Files
Nim/lib/pure/random.nim
2024-12-13 19:06:43 +01:00

757 lines
27 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Nim's standard random number generator (RNG).
##
## Its implementation is based on the `xoroshiro128+`
## (xor/rotate/shift/rotate) library.
## * More information: https://xoroshiro.di.unimi.it
## * C implementation: https://xoroshiro.di.unimi.it/xoroshiro128plus.c
##
## **Do not use this module for cryptographic purposes!**
##
## Basic usage
## ===========
##
runnableExamples:
# Call randomize() once to initialize the default random number generator.
# If this is not called, the same results will occur every time these
# examples are run.
randomize()
# Pick a number in 0..100.
let num = rand(100)
doAssert num in 0..100
# Roll a six-sided die.
let roll = rand(1..6)
doAssert roll in 1..6
# Pick a marble from a bag.
let marbles = ["red", "blue", "green", "yellow", "purple"]
let pick = sample(marbles)
doAssert pick in marbles
# Shuffle some cards.
var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
shuffle(cards)
doAssert cards.len == 5
## These examples all use the default RNG. The
## `Rand type <#Rand>`_ represents the state of an RNG.
## For convenience, this module contains a default Rand state that corresponds
## to the default RNG. Most procs in this module which do
## not take in a Rand parameter, including those called in the above examples,
## use the default generator. Those procs are **not** thread-safe.
##
## Note that the default generator always starts in the same state.
## The `randomize proc <#randomize>`_ can be called to initialize the default
## generator with a seed based on the current time, and it only needs to be
## called once before the first usage of procs from this module. If
## `randomize` is not called, the default generator will always produce
## the same results.
##
## RNGs that are independent of the default one can be created with the
## `initRand proc <#initRand,int64>`_.
##
## Again, it is important to remember that this module must **not** be used for
## cryptographic applications.
##
## See also
## ========
## * `std/sysrand module <sysrand.html>`_ for a cryptographically secure pseudorandom number generator
## * `math module <math.html>`_ for basic math routines
## * `stats module <stats.html>`_ for statistical analysis
## * `list of cryptographic and hashing modules <lib.html#pure-libraries-hashing>`_
## in the standard library
import std/[algorithm, math]
import std/private/[since, jsutils]
when defined(nimPreviewSlimSystem):
import std/[assertions]
include system/inclrtl
{.push debugger: off.}
when hasWorkingInt64:
type Ui = uint64
const randMax = 18_446_744_073_709_551_615u64
else:
type Ui = uint32
const randMax = 4_294_967_295u32
type
Rand* = object ## State of a random number generator.
##
## Create a new Rand state using the `initRand proc <#initRand,int64>`_.
##
## The module contains a default Rand state for convenience.
## It corresponds to the default RNG's state.
## The default Rand state always starts with the same values, but the
## `randomize proc <#randomize>`_ can be used to seed the default generator
## with a value based on the current time.
##
## Many procs have two variations: one that takes in a Rand parameter and
## another that uses the default generator. The procs that use the default
## generator are **not** thread-safe!
a0, a1: Ui
when hasWorkingInt64:
const DefaultRandSeed = Rand(
a0: 0x69B4C98CB8530805u64,
a1: 0xFED1DD3004688D67CAu64)
# racy for multi-threading but good enough for now:
var state = DefaultRandSeed # global for backwards compatibility
else:
var state = Rand(
a0: 0x69B4C98Cu32,
a1: 0xFED1DD30u32) # global for backwards compatibility
func isValid(r: Rand): bool {.inline.} =
## Check whether state of `r` is valid.
##
## In `xoroshiro128+`, if all bits of `a0` and `a1` are zero,
## they are always zero after calling `next(r: var Rand)`.
not (r.a0 == 0 and r.a1 == 0)
since (1, 5):
template randState*(): untyped =
## Makes the default Rand state accessible from other modules.
## Useful for module authors.
state
proc rotl(x, k: Ui): Ui =
result = (x shl k) or (x shr (Ui(64) - k))
proc next*(r: var Rand): uint64 =
## Computes a random `uint64` number using the given state.
##
## **See also:**
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer between zero and
## a given upper bound
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
## * `skipRandomNumbers proc<#skipRandomNumbers,Rand>`_
runnableExamples("-r:off"):
var r = initRand(2019)
assert r.next() == 13223559681708962501'u64 # implementation defined
assert r.next() == 7229677234260823147'u64 # ditto
let s0 = r.a0
var s1 = r.a1
result = s0 + s1
s1 = s1 xor s0
r.a0 = rotl(s0, 55) xor s1 xor (s1 shl 14) # a, b
r.a1 = rotl(s1, 36) # c
proc skipRandomNumbers*(s: var Rand) =
## The jump function for the generator.
##
## This proc is equivalent to `2^64` calls to `next <#next,Rand>`_, and it can
## be used to generate `2^64` non-overlapping subsequences for parallel
## computations.
##
## When multiple threads are generating random numbers, each thread must
## own the `Rand <#Rand>`_ state it is using so that the thread can safely
## obtain random numbers. However, if each thread creates its own Rand state,
## the subsequences of random numbers that each thread generates may overlap,
## even if the provided seeds are unique. This is more likely to happen as the
## number of threads and amount of random numbers generated increases.
##
## If many threads will generate random numbers concurrently, it is better to
## create a single Rand state and pass it to each thread. After passing the
## Rand state to a thread, call this proc before passing it to the next one.
## By using the Rand state this way, the subsequences of random numbers
## generated in each thread will never overlap as long as no thread generates
## more than `2^64` random numbers.
##
## **See also:**
## * `next proc<#next,Rand>`_
runnableExamples("--threads:on"):
import std/random
const numbers = 100000
var
thr: array[0..3, Thread[(Rand, int)]]
vals: array[0..3, int]
proc randomSum(params: tuple[r: Rand, index: int]) {.thread.} =
var r = params.r
var s = 0 # avoid cache thrashing
for i in 1..numbers:
s += r.rand(0..10)
vals[params.index] = s
var r = initRand(2019)
for i in 0..<thr.len:
createThread(thr[i], randomSum, (r, i))
r.skipRandomNumbers()
joinThreads(thr)
for val in vals:
doAssert abs(val - numbers * 5) / numbers < 0.1
doAssert vals == [501737, 497901, 500683, 500157]
when hasWorkingInt64:
const helper = [0xbeac0467eba5facbu64, 0xd86b048b86aa9922u64]
else:
const helper = [0xbeac0467u32, 0xd86b048bu32]
var
s0 = Ui 0
s1 = Ui 0
for i in 0..high(helper):
for b in 0 ..< 64:
if (helper[i] and (Ui(1) shl Ui(b))) != 0:
s0 = s0 xor s.a0
s1 = s1 xor s.a1
discard next(s)
s.a0 = s0
s.a1 = s1
proc rand[T: uint | uint64](r: var Rand; max: T): T =
# xxx export in future work
result = default(T)
if max == 0: return
else:
let max = uint64(max)
when T.high.uint64 == uint64.high:
if max == uint64.high: return T(next(r))
var iters = 0
while true:
let x = next(r)
# avoid `mod` bias
if x <= randMax - (randMax mod max) or iters > 20:
return T(x mod (max + 1))
else:
inc iters
proc rand*(r: var Rand; max: Natural): int {.benign.} =
## Returns a random integer in the range `0..max` using the given state.
##
## **See also:**
## * `rand proc<#rand,int>`_ that returns an integer using the default RNG
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples:
var r = initRand(123)
if false:
assert r.rand(100) == 96 # implementation defined
# bootstrap: can't use `runnableExamples("-r:off")`
cast[int](rand(r, uint64(max)))
# xxx toUnsigned pending https://github.com/nim-lang/Nim/pull/18445
proc rand*(max: int): int {.benign.} =
## Returns a random integer in the range `0..max`.
##
## If `randomize <#randomize>`_ has not been called, the sequence of random
## numbers returned from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer using a
## provided state
## * `rand proc<#rand,float>`_ that returns a float
## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples("-r:off"):
randomize(123)
assert [rand(100), rand(100)] == [96, 63] # implementation defined
rand(state, max)
proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} =
## Returns a random floating point number in the range `0.0..max`
## using the given state.
##
## **See also:**
## * `rand proc<#rand,float>`_ that returns a float using the default RNG
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples:
var r = initRand(234)
let f = r.rand(1.0) # 8.717181376738381e-07
let x = next(r)
when defined(js):
when compiles(compileOption("jsbigint64")):
when compileOption("jsbigint64"):
result = (float(x) / float(high(uint64))) * max
else:
result = (float(x) / float(high(uint32))) * max
else:
result = (float(x) / float(high(uint32))) * max
else:
let u = (0x3FFu64 shl 52u64) or (x shr 12u64)
result = (cast[float](u) - 1.0) * max
proc rand*(max: float): float {.benign.} =
## Returns a random floating point number in the range `0.0..max`.
##
## If `randomize <#randomize>`_ has not been called, the sequence of random
## numbers returned from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `rand proc<#rand,Rand,range[]>`_ that returns a float using a
## provided state
## * `rand proc<#rand,int>`_ that returns an integer
## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples:
randomize(234)
let f = rand(1.0) # 8.717181376738381e-07
rand(state, max)
proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T =
## For a slice `a..b`, returns a value in the range `a..b` using the given
## state.
##
## Allowed types for `T` are integers, floats, and enums without holes.
##
## **See also:**
## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice and uses the default RNG
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples:
var r = initRand(345)
assert r.rand(1..5) <= 5
assert r.rand(-1.1 .. 1.2) >= -1.1
assert x.a <= x.b
when T is SomeFloat:
result = rand(r, x.b - x.a) + x.a
else: # Integers and Enum types
when jsNoBigInt64:
result = cast[T](rand(r, cast[uint](x.b) - cast[uint](x.a)) + cast[uint](x.a))
else:
result = cast[T](rand(r, cast[uint64](x.b) - cast[uint64](x.a)) + cast[uint64](x.a))
proc rand*[T: Ordinal or SomeFloat](x: HSlice[T, T]): T =
## For a slice `a..b`, returns a value in the range `a..b`.
##
## Allowed types for `T` are integers, floats, and enums without holes.
##
## If `randomize <#randomize>`_ has not been called, the sequence of random
## numbers returned from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `rand proc<#rand,Rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice and uses a provided state
## * `rand proc<#rand,int>`_ that returns an integer
## * `rand proc<#rand,float>`_ that returns a floating point number
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
runnableExamples:
randomize(345)
assert rand(1..6) <= 6
result = rand(state, x)
proc rand*[T: Ordinal](r: var Rand; t: typedesc[T]): T {.since: (1, 7, 1).} =
## Returns a random Ordinal in the range `low(T)..high(T)`.
##
## If `randomize <#randomize>`_ has not been called, the sequence of random
## numbers returned from this proc will always be the same.
##
## **See also:**
## * `rand proc<#rand,int>`_ that returns an integer
## * `rand proc<#rand,float>`_ that returns a floating point number
## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
when T is range or T is enum:
result = rand(r, low(T)..high(T))
elif T is bool:
result = r.next < randMax div 2
else:
when jsNoBigInt64:
result = cast[T](r.next shr (sizeof(uint)*8 - sizeof(T)*8))
else:
result = cast[T](r.next shr (sizeof(uint64)*8 - sizeof(T)*8))
proc rand*[T: Ordinal](t: typedesc[T]): T =
## Returns a random Ordinal in the range `low(T)..high(T)`.
##
## If `randomize <#randomize>`_ has not been called, the sequence of random
## numbers returned from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `rand proc<#rand,int>`_ that returns an integer
## * `rand proc<#rand,float>`_ that returns a floating point number
## * `rand proc<#rand,HSlice[T: Ordinal or float or float32 or float64,T: Ordinal or float or float32 or float64]>`_
## that accepts a slice
runnableExamples:
randomize(567)
type E = enum a, b, c, d
assert rand(E) in a..d
assert rand(char) in low(char)..high(char)
assert rand(int8) in low(int8)..high(int8)
assert rand(uint32) in low(uint32)..high(uint32)
assert rand(range[1..16]) in 1..16
result = rand(state, t)
proc sample*[T](r: var Rand; s: set[T]): T =
## Returns a random element from the set `s` using the given state.
##
## **See also:**
## * `sample proc<#sample,set[T]>`_ that uses the default RNG
## * `sample proc<#sample,Rand,openArray[T]>`_ for `openArray`s
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
## cumulative distribution function
runnableExamples:
var r = initRand(987)
let s = {1, 3, 5, 7, 9}
assert r.sample(s) in s
assert card(s) != 0
var i = rand(r, card(s) - 1)
for e in s:
if i == 0: return e
dec(i)
proc sample*[T](s: set[T]): T =
## Returns a random element from the set `s`.
##
## If `randomize <#randomize>`_ has not been called, the order of outcomes
## from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `sample proc<#sample,Rand,set[T]>`_ that uses a provided state
## * `sample proc<#sample,openArray[T]>`_ for `openArray`s
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
## cumulative distribution function
runnableExamples:
randomize(987)
let s = {1, 3, 5, 7, 9}
assert sample(s) in s
sample(state, s)
proc sample*[T](r: var Rand; a: openArray[T]): T =
## Returns a random element from `a` using the given state.
##
## **See also:**
## * `sample proc<#sample,openArray[T]>`_ that uses the default RNG
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
## cumulative distribution function
## * `sample proc<#sample,Rand,set[T]>`_ for sets
runnableExamples:
let marbles = ["red", "blue", "green", "yellow", "purple"]
var r = initRand(456)
assert r.sample(marbles) in marbles
result = a[r.rand(a.low..a.high)]
proc sample*[T](a: openArray[T]): lent T =
## Returns a random element from `a`.
##
## If `randomize <#randomize>`_ has not been called, the order of outcomes
## from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `sample proc<#sample,Rand,openArray[T]>`_ that uses a provided state
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
## cumulative distribution function
## * `sample proc<#sample,set[T]>`_ for sets
runnableExamples:
let marbles = ["red", "blue", "green", "yellow", "purple"]
randomize(456)
assert sample(marbles) in marbles
result = a[rand(a.low..a.high)]
proc sample*[T, U](r: var Rand; a: openArray[T]; cdf: openArray[U]): T =
## Returns an element from `a` using a cumulative distribution function
## (CDF) and the given state.
##
## The `cdf` argument does not have to be normalized, and it could contain
## any type of elements that can be converted to a `float`. It must be
## the same length as `a`. Each element in `cdf` should be greater than
## or equal to the previous element.
##
## The outcome of the `cumsum<math.html#cumsum,openArray[T]>`_ proc and the
## return value of the `cumsummed<math.html#cumsummed,openArray[T]>`_ proc,
## which are both in the math module, can be used as the `cdf` argument.
##
## **See also:**
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that also utilizes
## a CDF but uses the default RNG
## * `sample proc<#sample,Rand,openArray[T]>`_ that does not use a CDF
## * `sample proc<#sample,Rand,set[T]>`_ for sets
runnableExamples:
from std/math import cumsummed
let marbles = ["red", "blue", "green", "yellow", "purple"]
let count = [1, 6, 8, 3, 4]
let cdf = count.cumsummed
var r = initRand(789)
assert r.sample(marbles, cdf) in marbles
assert(cdf.len == a.len) # Two basic sanity checks.
assert(float(cdf[^1]) > 0.0)
# While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get
# awfully expensive even in debugging modes.
let u = r.rand(float(cdf[^1]))
a[cdf.upperBound(U(u))]
proc sample*[T, U](a: openArray[T]; cdf: openArray[U]): T =
## Returns an element from `a` using a cumulative distribution function
## (CDF).
##
## This proc works similarly to
## `sample <#sample,Rand,openArray[T],openArray[U]>`_.
## See that proc's documentation for more details.
##
## If `randomize <#randomize>`_ has not been called, the order of outcomes
## from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that also utilizes
## a CDF but uses a provided state
## * `sample proc<#sample,openArray[T]>`_ that does not use a CDF
## * `sample proc<#sample,set[T]>`_ for sets
runnableExamples:
from std/math import cumsummed
let marbles = ["red", "blue", "green", "yellow", "purple"]
let count = [1, 6, 8, 3, 4]
let cdf = count.cumsummed
randomize(789)
assert sample(marbles, cdf) in marbles
state.sample(a, cdf)
proc gauss*(r: var Rand; mu = 0.0; sigma = 1.0): float {.since: (1, 3).} =
## Returns a Gaussian random variate,
## with mean `mu` and standard deviation `sigma`
## using the given state.
# Ratio of uniforms method for normal
# https://www2.econ.osaka-u.ac.jp/~tanizaki/class/2013/econome3/13.pdf
const K = sqrt(2 / E)
var
a = 0.0
b = 0.0
while true:
a = rand(r, 1.0)
b = (2.0 * rand(r, 1.0) - 1.0) * K
if b * b <= -4.0 * a * a * ln(a): break
result = mu + sigma * (b / a)
proc gauss*(mu = 0.0, sigma = 1.0): float {.since: (1, 3).} =
## Returns a Gaussian random variate,
## with mean `mu` and standard deviation `sigma`.
##
## If `randomize <#randomize>`_ has not been called, the order of outcomes
## from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
result = gauss(state, mu, sigma)
proc initRand*(seed: int64): Rand =
## Initializes a new `Rand <#Rand>`_ state using the given seed.
##
## Providing a specific seed will produce the same results for that seed each time.
##
## The resulting state is independent of the default RNG's state. When `seed == 0`,
## we internally set the seed to an implementation defined non-zero value.
##
## **See also:**
## * `initRand proc<#initRand>`_ that uses the current time
## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG
## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time
runnableExamples:
from std/times import getTime, toUnix, nanosecond
var r1 = initRand(123)
let now = getTime()
var r2 = initRand(now.toUnix * 1_000_000_000 + now.nanosecond)
const seedFallback0 = int32.high # arbitrary
let seed = if seed != 0: seed else: seedFallback0 # because 0 is a fixed point
result = Rand(a0: Ui(seed shr 16), a1: Ui(seed and 0xffff))
when not defined(nimLegacyRandomInitRand):
# calling `discard next(result)` (even a few times) would still produce
# skewed numbers for the 1st call to `rand()`.
skipRandomNumbers(result)
discard next(result)
proc randomize*(seed: int64) {.benign.} =
## Initializes the default random number generator with the given seed.
##
## Providing a specific seed will produce the same results for that seed each time.
##
## **See also:**
## * `initRand proc<#initRand,int64>`_ that initializes a Rand state
## with a given seed
## * `randomize proc<#randomize>`_ that uses the current time instead
## * `initRand proc<#initRand>`_ that initializes a Rand state using
## the current time
runnableExamples:
from std/times import getTime, toUnix, nanosecond
randomize(123)
let now = getTime()
randomize(now.toUnix * 1_000_000_000 + now.nanosecond)
state = initRand(seed)
proc shuffle*[T](r: var Rand; x: var openArray[T]) =
## Shuffles a sequence of elements in-place using the given state.
##
## **See also:**
## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default RNG
runnableExamples:
var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
var r = initRand(678)
r.shuffle(cards)
import std/algorithm
assert cards.sorted == @["Ace", "Jack", "King", "Queen", "Ten"]
for i in countdown(x.high, 1):
let j = r.rand(i)
swap(x[i], x[j])
proc shuffle*[T](x: var openArray[T]) =
## Shuffles a sequence of elements in-place.
##
## If `randomize <#randomize>`_ has not been called, the order of outcomes
## from this proc will always be the same.
##
## This proc uses the default RNG. Thus, it is **not** thread-safe.
##
## **See also:**
## * `shuffle proc<#shuffle,Rand,openArray[T]>`_ that uses a provided state
runnableExamples:
var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
randomize(678)
shuffle(cards)
import std/algorithm
assert cards.sorted == @["Ace", "Jack", "King", "Queen", "Ten"]
shuffle(state, x)
when not defined(standalone):
when defined(js):
import std/times
else:
when defined(nimscript):
import std/hashes
else:
import std/[hashes, os, sysrand, monotimes]
when compileOption("threads"):
import std/locks
var baseSeedLock: Lock
baseSeedLock.initLock
var baseState: Rand
proc initRand(): Rand =
## Initializes a new Rand state.
##
## The resulting state is independent of the default RNG's state.
##
## **Note:** Does not work for the compile-time VM.
##
## See also:
## * `initRand proc<#initRand,int64>`_ that accepts a seed for a new Rand state
## * `randomize proc<#randomize>`_ that initializes the default RNG using the current time
## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default RNG
when defined(js):
let time = int64(times.epochTime() * 1000) and 0x7fff_ffff
result = initRand(time)
else:
proc getRandomState(): Rand =
when defined(nimscript):
result = Rand(
a0: CompileTime.hash.Ui,
a1: CompileDate.hash.Ui)
if not result.isValid:
result = DefaultRandSeed
else:
result = default(Rand)
var urand = default(array[sizeof(Rand), byte])
for i in 0 .. 7:
if sysrand.urandom(urand):
copyMem(result.addr, urand[0].addr, sizeof(Rand))
if result.isValid:
break
if not result.isValid:
# Don't try to get alternative random values from other source like time or process/thread id,
# because such code would be never tested and is a liability for security.
quit("Failed to initializes baseState in random module as sysrand.urandom doesn't work.")
when compileOption("threads"):
baseSeedLock.withLock:
if not baseState.isValid:
baseState = getRandomState()
result = baseState
baseState.skipRandomNumbers
else:
if not baseState.isValid:
baseState = getRandomState()
result = baseState
baseState.skipRandomNumbers
since (1, 5, 1):
export initRand
proc randomize*() {.benign.} =
## Initializes the default random number generator with a seed based on
## random number source.
##
## This proc only needs to be called once, and it should be called before
## the first usage of procs from this module that use the default RNG.
##
## **Note:** Does not work for the compile-time VM.
##
## **See also:**
## * `randomize proc<#randomize,int64>`_ that accepts a seed
## * `initRand proc<#initRand>`_ that initializes a Rand state using
## the current time
## * `initRand proc<#initRand,int64>`_ that initializes a Rand state
## with a given seed
state = initRand()
{.pop.}