mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
follow up https://github.com/nim-lang/Nim/pull/22851 follow up https://github.com/nim-lang/Nim/pull/22873
287 lines
8.7 KiB
Nim
287 lines
8.7 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Nim Contributors
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
## [SHA-1 (Secure Hash Algorithm 1)](https://en.wikipedia.org/wiki/SHA-1)
|
|
## is a cryptographic hash function which takes an input and produces
|
|
## a 160-bit (20-byte) hash value known as a message digest.
|
|
##
|
|
## See also
|
|
## ========
|
|
## * `base64 module<base64.html>`_ for a Base64 encoder and decoder
|
|
## * `hashes module<hashes.html>`_ for efficient computations of hash values for diverse Nim types
|
|
## * `md5 module<md5.html>`_ for the MD5 checksum algorithm
|
|
|
|
runnableExamples:
|
|
let accessName = secureHash("John Doe")
|
|
assert $accessName == "AE6E4D1209F17B460503904FAD297B31E9CF6362"
|
|
|
|
runnableExamples("-r:off"):
|
|
let
|
|
a = secureHashFile("myFile.nim")
|
|
b = parseSecureHash("10DFAEBF6BFDBC7939957068E2EFACEC4972933C")
|
|
assert a == b, "files don't match"
|
|
|
|
|
|
{.deprecated: "use command `nimble install checksums` and import `checksums/sha1` instead".}
|
|
|
|
import std/strutils
|
|
from std/endians import bigEndian32, bigEndian64
|
|
|
|
when defined(nimPreviewSlimSystem):
|
|
import std/syncio
|
|
|
|
const Sha1DigestSize = 20
|
|
|
|
type
|
|
Sha1Digest* = array[0 .. Sha1DigestSize - 1, uint8]
|
|
SecureHash* = distinct Sha1Digest
|
|
|
|
type
|
|
Sha1State* = object
|
|
count: int
|
|
state: array[5, uint32]
|
|
buf: array[64, byte]
|
|
|
|
# This implementation of the SHA-1 algorithm was ported from the Chromium OS one
|
|
# with minor modifications that should not affect its functionality.
|
|
|
|
proc newSha1State*(): Sha1State =
|
|
## Creates a `Sha1State`.
|
|
##
|
|
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
|
|
## there's no need to call this function explicitly.
|
|
result.count = 0
|
|
result.state[0] = 0x67452301'u32
|
|
result.state[1] = 0xEFCDAB89'u32
|
|
result.state[2] = 0x98BADCFE'u32
|
|
result.state[3] = 0x10325476'u32
|
|
result.state[4] = 0xC3D2E1F0'u32
|
|
|
|
template ror27(val: uint32): uint32 = (val shr 27) or (val shl 5)
|
|
template ror2 (val: uint32): uint32 = (val shr 2) or (val shl 30)
|
|
template ror31(val: uint32): uint32 = (val shr 31) or (val shl 1)
|
|
|
|
proc transform(ctx: var Sha1State) =
|
|
var w: array[80, uint32]
|
|
var a, b, c, d, e: uint32
|
|
var t = 0
|
|
|
|
a = ctx.state[0]
|
|
b = ctx.state[1]
|
|
c = ctx.state[2]
|
|
d = ctx.state[3]
|
|
e = ctx.state[4]
|
|
|
|
template shaF1(a, b, c, d, e, t: untyped) =
|
|
bigEndian32(addr w[t], addr ctx.buf[t * 4])
|
|
e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
|
|
b = ror2(b)
|
|
|
|
while t < 15:
|
|
shaF1(a, b, c, d, e, t + 0)
|
|
shaF1(e, a, b, c, d, t + 1)
|
|
shaF1(d, e, a, b, c, t + 2)
|
|
shaF1(c, d, e, a, b, t + 3)
|
|
shaF1(b, c, d, e, a, t + 4)
|
|
t += 5
|
|
shaF1(a, b, c, d, e, t + 0) # 16th one, t == 15
|
|
|
|
template shaF11(a, b, c, d, e, t: untyped) =
|
|
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
|
|
e += ror27(a) + w[t] + (d xor (b and (c xor d))) + 0x5A827999'u32
|
|
b = ror2(b)
|
|
|
|
shaF11(e, a, b, c, d, t + 1)
|
|
shaF11(d, e, a, b, c, t + 2)
|
|
shaF11(c, d, e, a, b, t + 3)
|
|
shaF11(b, c, d, e, a, t + 4)
|
|
|
|
template shaF2(a, b, c, d, e, t: untyped) =
|
|
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
|
|
e += ror27(a) + w[t] + (b xor c xor d) + 0x6ED9EBA1'u32
|
|
b = ror2(b)
|
|
|
|
t = 20
|
|
while t < 40:
|
|
shaF2(a, b, c, d, e, t + 0)
|
|
shaF2(e, a, b, c, d, t + 1)
|
|
shaF2(d, e, a, b, c, t + 2)
|
|
shaF2(c, d, e, a, b, t + 3)
|
|
shaF2(b, c, d, e, a, t + 4)
|
|
t += 5
|
|
|
|
template shaF3(a, b, c, d, e, t: untyped) =
|
|
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
|
|
e += ror27(a) + w[t] + ((b and c) or (d and (b or c))) + 0x8F1BBCDC'u32
|
|
b = ror2(b)
|
|
|
|
while t < 60:
|
|
shaF3(a, b, c, d, e, t + 0)
|
|
shaF3(e, a, b, c, d, t + 1)
|
|
shaF3(d, e, a, b, c, t + 2)
|
|
shaF3(c, d, e, a, b, t + 3)
|
|
shaF3(b, c, d, e, a, t + 4)
|
|
t += 5
|
|
|
|
template shaF4(a, b, c, d, e, t: untyped) =
|
|
w[t] = ror31(w[t-3] xor w[t-8] xor w[t-14] xor w[t-16])
|
|
e += ror27(a) + w[t] + (b xor c xor d) + 0xCA62C1D6'u32
|
|
b = ror2(b)
|
|
|
|
while t < 80:
|
|
shaF4(a, b, c, d, e, t + 0)
|
|
shaF4(e, a, b, c, d, t + 1)
|
|
shaF4(d, e, a, b, c, t + 2)
|
|
shaF4(c, d, e, a, b, t + 3)
|
|
shaF4(b, c, d, e, a, t + 4)
|
|
t += 5
|
|
|
|
ctx.state[0] += a
|
|
ctx.state[1] += b
|
|
ctx.state[2] += c
|
|
ctx.state[3] += d
|
|
ctx.state[4] += e
|
|
|
|
proc update*(ctx: var Sha1State, data: openArray[char]) =
|
|
## Updates the `Sha1State` with `data`.
|
|
##
|
|
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
|
|
## there's no need to call this function explicitly.
|
|
var i = ctx.count mod 64
|
|
var j = 0
|
|
var len = data.len
|
|
# Gather 64-bytes worth of data in order to perform a round with the leftover
|
|
# data we had stored (but not processed yet)
|
|
if len > 64 - i:
|
|
copyMem(addr ctx.buf[i], unsafeAddr data[j], 64 - i)
|
|
len -= 64 - i
|
|
j += 64 - i
|
|
transform(ctx)
|
|
# Update the index since it's used in the while loop below _and_ we want to
|
|
# keep its value if this code path isn't executed
|
|
i = 0
|
|
# Process the bulk of the payload
|
|
while len >= 64:
|
|
copyMem(addr ctx.buf[0], unsafeAddr data[j], 64)
|
|
len -= 64
|
|
j += 64
|
|
transform(ctx)
|
|
# Process the tail of the payload (len is < 64)
|
|
while len > 0:
|
|
dec len
|
|
ctx.buf[i] = byte(data[j])
|
|
inc i
|
|
inc j
|
|
if i == 64:
|
|
transform(ctx)
|
|
i = 0
|
|
ctx.count += data.len
|
|
|
|
proc finalize*(ctx: var Sha1State): Sha1Digest =
|
|
## Finalizes the `Sha1State` and returns a `Sha1Digest`.
|
|
##
|
|
## If you use the `secureHash proc <#secureHash,openArray[char]>`_,
|
|
## there's no need to call this function explicitly.
|
|
var cnt = uint64(ctx.count * 8)
|
|
# a 1 bit
|
|
update(ctx, "\x80")
|
|
# Add padding until we reach a complexive size of 64 - 8 bytes
|
|
while (ctx.count mod 64) != (64 - 8):
|
|
update(ctx, "\x00")
|
|
# The message length as a 64bit BE number completes the block
|
|
var tmp: array[8, char]
|
|
bigEndian64(addr tmp[0], addr cnt)
|
|
update(ctx, tmp)
|
|
# Turn the result into a single 160-bit number
|
|
for i in 0 ..< 5:
|
|
bigEndian32(addr ctx.state[i], addr ctx.state[i])
|
|
copyMem(addr result[0], addr ctx.state[0], Sha1DigestSize)
|
|
|
|
# Public API
|
|
|
|
proc secureHash*(str: openArray[char]): SecureHash =
|
|
## Generates a `SecureHash` from `str`.
|
|
##
|
|
## **See also:**
|
|
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
|
|
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
|
|
runnableExamples:
|
|
let hash = secureHash("Hello World")
|
|
assert hash == parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
|
|
|
|
var state = newSha1State()
|
|
state.update(str)
|
|
SecureHash(state.finalize())
|
|
|
|
proc secureHashFile*(filename: string): SecureHash =
|
|
## Generates a `SecureHash` from a file.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
|
|
## * `parseSecureHash proc <#parseSecureHash,string>`_ for converting a string `hash` to `SecureHash`
|
|
const BufferLength = 8192
|
|
|
|
let f = open(filename)
|
|
var state = newSha1State()
|
|
var buffer = newString(BufferLength)
|
|
while true:
|
|
let length = readChars(f, buffer)
|
|
if length == 0:
|
|
break
|
|
buffer.setLen(length)
|
|
state.update(buffer)
|
|
if length != BufferLength:
|
|
break
|
|
close(f)
|
|
|
|
SecureHash(state.finalize())
|
|
|
|
proc `$`*(self: SecureHash): string =
|
|
## Returns the string representation of a `SecureHash`.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
|
|
runnableExamples:
|
|
let hash = secureHash("Hello World")
|
|
assert $hash == "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
|
|
|
|
result = ""
|
|
for v in Sha1Digest(self):
|
|
result.add(toHex(int(v), 2))
|
|
|
|
proc parseSecureHash*(hash: string): SecureHash =
|
|
## Converts a string `hash` to a `SecureHash`.
|
|
##
|
|
## **See also:**
|
|
## * `secureHash proc <#secureHash,openArray[char]>`_ for generating a `SecureHash` from a string
|
|
## * `secureHashFile proc <#secureHashFile,string>`_ for generating a `SecureHash` from a file
|
|
runnableExamples:
|
|
let
|
|
hashStr = "0A4D55A8D778E5022FAB701977C5D840BBC486D0"
|
|
secureHash = secureHash("Hello World")
|
|
assert secureHash == parseSecureHash(hashStr)
|
|
|
|
for i in 0 ..< Sha1DigestSize:
|
|
Sha1Digest(result)[i] = uint8(parseHexInt(hash[i*2] & hash[i*2 + 1]))
|
|
|
|
proc `==`*(a, b: SecureHash): bool =
|
|
## Checks if two `SecureHash` values are identical.
|
|
runnableExamples:
|
|
let
|
|
a = secureHash("Hello World")
|
|
b = secureHash("Goodbye World")
|
|
c = parseSecureHash("0A4D55A8D778E5022FAB701977C5D840BBC486D0")
|
|
assert a != b
|
|
assert a == c
|
|
|
|
# Not a constant-time comparison, but that's acceptable in this context
|
|
Sha1Digest(a) == Sha1Digest(b)
|
|
|
|
proc isValidSha1Hash*(s: string): bool =
|
|
## Checks if a string is a valid sha1 hash sum.
|
|
s.len == 40 and allCharsInSet(s, HexDigits) |