Files
Nim/lib/pure/unicode.nim

1528 lines
50 KiB
Nim
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module provides support to handle the Unicode UTF-8 encoding.
##
## There are no specialized ``insert``, ``delete``, ``add`` and ``contains``
## procedures for ``seq[Rune]`` in this module because the generic variants
## of these procedures in the system module already work with it.
##
## The current version is compatible with Unicode v12.0.0.
##
## **See also:**
## * `strutils module <strutils.html>`_
## * `unidecode module <unidecode.html>`_
## * `encodings module <encodings.html>`_
include "system/inclrtl"
import std/strbasics
template toOa(s: string): auto = s.toOpenArray(0, s.high)
proc substr(s: openArray[char] , first, last: int): string =
# Copied substr from system
let first = max(first, 0)
let L = max(min(last, high(s)) - first + 1, 0)
result = newString(L)
for i in 0 .. L-1:
result[i] = s[i+first]
type
RuneImpl = int32 # underlying type of Rune
Rune* = distinct RuneImpl ## \
## Type that can hold a single Unicode code point.
##
## A Rune may be composed with other Runes to a character on the screen.
## `RuneImpl` is the underlying type used to store Runes, currently `int32`.
template ones(n: untyped): untyped = ((1 shl n)-1)
proc runeLen*(s: openArray[char]): int {.rtl, extern: "nuc$1".} =
## Returns the number of runes of the string ``s``.
runnableExamples:
let a = "añyóng"
doAssert a.runeLen == 6
## note: a.len == 8
result = 0
var i = 0
while i < len(s):
if uint(s[i]) <= 127: inc(i)
elif uint(s[i]) shr 5 == 0b110: inc(i, 2)
elif uint(s[i]) shr 4 == 0b1110: inc(i, 3)
elif uint(s[i]) shr 3 == 0b11110: inc(i, 4)
elif uint(s[i]) shr 2 == 0b111110: inc(i, 5)
elif uint(s[i]) shr 1 == 0b1111110: inc(i, 6)
else: inc i
inc(result)
proc runeLenAt*(s: openArray[char], i: Natural): int =
## Returns the number of bytes the rune starting at ``s[i]`` takes.
##
## See also:
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeLenAt(0) == 1
doAssert a.runeLenAt(1) == 2
if uint(s[i]) <= 127: result = 1
elif uint(s[i]) shr 5 == 0b110: result = 2
elif uint(s[i]) shr 4 == 0b1110: result = 3
elif uint(s[i]) shr 3 == 0b11110: result = 4
elif uint(s[i]) shr 2 == 0b111110: result = 5
elif uint(s[i]) shr 1 == 0b1111110: result = 6
else: result = 1
const replRune = Rune(0xFFFD)
template fastRuneAt*(s: openArray[char] or string, i: int, result: untyped, doInc = true) =
## Returns the rune ``s[i]`` in ``result``.
##
## If ``doInc == true`` (default), ``i`` is incremented by the number
## of bytes that have been processed.
bind ones
if uint(s[i]) <= 127:
result = Rune(uint(s[i]))
when doInc: inc(i)
elif uint(s[i]) shr 5 == 0b110:
# assert(uint(s[i+1]) shr 6 == 0b10)
if i <= s.len - 2:
result = Rune((uint(s[i]) and (ones(5))) shl 6 or
(uint(s[i+1]) and ones(6)))
when doInc: inc(i, 2)
else:
result = replRune
when doInc: inc(i)
elif uint(s[i]) shr 4 == 0b1110:
# assert(uint(s[i+1]) shr 6 == 0b10)
# assert(uint(s[i+2]) shr 6 == 0b10)
if i <= s.len - 3:
result = Rune((uint(s[i]) and ones(4)) shl 12 or
(uint(s[i+1]) and ones(6)) shl 6 or
(uint(s[i+2]) and ones(6)))
when doInc: inc(i, 3)
else:
result = replRune
when doInc: inc(i)
elif uint(s[i]) shr 3 == 0b11110:
# assert(uint(s[i+1]) shr 6 == 0b10)
# assert(uint(s[i+2]) shr 6 == 0b10)
# assert(uint(s[i+3]) shr 6 == 0b10)
if i <= s.len - 4:
result = Rune((uint(s[i]) and ones(3)) shl 18 or
(uint(s[i+1]) and ones(6)) shl 12 or
(uint(s[i+2]) and ones(6)) shl 6 or
(uint(s[i+3]) and ones(6)))
when doInc: inc(i, 4)
else:
result = replRune
when doInc: inc(i)
elif uint(s[i]) shr 2 == 0b111110:
# assert(uint(s[i+1]) shr 6 == 0b10)
# assert(uint(s[i+2]) shr 6 == 0b10)
# assert(uint(s[i+3]) shr 6 == 0b10)
# assert(uint(s[i+4]) shr 6 == 0b10)
if i <= s.len - 5:
result = Rune((uint(s[i]) and ones(2)) shl 24 or
(uint(s[i+1]) and ones(6)) shl 18 or
(uint(s[i+2]) and ones(6)) shl 12 or
(uint(s[i+3]) and ones(6)) shl 6 or
(uint(s[i+4]) and ones(6)))
when doInc: inc(i, 5)
else:
result = replRune
when doInc: inc(i)
elif uint(s[i]) shr 1 == 0b1111110:
# assert(uint(s[i+1]) shr 6 == 0b10)
# assert(uint(s[i+2]) shr 6 == 0b10)
# assert(uint(s[i+3]) shr 6 == 0b10)
# assert(uint(s[i+4]) shr 6 == 0b10)
# assert(uint(s[i+5]) shr 6 == 0b10)
if i <= s.len - 6:
result = Rune((uint(s[i]) and ones(1)) shl 30 or
(uint(s[i+1]) and ones(6)) shl 24 or
(uint(s[i+2]) and ones(6)) shl 18 or
(uint(s[i+3]) and ones(6)) shl 12 or
(uint(s[i+4]) and ones(6)) shl 6 or
(uint(s[i+5]) and ones(6)))
when doInc: inc(i, 6)
else:
result = replRune
when doInc: inc(i)
else:
result = Rune(uint(s[i]))
when doInc: inc(i)
proc runeAt*(s: openArray[char], i: Natural): Rune =
## Returns the rune in ``s`` at **byte index** ``i``.
##
## See also:
## * `runeAtPos proc <#runeAtPos,string,int>`_
## * `runeStrAtPos proc <#runeStrAtPos,string,Natural>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeAt(1) == "ñ".runeAt(0)
doAssert a.runeAt(2) == "ñ".runeAt(1)
doAssert a.runeAt(3) == "y".runeAt(0)
fastRuneAt(s, i, result, false)
proc validateUtf8*(s: openArray[char]): int =
## Returns the position of the invalid byte in ``s`` if the string ``s`` does
## not hold valid UTF-8 data. Otherwise ``-1`` is returned.
##
## See also:
## * `toUTF8 proc <#toUTF8,Rune>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
var i = 0
let L = s.len
while i < L:
if uint(s[i]) <= 127:
inc(i)
elif uint(s[i]) shr 5 == 0b110:
if uint(s[i]) < 0xc2: return i # Catch overlong ascii representations.
if i+1 < L and uint(s[i+1]) shr 6 == 0b10: inc(i, 2)
else: return i
elif uint(s[i]) shr 4 == 0b1110:
if i+2 < L and uint(s[i+1]) shr 6 == 0b10 and uint(s[i+2]) shr 6 == 0b10:
inc i, 3
else: return i
elif uint(s[i]) shr 3 == 0b11110:
if i+3 < L and uint(s[i+1]) shr 6 == 0b10 and
uint(s[i+2]) shr 6 == 0b10 and
uint(s[i+3]) shr 6 == 0b10:
inc i, 4
else: return i
else:
return i
return -1
template fastToUTF8Copy*(c: Rune, s: var string, pos: int, doInc = true) =
## Copies UTF-8 representation of ``c`` into the preallocated string ``s``
## starting at position ``pos``.
##
## If ``doInc == true`` (default), ``pos`` is incremented
## by the number of bytes that have been processed.
##
## To be the most efficient, make sure ``s`` is preallocated
## with an additional amount equal to the byte length of ``c``.
##
## See also:
## * `validateUtf8 proc <#validateUtf8,string>`_
## * `toUTF8 proc <#toUTF8,Rune>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
var i = RuneImpl(c)
if i <=% 127:
s.setLen(pos+1)
s[pos+0] = chr(i)
when doInc: inc(pos)
elif i <=% 0x07FF:
s.setLen(pos+2)
s[pos+0] = chr((i shr 6) or 0b110_00000)
s[pos+1] = chr((i and ones(6)) or 0b10_0000_00)
when doInc: inc(pos, 2)
elif i <=% 0xFFFF:
s.setLen(pos+3)
s[pos+0] = chr(i shr 12 or 0b1110_0000)
s[pos+1] = chr(i shr 6 and ones(6) or 0b10_0000_00)
s[pos+2] = chr(i and ones(6) or 0b10_0000_00)
when doInc: inc(pos, 3)
elif i <=% 0x001FFFFF:
s.setLen(pos+4)
s[pos+0] = chr(i shr 18 or 0b1111_0000)
s[pos+1] = chr(i shr 12 and ones(6) or 0b10_0000_00)
s[pos+2] = chr(i shr 6 and ones(6) or 0b10_0000_00)
s[pos+3] = chr(i and ones(6) or 0b10_0000_00)
when doInc: inc(pos, 4)
elif i <=% 0x03FFFFFF:
s.setLen(pos+5)
s[pos+0] = chr(i shr 24 or 0b111110_00)
s[pos+1] = chr(i shr 18 and ones(6) or 0b10_0000_00)
s[pos+2] = chr(i shr 12 and ones(6) or 0b10_0000_00)
s[pos+3] = chr(i shr 6 and ones(6) or 0b10_0000_00)
s[pos+4] = chr(i and ones(6) or 0b10_0000_00)
when doInc: inc(pos, 5)
elif i <=% 0x7FFFFFFF:
s.setLen(pos+6)
s[pos+0] = chr(i shr 30 or 0b1111110_0)
s[pos+1] = chr(i shr 24 and ones(6) or 0b10_0000_00)
s[pos+2] = chr(i shr 18 and ones(6) or 0b10_0000_00)
s[pos+3] = chr(i shr 12 and ones(6) or 0b10_0000_00)
s[pos+4] = chr(i shr 6 and ones(6) or 0b10_0000_00)
s[pos+5] = chr(i and ones(6) or 0b10_0000_00)
when doInc: inc(pos, 6)
else:
discard # error, exception?
proc toUTF8*(c: Rune): string {.rtl, extern: "nuc$1".} =
## Converts a rune into its UTF-8 representation.
##
## See also:
## * `validateUtf8 proc <#validateUtf8,string>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
## * `utf8 iterator <#utf8.i,string>`_
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeAt(1).toUTF8 == "ñ"
result = ""
fastToUTF8Copy(c, result, 0, false)
proc add*(s: var string; c: Rune) =
## Adds a rune ``c`` to a string ``s``.
runnableExamples:
var s = "abc"
let c = "ä".runeAt(0)
s.add(c)
doAssert s == "abcä"
let pos = s.len
fastToUTF8Copy(c, s, pos, false)
proc `$`*(rune: Rune): string =
## An alias for `toUTF8 <#toUTF8,Rune>`_.
##
## See also:
## * `validateUtf8 proc <#validateUtf8,string>`_
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
rune.toUTF8
proc `$`*(runes: seq[Rune]): string =
## Converts a sequence of Runes to a string.
##
## See also:
## * `toRunes <#toRunes,string>`_ for a reverse operation
runnableExamples:
let
someString = "öÑ"
someRunes = toRunes(someString)
doAssert $someRunes == someString
result = ""
for rune in runes:
result.add rune
proc runeOffset*(s: openArray[char], pos: Natural, start: Natural = 0): int =
## Returns the byte position of rune
## at position ``pos`` in ``s`` with an optional start byte position.
## Returns the special value -1 if it runs out of the string.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeReverseOffset proc <#runeReverseOffset,string,Positive>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeOffset(1) == 1
doAssert a.runeOffset(3) == 4
doAssert a.runeOffset(4) == 6
var
i = 0
o = start
while i < pos:
o += runeLenAt(s, o)
if o >= s.len:
return -1
inc i
return o
proc runeReverseOffset*(s: openArray[char], rev: Positive): (int, int) =
## Returns a tuple with the byte offset of the
## rune at position ``rev`` in ``s``, counting
## from the end (starting with 1) and the total
## number of runes in the string.
##
## Returns a negative value for offset if there are too few runes in
## the string to satisfy the request.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeOffset proc <#runeOffset,string,Natural,Natural>`_
var
a = rev.int
o = 0
x = 0
let times = 2*rev.int-s.runeLen # transformed from rev.int - a < s.runeLen - rev.int
while o < s.len:
let r = runeLenAt(s, o)
o += r
if a > times:
x += r
dec a
result = if a > 0: (-a, rev.int-a) else: (x, -a+rev.int)
proc runeAtPos*(s: openArray[char], pos: int): Rune =
## Returns the rune at position ``pos``.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeAt proc <#runeAt,string,Natural>`_
## * `runeStrAtPos proc <#runeStrAtPos,string,Natural>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
fastRuneAt(s, runeOffset(s, pos), result, false)
proc runeStrAtPos*(s: openArray[char], pos: Natural): string =
## Returns the rune at position ``pos`` as UTF8 String.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeAt proc <#runeAt,string,Natural>`_
## * `runeAtPos proc <#runeAtPos,string,int>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
let o = runeOffset(s, pos)
substr(s.toOpenArray(o, (o+runeLenAt(s, o)-1)))
proc runeSubStr*(s: openArray[char], pos: int, len: int = int.high): string =
## Returns the UTF-8 substring starting at code point ``pos``
## with ``len`` code points.
##
## If ``pos`` or ``len`` is negative they count from
## the end of the string. If ``len`` is not given it means the longest
## possible string.
runnableExamples:
let s = "Hänsel ««: 10,00€"
doAssert(runeSubStr(s, 0, 2) == "")
doAssert(runeSubStr(s, 10, 1) == ":")
doAssert(runeSubStr(s, -6) == "10,00€")
doAssert(runeSubStr(s, 10) == ": 10,00€")
doAssert(runeSubStr(s, 12, 5) == "10,00")
doAssert(runeSubStr(s, -6, 3) == "10,")
if pos < 0:
let (o, rl) = runeReverseOffset(s, -pos)
if len >= rl:
result = s.substr(o, s.high)
elif len < 0:
let e = rl + len
if e < 0:
result = ""
else:
result = s.substr(o, runeOffset(s, e-(rl+pos), o)-1)
else:
result = s.substr(o, runeOffset(s, len, o)-1)
else:
let o = runeOffset(s, pos)
if o < 0:
result = ""
elif len == int.high:
result = s.substr(o, s.len-1)
elif len < 0:
let (e, rl) = runeReverseOffset(s, -len)
discard rl
if e <= 0:
result = ""
else:
result = s.substr(o, e-1)
else:
var e = runeOffset(s, len, o)
if e < 0:
e = s.len
result = s.substr(o, e-1)
proc `<=%`*(a, b: Rune): bool =
## Checks if code point of `a` is smaller or equal to code point of `b`.
runnableExamples:
let
a = "ú".runeAt(0)
b = "ü".runeAt(0)
doAssert a <=% b
return int(a) <=% int(b)
proc `<%`*(a, b: Rune): bool =
## Checks if code point of `a` is smaller than code point of `b`.
runnableExamples:
let
a = "ú".runeAt(0)
b = "ü".runeAt(0)
doAssert a <% b
return int(a) <% int(b)
proc `==`*(a, b: Rune): bool =
## Checks if two runes are equal.
return int(a) == int(b)
include "includes/unicode_ranges"
proc binarySearch(c: RuneImpl, tab: openArray[int32], len, stride: int): int =
var n = len
var t = 0
while n > 1:
var m = n div 2
var p = t + m*stride
if c >= tab[p]:
t = p
n = n-m
else:
n = m
if n != 0 and c >= tab[t]:
return t
return -1
proc toLower*(c: Rune): Rune {.rtl, extern: "nuc$1".} =
## Converts ``c`` into lower case. This works for any rune.
##
## If possible, prefer ``toLower`` over ``toUpper``.
##
## See also:
## * `toUpper proc <#toUpper,Rune>`_
## * `toTitle proc <#toTitle,Rune>`_
## * `isLower proc <#isLower,Rune>`_
var c = RuneImpl(c)
var p = binarySearch(c, toLowerRanges, len(toLowerRanges) div 3, 3)
if p >= 0 and c >= toLowerRanges[p] and c <= toLowerRanges[p+1]:
return Rune(c + toLowerRanges[p+2] - 500)
p = binarySearch(c, toLowerSinglets, len(toLowerSinglets) div 2, 2)
if p >= 0 and c == toLowerSinglets[p]:
return Rune(c + toLowerSinglets[p+1] - 500)
return Rune(c)
proc toUpper*(c: Rune): Rune {.rtl, extern: "nuc$1".} =
## Converts ``c`` into upper case. This works for any rune.
##
## If possible, prefer ``toLower`` over ``toUpper``.
##
## See also:
## * `toLower proc <#toLower,Rune>`_
## * `toTitle proc <#toTitle,Rune>`_
## * `isUpper proc <#isUpper,Rune>`_
var c = RuneImpl(c)
var p = binarySearch(c, toUpperRanges, len(toUpperRanges) div 3, 3)
if p >= 0 and c >= toUpperRanges[p] and c <= toUpperRanges[p+1]:
return Rune(c + toUpperRanges[p+2] - 500)
p = binarySearch(c, toUpperSinglets, len(toUpperSinglets) div 2, 2)
if p >= 0 and c == toUpperSinglets[p]:
return Rune(c + toUpperSinglets[p+1] - 500)
return Rune(c)
proc toTitle*(c: Rune): Rune {.rtl, extern: "nuc$1".} =
## Converts ``c`` to title case.
##
## See also:
## * `toLower proc <#toLower,Rune>`_
## * `toUpper proc <#toUpper,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
var c = RuneImpl(c)
var p = binarySearch(c, toTitleSinglets, len(toTitleSinglets) div 2, 2)
if p >= 0 and c == toTitleSinglets[p]:
return Rune(c + toTitleSinglets[p+1] - 500)
return Rune(c)
proc isLower*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is a lower case rune.
##
## If possible, prefer ``isLower`` over ``isUpper``.
##
## See also:
## * `toLower proc <#toLower,Rune>`_
## * `isUpper proc <#isUpper,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
var c = RuneImpl(c)
# Note: toUpperRanges is correct here!
var p = binarySearch(c, toUpperRanges, len(toUpperRanges) div 3, 3)
if p >= 0 and c >= toUpperRanges[p] and c <= toUpperRanges[p+1]:
return true
p = binarySearch(c, toUpperSinglets, len(toUpperSinglets) div 2, 2)
if p >= 0 and c == toUpperSinglets[p]:
return true
else:
return false
proc isUpper*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is a upper case rune.
##
## If possible, prefer ``isLower`` over ``isUpper``.
##
## See also:
## * `toUpper proc <#toUpper,Rune>`_
## * `isLower proc <#isLower,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
## * `isAlpha proc <#isAlpha,Rune>`_
## * `isWhiteSpace proc <#isWhiteSpace,Rune>`_
var c = RuneImpl(c)
# Note: toLowerRanges is correct here!
var p = binarySearch(c, toLowerRanges, len(toLowerRanges) div 3, 3)
if p >= 0 and c >= toLowerRanges[p] and c <= toLowerRanges[p+1]:
return true
p = binarySearch(c, toLowerSinglets, len(toLowerSinglets) div 2, 2)
if p >= 0 and c == toLowerSinglets[p]:
return true
else:
return false
proc isAlpha*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is an *alpha* rune (i.e., a letter).
##
## See also:
## * `isLower proc <#isLower,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
## * `isAlpha proc <#isAlpha,Rune>`_
## * `isWhiteSpace proc <#isWhiteSpace,Rune>`_
## * `isCombining proc <#isCombining,Rune>`_
if isUpper(c) or isLower(c):
return true
var c = RuneImpl(c)
var p = binarySearch(c, alphaRanges, len(alphaRanges) div 2, 2)
if p >= 0 and c >= alphaRanges[p] and c <= alphaRanges[p+1]:
return true
p = binarySearch(c, alphaSinglets, len(alphaSinglets), 1)
if p >= 0 and c == alphaSinglets[p]:
return true
else:
return false
proc isTitle*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is a Unicode titlecase code point.
##
## See also:
## * `toTitle proc <#toTitle,Rune>`_
## * `isLower proc <#isLower,Rune>`_
## * `isUpper proc <#isUpper,Rune>`_
## * `isAlpha proc <#isAlpha,Rune>`_
## * `isWhiteSpace proc <#isWhiteSpace,Rune>`_
return isUpper(c) and isLower(c)
proc isWhiteSpace*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is a Unicode whitespace code point.
##
## See also:
## * `isLower proc <#isLower,Rune>`_
## * `isUpper proc <#isUpper,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
## * `isAlpha proc <#isAlpha,Rune>`_
var c = RuneImpl(c)
var p = binarySearch(c, spaceRanges, len(spaceRanges) div 2, 2)
if p >= 0 and c >= spaceRanges[p] and c <= spaceRanges[p+1]:
return true
else:
return false
proc isCombining*(c: Rune): bool {.rtl, extern: "nuc$1".} =
## Returns true if ``c`` is a Unicode combining code unit.
##
## See also:
## * `isLower proc <#isLower,Rune>`_
## * `isUpper proc <#isUpper,Rune>`_
## * `isTitle proc <#isTitle,Rune>`_
## * `isAlpha proc <#isAlpha,Rune>`_
var c = RuneImpl(c)
# Optimized to return false immediately for ASCII
return c >= 0x0300 and (c <= 0x036f or
(c >= 0x1ab0 and c <= 0x1aff) or
(c >= 0x1dc0 and c <= 0x1dff) or
(c >= 0x20d0 and c <= 0x20ff) or
(c >= 0xfe20 and c <= 0xfe2f))
template runeCheck(s, runeProc) =
## Common code for isAlpha and isSpace.
result = if len(s) == 0: false else: true
var
i = 0
rune: Rune
while i < len(s) and result:
fastRuneAt(s, i, rune, doInc = true)
result = runeProc(rune) and result
proc isAlpha*(s: openArray[char]): bool {.noSideEffect,
rtl, extern: "nuc$1Str".} =
## Returns true if ``s`` contains all alphabetic runes.
runnableExamples:
let a = "añyóng"
doAssert a.isAlpha
runeCheck(s, isAlpha)
proc isSpace*(s: openArray[char]): bool {.noSideEffect,
rtl, extern: "nuc$1Str".} =
## Returns true if ``s`` contains all whitespace runes.
runnableExamples:
let a = "\t\l \v\r\f"
doAssert a.isSpace
runeCheck(s, isWhiteSpace)
template convertRune(s, runeProc) =
## Convert runes in ``s`` using ``runeProc`` as the converter.
result = newString(len(s))
var
i = 0
resultIndex = 0
rune: Rune
while i < len(s):
fastRuneAt(s, i, rune, doInc = true)
rune = runeProc(rune)
fastToUTF8Copy(rune, result, resultIndex, doInc = true)
proc toUpper*(s: openArray[char]): string {.noSideEffect,
rtl, extern: "nuc$1Str".} =
## Converts ``s`` into upper-case runes.
runnableExamples:
doAssert toUpper("abγ") == "ABΓ"
convertRune(s, toUpper)
proc toLower*(s: openArray[char]): string {.noSideEffect,
rtl, extern: "nuc$1Str".} =
## Converts ``s`` into lower-case runes.
runnableExamples:
doAssert toLower("ABΓ") == "abγ"
convertRune(s, toLower)
proc swapCase*(s: openArray[char]): string {.noSideEffect,
rtl, extern: "nuc$1".} =
## Swaps the case of runes in ``s``.
##
## Returns a new string such that the cases of all runes
## are swapped if possible.
runnableExamples:
doAssert swapCase("Αlpha Βeta Γamma") == "αLPHA βETA γAMMA"
var
i = 0
resultIndex = 0
rune: Rune
result = newString(len(s))
while i < len(s):
fastRuneAt(s, i, rune)
if rune.isUpper():
rune = rune.toLower()
elif rune.isLower():
rune = rune.toUpper()
fastToUTF8Copy(rune, result, resultIndex, doInc = true)
proc capitalize*(s: openArray[char]): string {.noSideEffect,
rtl, extern: "nuc$1".} =
## Converts the first character of ``s`` into an upper-case rune.
runnableExamples:
doAssert capitalize("βeta") == "Βeta"
if len(s) == 0:
return ""
var
rune: Rune
i = 0
fastRuneAt(s, i, rune, doInc = true)
result = $toUpper(rune) & substr(s.toOpenArray(i, s.high))
when not defined(nimHasEffectsOf):
{.pragma: effectsOf.}
proc translate*(s: openArray[char], replacements: proc(key: string): string): string {.
rtl, extern: "nuc$1", effectsOf: replacements.} =
## Translates words in a string using the ``replacements`` proc to substitute
## words inside ``s`` with their replacements.
##
## ``replacements`` is any proc that takes a word and returns
## a new word to fill it's place.
runnableExamples:
proc wordToNumber(s: string): string =
case s
of "one": "1"
of "two": "2"
else: s
let a = "one two three four"
doAssert a.translate(wordToNumber) == "1 2 three four"
# Allocate memory for the new string based on the old one.
# If the new string length is less than the old, no allocations
# will be needed. If the new string length is greater than the
# old, then maybe only one allocation is needed
result = newStringOfCap(s.len)
var
index = 0
lastIndex = 0
wordStart = 0
inWord = false
rune: Rune
while index < len(s):
lastIndex = index
fastRuneAt(s, index, rune)
let whiteSpace = rune.isWhiteSpace()
if whiteSpace and inWord:
# If we've reached the end of a word
let word = substr(s.toOpenArray(wordStart, lastIndex - 1))
result.add(replacements(word))
result.add($rune)
inWord = false
elif not whiteSpace and not inWord:
# If we've hit a non space character and
# are not currently in a word, track
# the starting index of the word
inWord = true
wordStart = lastIndex
elif whiteSpace:
result.add($rune)
if wordStart < len(s) and inWord:
# Get the trailing word at the end
let word = substr(s.toOpenArray(wordStart, s.high))
result.add(replacements(word))
proc title*(s: openArray[char]): string {.noSideEffect,
rtl, extern: "nuc$1".} =
## Converts ``s`` to a unicode title.
##
## Returns a new string such that the first character
## in each word inside ``s`` is capitalized.
runnableExamples:
doAssert title("αlpha βeta γamma") == "Αlpha Βeta Γamma"
var
i = 0
resultIndex = 0
rune: Rune
result = newString(len(s))
var firstRune = true
while i < len(s):
fastRuneAt(s, i, rune)
if not rune.isWhiteSpace() and firstRune:
rune = rune.toUpper()
firstRune = false
elif rune.isWhiteSpace():
firstRune = true
fastToUTF8Copy(rune, result, resultIndex, doInc = true)
iterator runes*(s: openArray[char]): Rune =
## Iterates over any rune of the string ``s`` returning runes.
var
i = 0
result: Rune
while i < len(s):
fastRuneAt(s, i, result, true)
yield result
iterator utf8*(s: openArray[char]): string =
## Iterates over any rune of the string ``s`` returning utf8 values.
##
## See also:
## * `validateUtf8 proc <#validateUtf8,string>`_
## * `toUTF8 proc <#toUTF8,Rune>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
var o = 0
while o < s.len:
let n = runeLenAt(s, o)
yield substr(s.toOpenArray(o, (o+n-1)))
o += n
proc toRunes*(s: openArray[char]): seq[Rune] =
## Obtains a sequence containing the Runes in ``s``.
##
## See also:
## * `$ proc <#$,Rune>`_ for a reverse operation
runnableExamples:
let a = toRunes("aáä")
doAssert a == @["a".runeAt(0), "á".runeAt(0), "ä".runeAt(0)]
result = newSeq[Rune]()
for r in s.runes:
result.add(r)
proc cmpRunesIgnoreCase*(a, b: openArray[char]): int {.rtl, extern: "nuc$1".} =
## Compares two UTF-8 strings and ignores the case. Returns:
##
## | `0` if a == b
## | `< 0` if a < b
## | `> 0` if a > b
var i = 0
var j = 0
var ar, br: Rune
while i < a.len and j < b.len:
# slow path:
fastRuneAt(a, i, ar)
fastRuneAt(b, j, br)
when sizeof(int) < 4:
const lo = low(int).int32
const hi = high(int).int32
result = clamp(RuneImpl(toLower(ar)) - RuneImpl(toLower(br)), lo, hi).int
else:
result = RuneImpl(toLower(ar)) - RuneImpl(toLower(br))
if result != 0: return
result = a.len - b.len
proc reversed*(s: openArray[char]): string =
## Returns the reverse of ``s``, interpreting it as runes.
##
## Unicode combining characters are correctly interpreted as well.
runnableExamples:
assert reversed("Reverse this!") == "!siht esreveR"
assert reversed("先秦兩漢") == "漢兩秦先"
assert reversed("as⃝df̅") == "f̅ds⃝a"
assert reversed("a⃞b⃞c⃞") == "c⃞b⃞a⃞"
var
i = 0
lastI = 0
newPos = len(s) - 1
blockPos = 0
r: Rune
template reverseUntil(pos) =
var j = pos - 1
while j > blockPos:
result[newPos] = s[j]
dec j
dec newPos
blockPos = pos - 1
result = newString(len(s))
while i < len(s):
lastI = i
fastRuneAt(s, i, r, true)
if not isCombining(r):
reverseUntil(lastI)
reverseUntil(len(s))
proc graphemeLen*(s: openArray[char]; i: Natural): Natural =
## The number of bytes belonging to byte index ``s[i]``,
## including following combining code units.
runnableExamples:
let a = "añyóng"
doAssert a.graphemeLen(1) == 2 ## ñ
doAssert a.graphemeLen(2) == 1
doAssert a.graphemeLen(4) == 2 ## ó
result = 0
var j = i.int
var r, r2: Rune
if j < s.len:
fastRuneAt(s, j, r, true)
result = j-i
while j < s.len:
fastRuneAt(s, j, r2, true)
if not isCombining(r2): break
result = j-i
proc lastRune*(s: openArray[char]; last: int): (Rune, int) =
## Length of the last rune in ``s[0..last]``. Returns the rune and its length
## in bytes.
if s[last] <= chr(127):
result = (Rune(s[last]), 1)
else:
var L = 0
while last-L >= 0 and uint(s[last-L]) shr 6 == 0b10: inc(L)
var r: Rune
fastRuneAt(s, last-L, r, false)
result = (r, L+1)
proc size*(r: Rune): int {.noSideEffect.} =
## Returns the number of bytes the rune ``r`` takes.
runnableExamples:
let a = toRunes ""
doAssert size(a[0]) == 1
doAssert size(a[1]) == 2
let v = r.uint32
if v <= 0x007F'u32: result = 1
elif v <= 0x07FF'u32: result = 2
elif v <= 0xFFFF'u32: result = 3
elif v <= 0x1FFFFF'u32: result = 4
elif v <= 0x3FFFFFF'u32: result = 5
elif v <= 0x7FFFFFFF'u32: result = 6
else: result = 1
# --------- Private templates for different split separators -----------
proc stringHasSep(s: openArray[char], index: int, seps: openArray[Rune]): bool =
var rune: Rune
fastRuneAt(s, index, rune, false)
return seps.contains(rune)
proc stringHasSep(s: openArray[char], index: int, sep: Rune): bool =
var rune: Rune
fastRuneAt(s, index, rune, false)
return sep == rune
template splitCommon(s, sep, maxsplit: untyped) =
## Common code for split procedures.
let
sLen = len(s)
var
last = 0
splits = maxsplit
if sLen > 0:
while last <= sLen:
var first = last
while last < sLen and not stringHasSep(s, last, sep):
inc(last, runeLenAt(s, last))
if splits == 0: last = sLen
yield substr(s.toOpenArray(first, (last - 1)))
if splits == 0: break
dec(splits)
inc(last, if last < sLen: runeLenAt(s, last) else: 1)
iterator split*(s: openArray[char], seps: openArray[Rune] = unicodeSpaces,
maxsplit: int = -1): string =
## Splits the unicode string ``s`` into substrings using a group of separators.
##
## Substrings are separated by a substring containing only ``seps``.
runnableExamples:
import std/sequtils
assert toSeq("hÃllo\lthis\lis an\texample\l".split) ==
@["hÃllo", "this", "is", "an", "example", ""]
# And the following code splits the same string using a sequence of Runes.
assert toSeq(split("añyóng:hÃllo;是$example", ";:$".toRunes)) ==
@["añyóng", "hÃllo", "", "example"]
# example with a `Rune` separator and unused one `;`:
assert toSeq(split("ab是de:f:", ";:是".toRunes)) == @["ab", "de", "f", ""]
# Another example that splits a string containing a date.
let date = "2012-11-20T22:08:08.398990"
assert toSeq(split(date, " -:T".toRunes)) ==
@["2012", "11", "20", "22", "08", "08.398990"]
splitCommon(s, seps, maxsplit)
iterator splitWhitespace*(s: openArray[char]): string =
## Splits a unicode string at whitespace runes.
splitCommon(s, unicodeSpaces, -1)
template accResult(iter: untyped) =
result = @[]
for x in iter: add(result, x)
proc splitWhitespace*(s: openArray[char]): seq[string] {.noSideEffect,
rtl, extern: "ncuSplitWhitespace".} =
## The same as the `splitWhitespace <#splitWhitespace.i,string>`_
## iterator, but is a proc that returns a sequence of substrings.
accResult(splitWhitespace(s))
iterator split*(s: openArray[char], sep: Rune, maxsplit: int = -1): string =
## Splits the unicode string ``s`` into substrings using a single separator.
## Substrings are separated by the rune ``sep``.
runnableExamples:
import std/sequtils
assert toSeq(split(";;hÃllo;this;is;an;;example;;;是", ";".runeAt(0))) ==
@["", "", "hÃllo", "this", "is", "an", "", "example", "", "", ""]
splitCommon(s, sep, maxsplit)
proc split*(s: openArray[char], seps: openArray[Rune] = unicodeSpaces, maxsplit: int = -1):
seq[string] {.noSideEffect, rtl, extern: "nucSplitRunes".} =
## The same as the `split iterator <#split.i,string,openArray[Rune],int>`_,
## but is a proc that returns a sequence of substrings.
accResult(split(s, seps, maxsplit))
proc split*(s: openArray[char], sep: Rune, maxsplit: int = -1): seq[string] {.noSideEffect,
rtl, extern: "nucSplitRune".} =
## The same as the `split iterator <#split.i,string,Rune,int>`_, but is a proc
## that returns a sequence of substrings.
accResult(split(s, sep, maxsplit))
func getRuneHeadIdx(s: openArray[char], idx: int): int =
## Given `[idx]` is within a Rune, then `s[result]` is the first byte of that Rune.
result = idx
if s[result] <= '\x7F': # 0b0111_1111
return
# 0b1...
dec result
for _ in 0..1:
if s[result] >= '\xC0': # 0b11xx_xxxx
# 0b110... or 0b1110...
return
dec result
proc strip*(s: openArray[char], leading = true, trailing = true,
runes: openArray[Rune] = unicodeSpaces): string {.noSideEffect,
rtl, extern: "nucStrip".} =
## Strips leading or trailing ``runes`` from ``s`` and returns
## the resulting string.
##
## If ``leading`` is true (default), leading ``runes`` are stripped.
## If ``trailing`` is true (default), trailing ``runes`` are stripped.
## If both are false, the string is returned unchanged.
runnableExamples:
let a = "\táñyóng "
doAssert a.strip == "áñyóng"
doAssert a.strip(leading = false) == "\táñyóng"
doAssert a.strip(trailing = false) == "áñyóng "
var
sI = 0 ## starting index into string ``s``
eI = len(s) - 1 ## ending index into ``s``, where the last ``Rune`` starts
if leading:
var
i = 0
xI: int ## value of ``sI`` at the beginning of the iteration
rune: Rune
while i < len(s):
xI = i
fastRuneAt(s, i, rune)
sI = i # Assume to start from next rune
if not runes.contains(rune):
sI = xI # Go back to where the current rune starts
break
if trailing:
var
i = eI
xI: int
rune: Rune
while i >= 0:
i = getRuneHeadIdx(s, i)
xI = i
fastRuneAt(s, xI, rune)
if not runes.contains(rune):
eI = xI - 1
break
dec(i)
let newLen = eI - sI + 1
result = newStringOfCap(newLen)
if newLen > 0:
result.add substr(s.toOpenArray(sI, eI))
proc repeat*(c: Rune, count: Natural): string {.noSideEffect,
rtl, extern: "nucRepeatRune".} =
## Returns a string of ``count`` Runes ``c``.
##
## The returned string will have a rune-length of ``count``.
runnableExamples:
let a = "ñ".runeAt(0)
doAssert a.repeat(5) == "ñññññ"
let s = $c
result = newStringOfCap(count * s.len)
for i in 0 ..< count:
result.add s
proc align*(s: openArray[char], count: Natural, padding = ' '.Rune): string {.
noSideEffect, rtl, extern: "nucAlignString".} =
## Aligns a unicode string ``s`` with ``padding``, so that it has a rune-length
## of ``count``.
##
## ``padding`` characters (by default spaces) are added before ``s`` resulting in
## right alignment. If ``s.runelen >= count``, no spaces are added and ``s`` is
## returned unchanged. If you need to left align a string use the `alignLeft
## proc <#alignLeft,string,Natural>`_.
runnableExamples:
assert align("abc", 4) == " abc"
assert align("a", 0) == "a"
assert align("1232", 6) == " 1232"
assert align("1232", 6, '#'.Rune) == "##1232"
assert align("Åge", 5) == " Åge"
assert align("×", 4, '_'.Rune) == "___×"
let sLen = s.runeLen
if sLen < count:
let padStr = $padding
result = newStringOfCap(padStr.len * count)
let spaces = count - sLen
for i in 0 ..< spaces: result.add padStr
result.add s
else:
result = s.substr
proc alignLeft*(s: openArray[char], count: Natural, padding = ' '.Rune): string {.
noSideEffect.} =
## Left-aligns a unicode string ``s`` with ``padding``, so that it has a
## rune-length of ``count``.
##
## ``padding`` characters (by default spaces) are added after ``s`` resulting in
## left alignment. If ``s.runelen >= count``, no spaces are added and ``s`` is
## returned unchanged. If you need to right align a string use the `align
## proc <#align,string,Natural>`_.
runnableExamples:
assert alignLeft("abc", 4) == "abc "
assert alignLeft("a", 0) == "a"
assert alignLeft("1232", 6) == "1232 "
assert alignLeft("1232", 6, '#'.Rune) == "1232##"
assert alignLeft("Åge", 5) == "Åge "
assert alignLeft("×", 4, '_'.Rune) == "×___"
let sLen = s.runeLen
if sLen < count:
let padStr = $padding
result = newStringOfCap(s.len + (count - sLen) * padStr.len)
result.add s
for i in sLen ..< count:
result.add padStr
else:
result = s.substr
proc runeLen*(s: string): int {.inline.} =
## Returns the number of runes of the string ``s``.
runnableExamples:
let a = "añyóng"
doAssert a.runeLen == 6
## note: a.len == 8
runeLen(toOa(s))
proc runeLenAt*(s: string, i: Natural): int {.inline.} =
## Returns the number of bytes the rune starting at ``s[i]`` takes.
##
## See also:
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeLenAt(0) == 1
doAssert a.runeLenAt(1) == 2
runeLenAt(toOa(s), i)
proc runeAt*(s: string, i: Natural): Rune {.inline.} =
## Returns the rune in ``s`` at **byte index** ``i``.
##
## See also:
## * `runeAtPos proc <#runeAtPos,string,int>`_
## * `runeStrAtPos proc <#runeStrAtPos,string,Natural>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeAt(1) == "ñ".runeAt(0)
doAssert a.runeAt(2) == "ñ".runeAt(1)
doAssert a.runeAt(3) == "y".runeAt(0)
fastRuneAt(s, i, result, false)
proc validateUtf8*(s: string): int {.inline.} =
## Returns the position of the invalid byte in ``s`` if the string ``s`` does
## not hold valid UTF-8 data. Otherwise ``-1`` is returned.
##
## See also:
## * `toUTF8 proc <#toUTF8,Rune>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
validateUtf8(toOa(s))
proc runeOffset*(s: string, pos: Natural, start: Natural = 0): int {.inline.} =
## Returns the byte position of rune
## at position ``pos`` in ``s`` with an optional start byte position.
## Returns the special value -1 if it runs out of the string.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeReverseOffset proc <#runeReverseOffset,string,Positive>`_
runnableExamples:
let a = "añyóng"
doAssert a.runeOffset(1) == 1
doAssert a.runeOffset(3) == 4
doAssert a.runeOffset(4) == 6
runeOffset(toOa(s), pos, start)
proc runeReverseOffset*(s: string, rev: Positive): (int, int) {.inline.} =
## Returns a tuple with the byte offset of the
## rune at position ``rev`` in ``s``, counting
## from the end (starting with 1) and the total
## number of runes in the string.
##
## Returns a negative value for offset if there are too few runes in
## the string to satisfy the request.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeOffset proc <#runeOffset,string,Natural,Natural>`_
runeReverseOffset(toOa(s), rev)
proc runeAtPos*(s: string, pos: int): Rune {.inline.} =
## Returns the rune at position ``pos``.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeAt proc <#runeAt,string,Natural>`_
## * `runeStrAtPos proc <#runeStrAtPos,string,Natural>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
fastRuneAt(toOa(s), runeOffset(s, pos), result, false)
proc runeStrAtPos*(s: string, pos: Natural): string {.inline.} =
## Returns the rune at position ``pos`` as UTF8 String.
##
## **Beware:** This can lead to unoptimized code and slow execution!
## Most problems can be solved more efficiently by using an iterator
## or conversion to a seq of Rune.
##
## See also:
## * `runeAt proc <#runeAt,string,Natural>`_
## * `runeAtPos proc <#runeAtPos,string,int>`_
## * `fastRuneAt template <#fastRuneAt.t,string,int,untyped>`_
let o = runeOffset(s, pos)
substr(s.toOpenArray(o, (o+runeLenAt(s, o)-1)))
proc runeSubStr*(s: string, pos: int, len: int = int.high): string {.inline.} =
## Returns the UTF-8 substring starting at code point ``pos``
## with ``len`` code points.
##
## If ``pos`` or ``len`` is negative they count from
## the end of the string. If ``len`` is not given it means the longest
## possible string.
runnableExamples:
let s = "Hänsel ««: 10,00€"
doAssert(runeSubStr(s, 0, 2) == "")
doAssert(runeSubStr(s, 10, 1) == ":")
doAssert(runeSubStr(s, -6) == "10,00€")
doAssert(runeSubStr(s, 10) == ": 10,00€")
doAssert(runeSubStr(s, 12, 5) == "10,00")
doAssert(runeSubStr(s, -6, 3) == "10,")
runeSubStr(toOa(s), pos, len)
proc isAlpha*(s: string): bool {.noSideEffect, inline.} =
## Returns true if ``s`` contains all alphabetic runes.
runnableExamples:
let a = "añyóng"
doAssert a.isAlpha
isAlpha(toOa(s))
proc isSpace*(s: string): bool {.noSideEffect, inline.} =
## Returns true if ``s`` contains all whitespace runes.
runnableExamples:
let a = "\t\l \v\r\f"
doAssert a.isSpace
isSpace(toOa(s))
proc toUpper*(s: string): string {.noSideEffect, inline.} =
## Converts ``s`` into upper-case runes.
runnableExamples:
doAssert toUpper("abγ") == "ABΓ"
toUpper(toOa(s))
proc toLower*(s: string): string {.noSideEffect, inline.} =
## Converts ``s`` into lower-case runes.
runnableExamples:
doAssert toLower("ABΓ") == "abγ"
toLower(toOa(s))
proc swapCase*(s: string): string {.noSideEffect, inline.} =
## Swaps the case of runes in ``s``.
##
## Returns a new string such that the cases of all runes
## are swapped if possible.
runnableExamples:
doAssert swapCase("Αlpha Βeta Γamma") == "αLPHA βETA γAMMA"
swapCase(toOa(s))
proc capitalize*(s: string): string {.noSideEffect.} =
## Converts the first character of ``s`` into an upper-case rune.
runnableExamples:
doAssert capitalize("βeta") == "Βeta"
capitalize(toOa(s))
proc translate*(s: string, replacements: proc(key: string): string): string {.effectsOf: replacements, inline.} =
## Translates words in a string using the ``replacements`` proc to substitute
## words inside ``s`` with their replacements.
##
## ``replacements`` is any proc that takes a word and returns
## a new word to fill it's place.
runnableExamples:
proc wordToNumber(s: string): string =
case s
of "one": "1"
of "two": "2"
else: s
let a = "one two three four"
doAssert a.translate(wordToNumber) == "1 2 three four"
translate(toOa(s), replacements)
proc title*(s: string): string {.noSideEffect, inline.} =
## Converts ``s`` to a unicode title.
##
## Returns a new string such that the first character
## in each word inside ``s`` is capitalized.
runnableExamples:
doAssert title("αlpha βeta γamma") == "Αlpha Βeta Γamma"
title(toOa(s))
iterator runes*(s: string): Rune =
## Iterates over any rune of the string ``s`` returning runes.
for rune in runes(toOa(s)):
yield rune
iterator utf8*(s: string): string =
## Iterates over any rune of the string ``s`` returning utf8 values.
##
## See also:
## * `validateUtf8 proc <#validateUtf8,string>`_
## * `toUTF8 proc <#toUTF8,Rune>`_
## * `$ proc <#$,Rune>`_ alias for `toUTF8`
## * `fastToUTF8Copy template <#fastToUTF8Copy.t,Rune,string,int>`_
for str in utf8(toOa(s)):
yield str
proc toRunes*(s: string): seq[Rune] {.inline.} =
## Obtains a sequence containing the Runes in ``s``.
##
## See also:
## * `$ proc <#$,Rune>`_ for a reverse operation
runnableExamples:
let a = toRunes("aáä")
doAssert a == @["a".runeAt(0), "á".runeAt(0), "ä".runeAt(0)]
toRunes(toOa(s))
proc cmpRunesIgnoreCase*(a, b: string): int {.inline.} =
## Compares two UTF-8 strings and ignores the case. Returns:
##
## | `0` if a == b
## | `< 0` if a < b
## | `> 0` if a > b
cmpRunesIgnoreCase(a.toOa(), b.toOa())
proc reversed*(s: string): string {.inline.} =
## Returns the reverse of ``s``, interpreting it as runes.
##
## Unicode combining characters are correctly interpreted as well.
runnableExamples:
assert reversed("Reverse this!") == "!siht esreveR"
assert reversed("先秦兩漢") == "漢兩秦先"
assert reversed("as⃝df̅") == "f̅ds⃝a"
assert reversed("a⃞b⃞c⃞") == "c⃞b⃞a⃞"
reversed(toOa(s))
proc graphemeLen*(s: string; i: Natural): Natural {.inline.} =
## The number of bytes belonging to byte index ``s[i]``,
## including following combining code unit.
runnableExamples:
let a = "añyóng"
doAssert a.graphemeLen(1) == 2 ## ñ
doAssert a.graphemeLen(2) == 1
doAssert a.graphemeLen(4) == 2 ## ó
graphemeLen(toOa(s), i)
proc lastRune*(s: string; last: int): (Rune, int) {.inline.} =
## Length of the last rune in ``s[0..last]``. Returns the rune and its length
## in bytes.
lastRune(toOa(s), last)
iterator split*(s: string, seps: openArray[Rune] = unicodeSpaces,
maxsplit: int = -1): string =
## Splits the unicode string ``s`` into substrings using a group of separators.
##
## Substrings are separated by a substring containing only ``seps``.
runnableExamples:
import std/sequtils
assert toSeq("hÃllo\lthis\lis an\texample\l".split) ==
@["hÃllo", "this", "is", "an", "example", ""]
# And the following code splits the same string using a sequence of Runes.
assert toSeq(split("añyóng:hÃllo;是$example", ";:$".toRunes)) ==
@["añyóng", "hÃllo", "", "example"]
# example with a `Rune` separator and unused one `;`:
assert toSeq(split("ab是de:f:", ";:是".toRunes)) == @["ab", "de", "f", ""]
# Another example that splits a string containing a date.
let date = "2012-11-20T22:08:08.398990"
assert toSeq(split(date, " -:T".toRunes)) ==
@["2012", "11", "20", "22", "08", "08.398990"]
splitCommon(toOa(s), seps, maxsplit)
iterator splitWhitespace*(s: string): string =
## Splits a unicode string at whitespace runes.
splitCommon(s.toOa(), unicodeSpaces, -1)
proc splitWhitespace*(s: string): seq[string] {.noSideEffect, inline.}=
## The same as the `splitWhitespace <#splitWhitespace.i,string>`_
## iterator, but is a proc that returns a sequence of substrings.
accResult(splitWhitespace(toOa(s)))
iterator split*(s: string, sep: Rune, maxsplit: int = -1): string =
## Splits the unicode string ``s`` into substrings using a single separator.
## Substrings are separated by the rune ``sep``.
runnableExamples:
import std/sequtils
assert toSeq(split(";;hÃllo;this;is;an;;example;;;是", ";".runeAt(0))) ==
@["", "", "hÃllo", "this", "is", "an", "", "example", "", "", ""]
splitCommon(toOa(s), sep, maxsplit)
proc split*(s: string, seps: openArray[Rune] = unicodeSpaces, maxsplit: int = -1):
seq[string] {.noSideEffect, inline.} =
## The same as the `split iterator <#split.i,string,openArray[Rune],int>`_,
## but is a proc that returns a sequence of substrings.
accResult(split(toOa(s), seps, maxsplit))
proc split*(s: string, sep: Rune, maxsplit: int = -1): seq[string] {.noSideEffect, inline.} =
## The same as the `split iterator <#split.i,string,Rune,int>`_, but is a proc
## that returns a sequence of substrings.
accResult(split(toOa(s), sep, maxsplit))
proc strip*(s: string, leading = true, trailing = true,
runes: openArray[Rune] = unicodeSpaces): string {.noSideEffect, inline.} =
## Strips leading or trailing ``runes`` from ``s`` and returns
## the resulting string.
##
## If ``leading`` is true (default), leading ``runes`` are stripped.
## If ``trailing`` is true (default), trailing ``runes`` are stripped.
## If both are false, the string is returned unchanged.
runnableExamples:
let a = "\táñyóng "
doAssert a.strip == "áñyóng"
doAssert a.strip(leading = false) == "\táñyóng"
doAssert a.strip(trailing = false) == "áñyóng "
strip(toOa(s), leading, trailing, runes)
proc align*(s: string, count: Natural, padding = ' '.Rune): string {.noSideEffect, inline.} =
## Aligns a unicode string ``s`` with ``padding``, so that it has a rune-length
## of ``count``.
##
## ``padding`` characters (by default spaces) are added before ``s`` resulting in
## right alignment. If ``s.runelen >= count``, no spaces are added and ``s`` is
## returned unchanged. If you need to left align a string use the `alignLeft
## proc <#alignLeft,string,Natural>`_.
runnableExamples:
assert align("abc", 4) == " abc"
assert align("a", 0) == "a"
assert align("1232", 6) == " 1232"
assert align("1232", 6, '#'.Rune) == "##1232"
assert align("Åge", 5) == " Åge"
assert align("×", 4, '_'.Rune) == "___×"
align(toOa(s), count, padding)
proc alignLeft*(s: string, count: Natural, padding = ' '.Rune): string {.noSideEffect, inline.} =
## Left-aligns a unicode string ``s`` with ``padding``, so that it has a
## rune-length of ``count``.
##
## ``padding`` characters (by default spaces) are added after ``s`` resulting in
## left alignment. If ``s.runelen >= count``, no spaces are added and ``s`` is
## returned unchanged. If you need to right align a string use the `align
## proc <#align,string,Natural>`_.
runnableExamples:
assert alignLeft("abc", 4) == "abc "
assert alignLeft("a", 0) == "a"
assert alignLeft("1232", 6) == "1232 "
assert alignLeft("1232", 6, '#'.Rune) == "1232##"
assert alignLeft("Åge", 5) == "Åge "
assert alignLeft("×", 4, '_'.Rune) == "×___"
alignLeft(toOa(s), count, padding)