (result shr 2)
|
|
result = result or (result shr 1)
|
|
result += 1 + ord(x <= 0)
|
|
|
|
|
|
|
|
|
|
when not defined(js): # C
|
|
func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
|
|
func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
|
|
## Computes the square root of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `cbrt func <#cbrt,float64>`_ for the cube root
|
|
runnableExamples:
|
|
doAssert almostEqual(sqrt(4.0), 2.0)
|
|
doAssert almostEqual(sqrt(1.44), 1.2)
|
|
func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
|
|
func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
|
|
## Computes the cube root of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `sqrt func <#sqrt,float64>`_ for the square root
|
|
runnableExamples:
|
|
doAssert almostEqual(cbrt(8.0), 2.0)
|
|
doAssert almostEqual(cbrt(2.197), 1.3)
|
|
doAssert almostEqual(cbrt(-27.0), -3.0)
|
|
func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
|
|
func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
|
|
## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
|
|
## of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `log func <#log,T,T>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
## * `exp func <#exp,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(ln(exp(4.0)), 4.0)
|
|
doAssert almostEqual(ln(1.0), 0.0)
|
|
doAssert almostEqual(ln(0.0), -Inf)
|
|
doAssert ln(-7.0).isNaN
|
|
else: # JS
|
|
func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
|
|
func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
|
|
|
|
func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
|
|
func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
|
|
|
|
func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
|
|
func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
|
|
|
|
func log*[T: SomeFloat](x, base: T): T =
|
|
## Computes the logarithm of `x` to base `base`.
|
|
##
|
|
## **See also:**
|
|
## * `ln func <#ln,float64>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(log(9.0, 3.0), 2.0)
|
|
doAssert almostEqual(log(0.0, 2.0), -Inf)
|
|
doAssert log(-7.0, 4.0).isNaN
|
|
doAssert log(8.0, -2.0).isNaN
|
|
|
|
ln(x) / ln(base)
|
|
|
|
when not defined(js): # C
|
|
func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
|
|
func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
|
|
## Computes the common logarithm (base 10) of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `ln func <#ln,float64>`_
|
|
## * `log func <#log,T,T>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(log10(100.0) , 2.0)
|
|
doAssert almostEqual(log10(0.0), -Inf)
|
|
doAssert log10(-100.0).isNaN
|
|
func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
|
|
func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
|
|
## Computes the exponential function of `x` (`e^x`).
|
|
##
|
|
## **See also:**
|
|
## * `ln func <#ln,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(exp(1.0), E)
|
|
doAssert almostEqual(ln(exp(4.0)), 4.0)
|
|
doAssert almostEqual(exp(0.0), 1.0)
|
|
func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
|
|
func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
|
|
## Computes the sine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arcsin func <#arcsin,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(sin(PI / 6), 0.5)
|
|
doAssert almostEqual(sin(degToRad(90.0)), 1.0)
|
|
func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
|
|
func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
|
|
## Computes the cosine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arccos func <#arccos,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(cos(2 * PI), 1.0)
|
|
doAssert almostEqual(cos(degToRad(60.0)), 0.5)
|
|
func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
|
|
func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
|
|
## Computes the tangent of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arctan func <#arctan,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(tan(degToRad(45.0)), 1.0)
|
|
doAssert almostEqual(tan(PI / 4), 1.0)
|
|
func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
|
|
func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
|
|
## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arcsinh func <#arcsinh,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(sinh(0.0), 0.0)
|
|
doAssert almostEqual(sinh(1.0), 1.175201193643801)
|
|
func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
|
|
func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
|
|
## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arccosh func <#arccosh,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(cosh(0.0), 1.0)
|
|
doAssert almostEqual(cosh(1.0), 1.543080634815244)
|
|
func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
|
|
func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
|
|
## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arctanh func <#arctanh,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(tanh(0.0), 0.0)
|
|
doAssert almostEqual(tanh(1.0), 0.7615941559557649)
|
|
func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
|
|
func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
|
|
## Computes the arc sine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `sin func <#sin,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
|
|
doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
|
|
func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
|
|
func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
|
|
## Computes the arc cosine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `cos func <#cos,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
|
|
doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
|
|
func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
|
|
func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
|
|
## Calculate the arc tangent of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `arctan2 func <#arctan2,float64,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(arctan(1.0), 0.7853981633974483)
|
|
doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
|
|
func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
|
|
func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
|
|
## Calculate the arc tangent of `y/x`.
|
|
##
|
|
## It produces correct results even when the resulting angle is near
|
|
## `PI/2` or `-PI/2` (`x` near 0).
|
|
##
|
|
## **See also:**
|
|
## * `arctan func <#arctan,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
|
|
doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
|
|
func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
|
|
func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic sine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `sinh func <#sinh,float64>`_
|
|
func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
|
|
func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic cosine of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `cosh func <#cosh,float64>`_
|
|
func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
|
|
func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic tangent of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `tanh func <#tanh,float64>`_
|
|
|
|
else: # JS
|
|
func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
|
|
func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
|
|
func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
|
|
func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
|
|
func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
|
|
func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
|
|
|
|
func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
|
|
func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
|
|
func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
|
|
|
|
func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
|
|
func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
|
|
func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
|
|
|
|
func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
|
|
# keep this as generic or update test in `tvmops.nim` to make sure we
|
|
# keep testing that generic importc procs work
|
|
func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
|
|
func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
|
|
func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
|
|
|
|
func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
|
|
func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
|
|
func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
|
|
|
|
func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
|
|
## Computes the cotangent of `x` (`1/tan(x)`).
|
|
func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
|
|
## Computes the secant of `x` (`1/cos(x)`).
|
|
func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
|
|
## Computes the cosecant of `x` (`1/sin(x)`).
|
|
|
|
func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
|
|
## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
|
|
func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
|
|
## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
|
|
func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
|
|
## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
|
|
|
|
func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
|
|
## Computes the inverse cotangent of `x` (`arctan(1/x)`).
|
|
func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
|
|
## Computes the inverse secant of `x` (`arccos(1/x)`).
|
|
func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
|
|
## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
|
|
|
|
func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
|
|
## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
|
|
func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
|
|
## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
|
|
func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
|
|
## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
|
|
|
|
const windowsCC89 = defined(windows) and defined(bcc)
|
|
|
|
when not defined(js): # C
|
|
func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
|
|
func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
|
|
## Computes the length of the hypotenuse of a right-angle triangle with
|
|
## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
|
|
runnableExamples:
|
|
doAssert almostEqual(hypot(3.0, 4.0), 5.0)
|
|
func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
|
|
func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
|
|
## Computes `x` raised to the power of `y`.
|
|
##
|
|
## You may use the `^ func <#^, T, U>`_ instead.
|
|
##
|
|
## **See also:**
|
|
## * `^ (SomeNumber, Natural) func <#^,T,Natural>`_
|
|
## * `^ (SomeNumber, SomeFloat) func <#^,T,U>`_
|
|
## * `sqrt func <#sqrt,float64>`_
|
|
## * `cbrt func <#cbrt,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(pow(100, 1.5), 1000.0)
|
|
doAssert almostEqual(pow(16.0, 0.5), 4.0)
|
|
|
|
# TODO: add C89 version on windows
|
|
when not windowsCC89:
|
|
func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
|
|
func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
|
|
## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
|
|
##
|
|
## **Note:** Not available for the JS backend.
|
|
func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
|
|
func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
|
|
## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
|
|
##
|
|
## **Note:** Not available for the JS backend.
|
|
func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
|
|
func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
|
|
## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
|
|
##
|
|
## **Note:** Not available for the JS backend.
|
|
##
|
|
## **See also:**
|
|
## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
|
|
runnableExamples:
|
|
doAssert almostEqual(gamma(1.0), 1.0)
|
|
doAssert almostEqual(gamma(4.0), 6.0)
|
|
doAssert almostEqual(gamma(11.0), 3628800.0)
|
|
func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
|
|
func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
|
|
## Computes the natural logarithm of the gamma function for `x`.
|
|
##
|
|
## **Note:** Not available for the JS backend.
|
|
##
|
|
## **See also:**
|
|
## * `gamma func <#gamma,float64>`_ for gamma function
|
|
|
|
func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
|
|
func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
|
|
## Computes the floor function (i.e. the largest integer not greater than `x`).
|
|
##
|
|
## **See also:**
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
runnableExamples:
|
|
doAssert floor(2.1) == 2.0
|
|
doAssert floor(2.9) == 2.0
|
|
doAssert floor(-3.5) == -4.0
|
|
|
|
func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
|
|
func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
|
|
## Computes the ceiling function (i.e. the smallest integer not smaller
|
|
## than `x`).
|
|
##
|
|
## **See also:**
|
|
## * `floor func <#floor,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
runnableExamples:
|
|
doAssert ceil(2.1) == 3.0
|
|
doAssert ceil(2.9) == 3.0
|
|
doAssert ceil(-2.1) == -2.0
|
|
|
|
when windowsCC89:
|
|
# MSVC 2010 don't have trunc/truncf
|
|
# this implementation was inspired by Go-lang Math.Trunc
|
|
func truncImpl(f: float64): float64 =
|
|
const
|
|
mask: uint64 = 0x7FF
|
|
shift: uint64 = 64 - 12
|
|
bias: uint64 = 0x3FF
|
|
|
|
if f < 1:
|
|
if f < 0: return -truncImpl(-f)
|
|
elif f == 0: return f # Return -0 when f == -0
|
|
else: return 0
|
|
|
|
var x = cast[uint64](f)
|
|
let e = (x shr shift) and mask - bias
|
|
|
|
# Keep the top 12+e bits, the integer part; clear the rest.
|
|
if e < 64 - 12:
|
|
x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
|
|
|
|
result = cast[float64](x)
|
|
|
|
func truncImpl(f: float32): float32 =
|
|
const
|
|
mask: uint32 = 0xFF
|
|
shift: uint32 = 32 - 9
|
|
bias: uint32 = 0x7F
|
|
|
|
if f < 1:
|
|
if f < 0: return -truncImpl(-f)
|
|
elif f == 0: return f # Return -0 when f == -0
|
|
else: return 0
|
|
|
|
var x = cast[uint32](f)
|
|
let e = (x shr shift) and mask - bias
|
|
|
|
# Keep the top 9+e bits, the integer part; clear the rest.
|
|
if e < 32 - 9:
|
|
x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
|
|
|
|
result = cast[float32](x)
|
|
|
|
func trunc*(x: float64): float64 =
|
|
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
|
|
result = truncImpl(x)
|
|
|
|
func trunc*(x: float32): float32 =
|
|
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
|
|
result = truncImpl(x)
|
|
|
|
func round*[T: float32|float64](x: T): T =
|
|
## Windows compilers prior to MSVC 2012 do not implement 'round',
|
|
## 'roundl' or 'roundf'.
|
|
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
|
|
else:
|
|
func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
|
|
func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
|
|
## Rounds a float to zero decimal places.
|
|
##
|
|
## Used internally by the `round func <#round,T,int>`_
|
|
## when the specified number of places is 0.
|
|
##
|
|
## **See also:**
|
|
## * `round func <#round,T,int>`_ for rounding to the specific
|
|
## number of decimal places
|
|
## * `floor func <#floor,float64>`_
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
runnableExamples:
|
|
doAssert round(3.4) == 3.0
|
|
doAssert round(3.5) == 4.0
|
|
doAssert round(4.5) == 5.0
|
|
|
|
func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
|
|
func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
|
|
## Truncates `x` to the decimal point.
|
|
##
|
|
## **See also:**
|
|
## * `floor func <#floor,float64>`_
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
runnableExamples:
|
|
doAssert trunc(PI) == 3.0
|
|
doAssert trunc(-1.85) == -1.0
|
|
|
|
func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
|
|
func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
|
|
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
|
|
##
|
|
## **See also:**
|
|
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
|
|
runnableExamples:
|
|
doAssert 6.5 mod 2.5 == 1.5
|
|
doAssert -6.5 mod 2.5 == -1.5
|
|
doAssert 6.5 mod -2.5 == 1.5
|
|
doAssert -6.5 mod -2.5 == -1.5
|
|
|
|
else: # JS
|
|
func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
|
|
func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
|
|
func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
|
|
func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
|
|
func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
|
|
func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
|
|
func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
|
|
func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
|
|
|
|
when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
|
|
func round*(x: float): float {.importc: "Math.round", nodecl.}
|
|
else:
|
|
func jsRound(x: float): float {.importc: "Math.round", nodecl.}
|
|
func round*[T: float64 | float32](x: T): T =
|
|
if x >= 0: result = jsRound(x)
|
|
else:
|
|
result = ceil(x)
|
|
if result - x >= T(0.5):
|
|
result -= T(1.0)
|
|
func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
|
|
func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
|
|
|
|
func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
|
|
func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
|
|
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
|
|
runnableExamples:
|
|
doAssert 6.5 mod 2.5 == 1.5
|
|
doAssert -6.5 mod 2.5 == -1.5
|
|
doAssert 6.5 mod -2.5 == 1.5
|
|
doAssert -6.5 mod -2.5 == -1.5
|
|
|
|
func divmod*[T:SomeInteger](num, denom: T): (T, T) =
|
|
runnableExamples:
|
|
doAssert divmod(5, 2) == (2, 1)
|
|
doAssert divmod(5, -3) == (-1, 2)
|
|
result[0] = num div denom
|
|
result[1] = num mod denom
|
|
|
|
|
|
func round*[T: float32|float64](x: T, places: int): T =
|
|
## Decimal rounding on a binary floating point number.
|
|
##
|
|
## This function is NOT reliable. Floating point numbers cannot hold
|
|
## non integer decimals precisely. If `places` is 0 (or omitted),
|
|
## round to the nearest integral value following normal mathematical
|
|
## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is
|
|
## greater than 0, round to the given number of decimal places,
|
|
## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
|
|
## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
|
|
runnableExamples:
|
|
doAssert round(PI, 2) == 3.14
|
|
doAssert round(PI, 4) == 3.1416
|
|
|
|
if places == 0:
|
|
result = round(x)
|
|
else:
|
|
var mult = pow(10.0, T(places))
|
|
result = round(x * mult) / mult
|
|
|
|
func floorDiv*[T: SomeInteger](x, y: T): T =
|
|
## Floor division is conceptually defined as `floor(x / y)`.
|
|
##
|
|
## This is different from the `system.div <system.html#div,int,int>`_
|
|
## operator, which is defined as `trunc(x / y)`.
|
|
## That is, `div` rounds towards `0` and `floorDiv` rounds down.
|
|
##
|
|
## **See also:**
|
|
## * `system.div proc <system.html#div,int,int>`_ for integer division
|
|
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
|
|
runnableExamples:
|
|
doAssert floorDiv( 13, 3) == 4
|
|
doAssert floorDiv(-13, 3) == -5
|
|
doAssert floorDiv( 13, -3) == -5
|
|
doAssert floorDiv(-13, -3) == 4
|
|
|
|
result = x div y
|
|
let r = x mod y
|
|
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
|
|
|
|
func floorMod*[T: SomeNumber](x, y: T): T =
|
|
## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
|
|
##
|
|
## This func behaves the same as the `%` operator in Python.
|
|
##
|
|
## **See also:**
|
|
## * `mod func <#mod,float64,float64>`_
|
|
## * `floorDiv func <#floorDiv,T,T>`_
|
|
runnableExamples:
|
|
doAssert floorMod( 13, 3) == 1
|
|
doAssert floorMod(-13, 3) == 2
|
|
doAssert floorMod( 13, -3) == -2
|
|
doAssert floorMod(-13, -3) == -1
|
|
|
|
result = x mod y
|
|
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
|
|
|
|
func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
|
|
## Returns euclidean division of `x` by `y`.
|
|
runnableExamples:
|
|
doAssert euclDiv(13, 3) == 4
|
|
doAssert euclDiv(-13, 3) == -5
|
|
doAssert euclDiv(13, -3) == -4
|
|
doAssert euclDiv(-13, -3) == 5
|
|
|
|
result = x div y
|
|
if x mod y < 0:
|
|
if y > 0:
|
|
dec result
|
|
else:
|
|
inc result
|
|
|
|
func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
|
|
## Returns euclidean modulo of `x` by `y`.
|
|
## `euclMod(x, y)` is non-negative.
|
|
runnableExamples:
|
|
doAssert euclMod(13, 3) == 1
|
|
doAssert euclMod(-13, 3) == 2
|
|
doAssert euclMod(13, -3) == 1
|
|
doAssert euclMod(-13, -3) == 2
|
|
|
|
result = x mod y
|
|
if result < 0:
|
|
result += abs(y)
|
|
|
|
func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
|
|
## Ceil division is conceptually defined as `ceil(x / y)`.
|
|
##
|
|
## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
|
|
##
|
|
## This is different from the `system.div <system.html#div,int,int>`_
|
|
## operator, which works like `trunc(x / y)`.
|
|
## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
|
|
##
|
|
## This function has the above input limitation, because that allows the
|
|
## compiler to generate faster code and it is rarely used with
|
|
## negative values or unsigned integers close to `high(T)/2`.
|
|
## If you need a `ceilDiv` that works with any input, see:
|
|
## https://github.com/demotomohiro/divmath.
|
|
##
|
|
## **See also:**
|
|
## * `system.div proc <system.html#div,int,int>`_ for integer division
|
|
## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
|
|
runnableExamples:
|
|
assert ceilDiv(12, 3) == 4
|
|
assert ceilDiv(13, 3) == 5
|
|
|
|
when sizeof(T) == 8:
|
|
type UT = uint64
|
|
elif sizeof(T) == 4:
|
|
type UT = uint32
|
|
elif sizeof(T) == 2:
|
|
type UT = uint16
|
|
elif sizeof(T) == 1:
|
|
type UT = uint8
|
|
else:
|
|
{.fatal: "Unsupported int type".}
|
|
|
|
assert x >= 0 and y > 0
|
|
when T is SomeUnsignedInt:
|
|
assert x + y - 1 >= x
|
|
|
|
# If the divisor is const, the backend C/C++ compiler generates code without a `div`
|
|
# instruction, as it is slow on most CPUs.
|
|
# If the divisor is a power of 2 and a const unsigned integer type, the
|
|
# compiler generates faster code.
|
|
# If the divisor is const and a signed integer, generated code becomes slower
|
|
# than the code with unsigned integers, because division with signed integers
|
|
# need to works for both positive and negative value without `idiv`/`sdiv`.
|
|
# That is why this code convert parameters to unsigned.
|
|
# This post contains a comparison of the performance of signed/unsigned integers:
|
|
# https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
|
|
# If signed integer arguments were not converted to unsigned integers,
|
|
# `ceilDiv` wouldn't work for any positive signed integer value, because
|
|
# `x + (y - 1)` can overflow.
|
|
((x.UT + (y.UT - 1.UT)) div y.UT).T
|
|
|
|
func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
|
|
## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
|
|
## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
|
|
## cases shown below.
|
|
runnableExamples:
|
|
doAssert frexp(8.0) == (0.5, 4)
|
|
doAssert frexp(-8.0) == (-0.5, 4)
|
|
doAssert frexp(0.0) == (0.0, 0)
|
|
|
|
# special cases:
|
|
when sizeof(int) == 8:
|
|
doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
|
|
doAssert frexp(Inf).frac == Inf # +- Inf preserved
|
|
doAssert frexp(NaN).frac.isNaN
|
|
|
|
result = default(tuple[frac: T, exp: int])
|
|
when not defined(js):
|
|
var exp: cint = cint(0)
|
|
result.frac = c_frexp2(x, exp)
|
|
result.exp = exp
|
|
else:
|
|
if x == 0.0:
|
|
# reuse signbit implementation
|
|
let uintBuffer = toBitsImpl(x)
|
|
if (uintBuffer[1] shr 31) != 0:
|
|
# x is -0.0
|
|
result = (-0.0, 0)
|
|
else:
|
|
result = (0.0, 0)
|
|
elif x < 0.0:
|
|
result = frexp(-x)
|
|
result.frac = -result.frac
|
|
else:
|
|
var ex = trunc(log2(x))
|
|
result.exp = int(ex)
|
|
result.frac = x / pow(2.0, ex)
|
|
if abs(result.frac) >= 1:
|
|
inc(result.exp)
|
|
result.frac = result.frac / 2
|
|
if result.exp == 1024 and result.frac == 0.0:
|
|
result.frac = 0.99999999999999988898
|
|
|
|
func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
|
|
## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
|
|
runnableExamples:
|
|
var x: int
|
|
doAssert frexp(5.0, x) == 0.625
|
|
doAssert x == 3
|
|
|
|
(result, exponent) = frexp(x)
|
|
|
|
|
|
when not defined(js):
|
|
when windowsCC89:
|
|
# taken from Go-lang Math.Log2
|
|
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
|
template log2Impl[T](x: T): T =
|
|
var exp: int
|
|
var frac = frexp(x, exp)
|
|
# Make sure exact powers of two give an exact answer.
|
|
# Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
|
|
if frac == 0.5: return T(exp - 1)
|
|
log10(frac) * (1 / ln2) + T(exp)
|
|
|
|
func log2*(x: float32): float32 = log2Impl(x)
|
|
func log2*(x: float64): float64 = log2Impl(x)
|
|
## Log2 returns the binary logarithm of x.
|
|
## The special cases are the same as for Log.
|
|
|
|
else:
|
|
func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
|
|
func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
|
|
## Computes the binary logarithm (base 2) of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `log func <#log,T,T>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `ln func <#ln,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(log2(8.0), 3.0)
|
|
doAssert almostEqual(log2(1.0), 0.0)
|
|
doAssert almostEqual(log2(0.0), -Inf)
|
|
doAssert log2(-2.0).isNaN
|
|
|
|
func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
|
|
## Breaks `x` into an integer and a fractional part.
|
|
##
|
|
## Returns a tuple containing `intpart` and `floatpart`, representing
|
|
## the integer part and the fractional part, respectively.
|
|
##
|
|
## Both parts have the same sign as `x`. Analogous to the `modf`
|
|
## function in C.
|
|
runnableExamples:
|
|
doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
|
|
doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
|
|
result = default(tuple[intpart: T, floatpart: T])
|
|
var absolute: T = abs(x)
|
|
result.intpart = floor(absolute)
|
|
result.floatpart = absolute - result.intpart
|
|
if x < 0:
|
|
result.intpart = -result.intpart
|
|
result.floatpart = -result.floatpart
|
|
|
|
|
|
func degToRad*[T: float32|float64](d: T): T {.inline.} =
|
|
## Converts from degrees to radians.
|
|
##
|
|
## **See also:**
|
|
## * `radToDeg func <#radToDeg,T>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(degToRad(180.0), PI)
|
|
|
|
result = d * T(RadPerDeg)
|
|
|
|
func radToDeg*[T: float32|float64](d: T): T {.inline.} =
|
|
## Converts from radians to degrees.
|
|
##
|
|
## **See also:**
|
|
## * `degToRad func <#degToRad,T>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(radToDeg(2 * PI), 360.0)
|
|
|
|
result = d / T(RadPerDeg)
|
|
|
|
func sgn*[T: SomeNumber](x: T): int {.inline.} =
|
|
## Sign function.
|
|
##
|
|
## Returns:
|
|
## * `-1` for negative numbers and `NegInf`,
|
|
## * `1` for positive numbers and `Inf`,
|
|
## * `0` for positive zero, negative zero and `NaN`
|
|
runnableExamples:
|
|
doAssert sgn(5) == 1
|
|
doAssert sgn(0) == 0
|
|
doAssert sgn(-4.1) == -1
|
|
|
|
ord(T(0) < x) - ord(x < T(0))
|
|
|
|
{.pop.}
|
|
{.pop.}
|
|
|
|
func sum*[T](x: openArray[T]): T =
|
|
## Computes the sum of the elements in `x`.
|
|
##
|
|
## If `x` is empty, 0 is returned.
|
|
##
|
|
## **See also:**
|
|
## * `prod func <#prod,openArray[T]>`_
|
|
## * `cumsum func <#cumsum,openArray[T]>`_
|
|
## * `cumsummed func <#cumsummed,openArray[T]>`_
|
|
runnableExamples:
|
|
doAssert sum([1, 2, 3, 4]) == 10
|
|
doAssert sum([-4, 3, 5]) == 4
|
|
result = default(T)
|
|
for i in items(x): result = result + i
|
|
|
|
func prod*[T](x: openArray[T]): T =
|
|
## Computes the product of the elements in `x`.
|
|
##
|
|
## If `x` is empty, 1 is returned.
|
|
##
|
|
## **See also:**
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `fac func <#fac,int>`_
|
|
runnableExamples:
|
|
doAssert prod([1, 2, 3, 4]) == 24
|
|
doAssert prod([-4, 3, 5]) == -60
|
|
|
|
result = T(1)
|
|
for i in items(x): result = result * i
|
|
|
|
func cumprod*[T](x: var openArray[T]) =
|
|
## Transforms ``x`` in-place (must be declared as `var`) into its
|
|
## product.
|
|
##
|
|
## See also:
|
|
## * `prod proc <#sum,openArray[T]>`_
|
|
## * `cumproded proc <#cumproded,openArray[T]>`_ for a version which
|
|
## returns cumproded sequence
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4]
|
|
cumprod(a)
|
|
doAssert a == @[1, 2, 6, 24]
|
|
for i in 1 ..< x.len: x[i] = x[i-1] * x[i]
|
|
|
|
func cumproded*[T](x: openArray[T]): seq[T] =
|
|
## Return cumulative (aka prefix) product of ``x``.
|
|
##
|
|
## See also:
|
|
## * `prod proc <#prod,openArray[T]>`_
|
|
## * `cumprod proc <#cumprod,openArray[T]>`_ for the in-place version
|
|
runnableExamples:
|
|
let a = [1, 2, 3, 4]
|
|
doAssert cumproded(a) == @[1, 2, 6, 24]
|
|
result = @[]
|
|
let xLen = x.len
|
|
if xLen == 0:
|
|
return @[]
|
|
result.setLen(xLen)
|
|
result[0] = x[0]
|
|
for i in 1 ..< xLen: result[i] = result[i-1] * x[i]
|
|
|
|
func cumsummed*[T](x: openArray[T]): seq[T] =
|
|
## Returns the cumulative (aka prefix) summation of `x`.
|
|
##
|
|
## If `x` is empty, `@[]` is returned.
|
|
##
|
|
## **See also:**
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
|
|
runnableExamples:
|
|
doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
|
|
result = @[]
|
|
let xLen = x.len
|
|
if xLen == 0:
|
|
return @[]
|
|
result.setLen(xLen)
|
|
result[0] = x[0]
|
|
for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
|
|
|
|
func cumsum*[T](x: var openArray[T]) =
|
|
## Transforms `x` in-place (must be declared as `var`) into its
|
|
## cumulative (aka prefix) summation.
|
|
##
|
|
## **See also:**
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
|
|
## returns a cumsummed sequence
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4]
|
|
cumsum(a)
|
|
doAssert a == @[1, 3, 6, 10]
|
|
|
|
for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
|
|
|
|
func `^`*[T: SomeNumber](x: T, y: Natural): T =
|
|
## Computes `x` to the power of `y`.
|
|
##
|
|
## The exponent `y` must be non-negative, use
|
|
## `pow <#pow,float64,float64>`_ for negative exponents.
|
|
##
|
|
## **See also:**
|
|
## * `^ func <#^,T,U>`_ for negative exponent or floats
|
|
## * `pow func <#pow,float64,float64>`_ for `float32` or `float64` output
|
|
## * `sqrt func <#sqrt,float64>`_
|
|
## * `cbrt func <#cbrt,float64>`_
|
|
runnableExamples:
|
|
doAssert -3 ^ 0 == 1
|
|
doAssert -3 ^ 1 == -3
|
|
doAssert -3 ^ 2 == 9
|
|
|
|
case y
|
|
of 0: result = 1
|
|
of 1: result = x
|
|
of 2: result = x * x
|
|
of 3: result = x * x * x
|
|
else:
|
|
var (x, y) = (x, y)
|
|
result = 1
|
|
while true:
|
|
if (y and 1) != 0:
|
|
result *= x
|
|
y = y shr 1
|
|
if y == 0:
|
|
break
|
|
x *= x
|
|
|
|
func isInteger(y: SomeFloat): bool =
|
|
## Determines if a float represents an integer
|
|
return round(y) == y
|
|
|
|
func `^`*[T: SomeNumber, U: SomeFloat](x: T, y: U): float =
|
|
## Computes `x` to the power of `y`.
|
|
##
|
|
## Error handling follows the C++ specification even for the JS backend
|
|
## https://en.cppreference.com/w/cpp/numeric/math/pow
|
|
##
|
|
## **See also:**
|
|
## * `^ func <#^,T,Natural>`_
|
|
## * `pow func <#pow,float64,float64>`_ for `float32` or `float64` output
|
|
## * `sqrt func <#sqrt,float64>`_
|
|
## * `cbrt func <#cbrt,float64>`_
|
|
runnableExamples:
|
|
doAssert almostEqual(5.5 ^ 2.2, 42.540042248725975)
|
|
doAssert 1.0 ^ Inf == 1.0
|
|
let
|
|
isZero_x: bool = (x == 0.0 or x == -0.0)
|
|
isNegZero: bool = classify(x) == fcNegZero
|
|
isPosZero: bool = classify(x) == fcZero
|
|
yIsFinite: bool = (y != Inf and y != -Inf)
|
|
yIsOddInteger: bool = (isInteger(y) and yIsFinite and (abs(int(y) mod 2) == 1))
|
|
|
|
assert not(isPosZero and y < 0 and yIsOddInteger)
|
|
assert not(isNegZero and y < 0 and yIsOddInteger)
|
|
assert not(isZero_x and y < 0 and y != -Inf)
|
|
assert not(isZero_x and y == -Inf)
|
|
assert not(x < 0 and not isInteger(x) and yIsFinite and not yIsOddInteger)
|
|
when defined(js):
|
|
# JS behavior follows an old version of IEEE 754 for compatibility reasons
|
|
# See https://262.ecma-international.org/#sec-numeric-types-number-exponentiate
|
|
if (x == 1.0 or x == -1.0) and not yIsFinite:
|
|
float(1.0)
|
|
elif x == 1.0 and y.isNan():
|
|
float(1.0)
|
|
else:
|
|
float(pow(x, y))
|
|
else:
|
|
float(pow(x, y))
|
|
|
|
func gcd*[T](x, y: T): T =
|
|
## Computes the greatest common (positive) divisor of `x` and `y`.
|
|
##
|
|
## Note that for floats, the result cannot always be interpreted as
|
|
## "greatest decimal `z` such that `z*N == x and z*M == y`
|
|
## where N and M are positive integers".
|
|
##
|
|
## **See also:**
|
|
## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
|
|
## * `lcm func <#lcm,T,T>`_
|
|
runnableExamples:
|
|
doAssert gcd(13.5, 9.0) == 4.5
|
|
|
|
var (x, y) = (x, y)
|
|
while y != 0:
|
|
x = x mod y
|
|
swap x, y
|
|
abs x
|
|
|
|
when useBuiltins:
|
|
## this func uses bitwise comparisons from C compilers, which are not always available.
|
|
func gcd*(x, y: SomeInteger): SomeInteger =
|
|
## Computes the greatest common (positive) divisor of `x` and `y`,
|
|
## using the binary GCD (aka Stein's) algorithm.
|
|
##
|
|
## **See also:**
|
|
## * `gcd func <#gcd,T,T>`_ for a float version
|
|
## * `lcm func <#lcm,T,T>`_
|
|
runnableExamples:
|
|
doAssert gcd(12, 8) == 4
|
|
doAssert gcd(17, 63) == 1
|
|
|
|
when x is SomeSignedInt:
|
|
var x = abs(x)
|
|
else:
|
|
var x = x
|
|
when y is SomeSignedInt:
|
|
var y = abs(y)
|
|
else:
|
|
var y = y
|
|
|
|
if x == 0:
|
|
return y
|
|
if y == 0:
|
|
return x
|
|
|
|
let shift = countTrailingZeroBits(x or y)
|
|
y = y shr countTrailingZeroBits(y)
|
|
while x != 0:
|
|
x = x shr countTrailingZeroBits(x)
|
|
if y > x:
|
|
swap y, x
|
|
x -= y
|
|
y shl shift
|
|
|
|
func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
|
|
## Computes the greatest common (positive) divisor of the elements of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `gcd func <#gcd,T,T>`_ for a version with two arguments
|
|
runnableExamples:
|
|
doAssert gcd(@[13.5, 9.0]) == 4.5
|
|
|
|
result = x[0]
|
|
for i in 1 ..< x.len:
|
|
result = gcd(result, x[i])
|
|
|
|
func lcm*[T](x, y: T): T =
|
|
## Computes the least common multiple of `x` and `y`.
|
|
##
|
|
## **See also:**
|
|
## * `gcd func <#gcd,T,T>`_
|
|
runnableExamples:
|
|
doAssert lcm(24, 30) == 120
|
|
doAssert lcm(13, 39) == 39
|
|
|
|
x div gcd(x, y) * y
|
|
|
|
func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
|
|
## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
|
|
runnableExamples:
|
|
assert clamp(10, 1 .. 5) == 5
|
|
assert clamp(1, 1 .. 3) == 1
|
|
type A = enum a0, a1, a2, a3, a4, a5
|
|
assert a1.clamp(a2..a4) == a2
|
|
assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
|
|
doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
|
|
assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
|
|
clamp(val, bounds.a, bounds.b)
|
|
|
|
func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
|
|
## Computes the least common multiple of the elements of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `lcm func <#lcm,T,T>`_ for a version with two arguments
|
|
runnableExamples:
|
|
doAssert lcm(@[24, 30]) == 120
|
|
|
|
result = x[0]
|
|
for i in 1 ..< x.len:
|
|
result = lcm(result, x[i])
|
|
|