Files
Nim/tests/manyloc/argument_parser/argument_parser.nim
2023-08-15 06:27:36 +02:00

494 lines
20 KiB
Nim

## Command line parsing module for Nim.
##
## `Nim <http://nim-lang.org>`_ provides the `parseopt module
## <http://nim-lang.org/parseopt.html>`_ to parse options from the
## commandline. This module tries to provide functionality to prevent you from
## writing commandline parsing and let you concentrate on providing the best
## possible experience for your users.
##
## Source code for this module can be found at
## https://github.com/gradha/argument_parser.
import os, strutils, tables, math, parseutils, sequtils, sets, algorithm,
unicode
const
VERSION_STR* = "0.1.2" ## Module version as a string.
VERSION_INT* = (major: 0, minor: 1, maintenance: 2) ## \
## Module version as an integer tuple.
##
## Major versions changes mean a break in API backwards compatibility, either
## through removal of symbols or modification of their purpose.
##
## Minor version changes can add procs (and maybe default parameters). Minor
## odd versions are development/git/unstable versions. Minor even versions
## are public stable releases.
##
## Maintenance version changes mean bugfixes or non API changes.
# - Types
type
Tparam_kind* = enum ## Different types of results for parameter parsing.
PK_EMPTY, PK_INT, PK_FLOAT, PK_STRING, PK_BOOL,
PK_BIGGEST_INT, PK_BIGGEST_FLOAT, PK_HELP
Tparameter_callback* =
proc (parameter: string; value: var Tparsed_parameter): string ## \
## Prototype of parameter callbacks
##
## A parameter callback is just a custom proc you provide which is invoked
## after a parameter is parsed passing the basic type validation. The
## `parameter` parameter is the string which triggered the option. The
## `value` parameter contains the string passed by the user already parsed
## into the basic type you specified for it.
##
## The callback proc has modification access to the Tparsed_parameter
## `value` parameter that will be put into Tcommandline_results: you can
## read it and also modify it, maybe changing its type. In fact, if you
## need special parsing, most likely you will end up specifying PK_STRING
## in the parameter input specification so that the parse() proc doesn't
## *mangle* the string before you can process it yourself.
##
## If the callback decides to abort the validation of the parameter, it has
## to put into result a non zero length string with a message for the user
## explaining why the validation failed, and maybe offer a hint as to what
## can be done to pass validation.
Tparameter_specification* = object ## \
## Holds the expectations of a parameter.
##
## You create these objects and feed them to the parse() proc, which then
## uses them to detect parameters and turn them into something uself.
names*: seq[string] ## List of possible parameters to catch for this.
consumes*: Tparam_kind ## Expected type of the parameter (empty for none)
custom_validator*: Tparameter_callback ## Optional custom callback
## to run after type conversion.
help_text*: string ## Help for this group of parameters.
Tparsed_parameter* = object ## \
## Contains the parsed value from the user.
##
## This implements an object variant through the kind field. You can 'case'
## this field to write a generic proc to deal with parsed parameters, but
## nothing prevents you from accessing directly the type of field you want
## if you expect only one kind.
case kind*: Tparam_kind
of PK_EMPTY: discard
of PK_INT: int_val*: int
of PK_BIGGEST_INT: big_int_val*: BiggestInt
of PK_FLOAT: float_val*: float
of PK_BIGGEST_FLOAT: big_float_val*: BiggestFloat
of PK_STRING: str_val*: string
of PK_BOOL: bool_val*: bool
of PK_HELP: discard
Tcommandline_results* = object of RootObj ## \
## Contains the results of the parsing.
##
## Usually this is the result of the parse() call, but you can inherit from
## it to add your own fields for convenience.
##
## Note that you always have to access the ``options`` ordered table with
## the first variant of a parameter name. For instance, if you have an
## option specified like ``@["-s", "--silent"]`` and the user types
## ``--silent`` at the commandline, you have to use
## ``options.hasKey("-s")`` to test for it. This standarizes access through
## the first name variant for all options to avoid you repeating the test
## with different keys.
positional_parameters*: seq[Tparsed_parameter]
options*: OrderedTable[string, Tparsed_parameter]
# - Tparam_kind procs
proc `$`*(value: Tparam_kind): string =
## Stringifies the type, used to generate help texts.
case value:
of PK_EMPTY: result = ""
of PK_INT: result = "INT"
of PK_BIGGEST_INT: result = "BIG_INT"
of PK_FLOAT: result = "FLOAT"
of PK_BIGGEST_FLOAT: result = "BIG_FLOAG"
of PK_STRING: result = "STRING"
of PK_BOOL: result = "BOOL"
of PK_HELP: result = ""
# - Tparameter_specification procs
proc init*(param: var Tparameter_specification, consumes = PK_EMPTY,
custom_validator: Tparameter_callback = nil, help_text = "",
names: varargs[string]) =
## Initialization helper with default parameters.
##
## You can decide to miss some if you like the defaults, reducing code. You
## can also use new_parameter_specification() for single assignment
## variables.
param.names = @names
param.consumes = consumes
param.custom_validator = custom_validator
param.help_text = help_text
proc new_parameter_specification*(consumes = PK_EMPTY,
custom_validator: Tparameter_callback = nil, help_text = "",
names: varargs[string]): Tparameter_specification =
## Initialization helper for single assignment variables.
result.init(consumes, custom_validator, help_text, names)
# - Tparsed_parameter procs
proc `$`*(data: Tparsed_parameter): string =
## Stringifies the value, mostly for debug purposes.
##
## The proc will display the value followed by non string type in brackets.
## The non string types would be PK_INT (i), PK_BIGGEST_INT (I), PK_FLOAT
## (f), PK_BIGGEST_FLOAT (F), PK_BOOL (b). The string type would be enclosed
## inside quotes. PK_EMPTY produces the word `nil`, and PK_HELP produces the
## world `help`.
case data.kind:
of PK_EMPTY: result = "nil"
of PK_INT: result = "$1(i)" % $data.int_val
of PK_BIGGEST_INT: result = "$1(I)" % $data.big_int_val
of PK_FLOAT: result = "$1(f)" % $data.float_val
of PK_BIGGEST_FLOAT: result = "$1(F)" % $data.big_float_val
of PK_STRING: result = "\"" & $data.str_val & "\""
of PK_BOOL: result = "$1(b)" % $data.bool_val
of PK_HELP: result = "help"
template new_parsed_parameter*(tkind: Tparam_kind, expr): Tparsed_parameter =
## Handy compile time template to build Tparsed_parameter object variants.
##
## The problem with object variants is that you first have to initialise them
## to a kind, then assign values to the correct variable, and it is a little
## bit annoying.
##
## Through this template you specify as the first parameter the kind of the
## Tparsed_parameter you want to build, and directly the value it will be
## initialised with. The template figures out at compile time what field to
## assign the variable to, and thus you reduce code clutter and may use this
## to initialise single assignments variables in `let` blocks. Example:
## ```nim
## let
## parsed_param1 = new_parsed_parameter(PK_FLOAT, 3.41)
## parsed_param2 = new_parsed_parameter(PK_BIGGEST_INT, 2358123 * 23123)
## # The following line doesn't compile due to
## # type mismatch: got <string> but expected 'int'
## #parsed_param3 = new_parsed_parameter(PK_INT, "231")
## ```
var result {.gensym.}: Tparsed_parameter
result.kind = tkind
when tkind == PK_EMPTY: discard
elif tkind == PK_INT: result.int_val = expr
elif tkind == PK_BIGGEST_INT: result.big_int_val = expr
elif tkind == PK_FLOAT: result.float_val = expr
elif tkind == PK_BIGGEST_FLOAT: result.big_float_val = expr
elif tkind == PK_STRING: result.str_val = expr
elif tkind == PK_BOOL: result.bool_val = expr
elif tkind == PK_HELP: discard
else: {.error: "unknown kind".}
result
# - Tcommandline_results procs
proc init*(param: var Tcommandline_results;
positional_parameters: seq[Tparsed_parameter] = @[];
options: OrderedTable[string, Tparsed_parameter] =
initOrderedTable[string, Tparsed_parameter](4)) =
## Initialization helper with default parameters.
param.positional_parameters = positional_parameters
param.options = options
proc `$`*(data: Tcommandline_results): string =
## Stringifies a Tcommandline_results structure for debug output
var dict: seq[string] = @[]
for key, value in data.options:
dict.add("$1: $2" % [escape(key), $value])
result = "Tcommandline_result{positional_parameters:[$1], options:{$2}}" % [
join(map(data.positional_parameters, `$`), ", "), join(dict, ", ")]
# - Parse code
template raise_or_quit(exception, message: untyped) =
## Avoids repeating if check based on the default quit_on_failure variable.
##
## As a special case, if message has a zero length the call to quit won't
## generate any messages or errors (used by the mechanism to echo help to the
## user).
if quit_on_failure:
if len(message) > 0:
quit(message)
else:
quit()
else:
raise newException(exception, message)
template run_custom_proc(parsed_parameter: Tparsed_parameter,
custom_validator: Tparameter_callback,
parameter: string) =
## Runs the custom validator if it is not nil.
##
## Pass in the string of the parameter triggering the call. If the
if not custom_validator.isNil:
try:
let message = custom_validator(parameter, parsed_parameter)
if message.len > 0:
raise_or_quit(ValueError, ("Failed to validate value for " &
"parameter $1:\n$2" % [escape(parameter), message]))
except:
raise_or_quit(ValueError, ("Couldn't run custom proc for " &
"parameter $1:\n$2" % [escape(parameter),
getCurrentExceptionMsg()]))
proc parse_parameter(quit_on_failure: bool, param, value: string,
param_kind: Tparam_kind): Tparsed_parameter =
## Tries to parse a text according to the specified type.
##
## Pass the parameter string which requires a value and the text the user
## passed in for it. It will be parsed according to the param_kind. This proc
## will raise (ValueError, EOverflow) if something can't be parsed.
result.kind = param_kind
case param_kind:
of PK_INT:
try: result.int_val = value.parseInt
except OverflowDefect:
raise_or_quit(OverflowDefect, ("parameter $1 requires an " &
"integer, but $2 is too large to fit into one") % [param,
escape(value)])
except ValueError:
raise_or_quit(ValueError, ("parameter $1 requires an " &
"integer, but $2 can't be parsed into one") % [param, escape(value)])
of PK_STRING:
result.str_val = value
of PK_FLOAT:
try: result.float_val = value.parseFloat
except ValueError:
raise_or_quit(ValueError, ("parameter $1 requires a " &
"float, but $2 can't be parsed into one") % [param, escape(value)])
of PK_BOOL:
try: result.bool_val = value.parseBool
except ValueError:
raise_or_quit(ValueError, ("parameter $1 requires a " &
"boolean, but $2 can't be parsed into one. Valid values are: " &
"y, yes, true, 1, on, n, no, false, 0, off") % [param, escape(value)])
of PK_BIGGEST_INT:
try:
let parsed_len = parseBiggestInt(value, result.big_int_val)
if value.len != parsed_len or parsed_len < 1:
raise_or_quit(ValueError, ("parameter $1 requires an " &
"integer, but $2 can't be parsed completely into one") % [
param, escape(value)])
except ValueError:
raise_or_quit(ValueError, ("parameter $1 requires an " &
"integer, but $2 can't be parsed into one") % [param, escape(value)])
of PK_BIGGEST_FLOAT:
try:
let parsed_len = parseBiggestFloat(value, result.big_float_val)
if value.len != parsed_len or parsed_len < 1:
raise_or_quit(ValueError, ("parameter $1 requires a " &
"float, but $2 can't be parsed completely into one") % [
param, escape(value)])
except ValueError:
raise_or_quit(ValueError, ("parameter $1 requires a " &
"float, but $2 can't be parsed into one") % [param, escape(value)])
of PK_EMPTY:
discard
of PK_HELP:
discard
template build_specification_lookup():
OrderedTable[string, ptr Tparameter_specification] =
## Returns the table used to keep pointers to all of the specifications.
var result {.gensym.}: OrderedTable[string, ptr Tparameter_specification]
result = initOrderedTable[string, ptr Tparameter_specification](expected.len)
for i in 0..expected.len-1:
for param_to_detect in expected[i].names:
if result.hasKey(param_to_detect):
raise_or_quit(KeyError,
"Parameter $1 repeated in input specification" % param_to_detect)
else:
result[param_to_detect] = addr(expected[i])
result
proc echo_help*(expected: seq[Tparameter_specification] = @[],
type_of_positional_parameters = PK_STRING,
bad_prefixes = @["-", "--"], end_of_options = "--")
proc parse*(expected: seq[Tparameter_specification] = @[],
type_of_positional_parameters = PK_STRING, args: seq[string] = @[],
bad_prefixes = @["-", "--"], end_of_options = "--",
quit_on_failure = true): Tcommandline_results =
## Parses parameters and returns results.
##
## The expected array should contain a list of the parameters you want to
## detect, which can capture additional values. Uncaptured parameters are
## considered positional parameters for which you can specify a type with
## type_of_positional_parameters.
##
## Before accepting a positional parameter, the list of bad_prefixes is
## compared against it. If the positional parameter starts with any of them,
## an error is displayed to the user due to ambiguity. The user can overcome
## the ambiguity by typing the special string specified by end_of_options.
## Note that values captured by parameters are not checked against bad
## prefixes, otherwise it would be a problem to specify the dash as synonim
## for standard input for many programs.
##
## The args sequence should be the list of parameters passed to your program
## without the program binary (usually OSes provide the path to the binary as
## the zeroth parameter). If args is empty, the list will be retrieved from the
## OS.
##
## If there is any kind of error and quit_on_failure is true, the quit proc
## will be called with a user error message. If quit_on_failure is false
## errors will raise exceptions (usually ValueError or EOverflow) instead
## for you to catch and handle.
assert type_of_positional_parameters != PK_EMPTY and
type_of_positional_parameters != PK_HELP
for bad_prefix in bad_prefixes:
assert bad_prefix.len > 0, "Can't pass in a bad prefix of zero length"
var
expected = expected
adding_options = true
result.init()
# Prepare the input parameter list, maybe get it from the OS if not available.
var args = args
if args.len == 0:
let total_params = paramCount()
#echo "Got no explicit args, retrieving from OS. Count: ", total_params
newSeq(args, total_params)
for i in 0..total_params - 1:
#echo ($i)
args[i] = paramStr(i + 1)
# Generate lookup table for each type of parameter based on strings.
var lookup = build_specification_lookup()
# Loop through the input arguments detecting their type and doing stuff.
var i = 0
while i < args.len:
let arg = args[i]
block adding_positional_parameter:
if arg.len > 0 and adding_options:
if arg == end_of_options:
# Looks like we found the end_of_options marker, disable options.
adding_options = false
break adding_positional_parameter
elif lookup.hasKey(arg):
var parsed: Tparsed_parameter
let param = lookup[arg]
# Insert check here for help, which aborts parsing.
if param.consumes == PK_HELP:
echo_help(expected, type_of_positional_parameters,
bad_prefixes, end_of_options)
raise_or_quit(KeyError, "")
if param.consumes != PK_EMPTY:
if i + 1 < args.len:
parsed = parse_parameter(quit_on_failure,
arg, args[i + 1], param.consumes)
run_custom_proc(parsed, param.custom_validator, arg)
i += 1
else:
raise_or_quit(ValueError, ("parameter $1 requires a " &
"value, but none was provided") % [arg])
result.options[param.names[0]] = parsed
break adding_positional_parameter
else:
for bad_prefix in bad_prefixes:
if arg.startsWith(bad_prefix):
raise_or_quit(ValueError, ("Found ambiguos parameter '$1' " &
"starting with '$2', put '$3' as the previous parameter " &
"if you want to force it as positional parameter.") % [arg,
bad_prefix, end_of_options])
# Unprocessed, add the parameter to the list of positional parameters.
result.positional_parameters.add(parse_parameter(quit_on_failure,
$(1 + i), arg, type_of_positional_parameters))
i += 1
proc toString(runes: seq[Rune]): string =
result = ""
for rune in runes: result.add(rune.toUTF8)
proc ascii_cmp(a, b: string): int =
## Comparison ignoring non ascii characters, for better switch sorting.
let a = filterIt(toSeq(runes(a)), it.isAlpha())
# Can't use filterIt twice, github bug #351.
let b = filter(toSeq(runes(b)), proc(x: Rune): bool = x.isAlpha())
return system.cmp(toString(a), toString(b))
proc build_help*(expected: seq[Tparameter_specification] = @[],
type_of_positional_parameters = PK_STRING,
bad_prefixes = @["-", "--"], end_of_options = "--"): seq[string] =
## Builds basic help text and returns it as a sequence of strings.
##
## Note that this proc doesn't do as much sanity checks as the normal parse()
## proc, though it's unlikely you will be using one without the other, so if
## you had a parameter specification problem you would find out soon.
result = @["Usage parameters: "]
# Generate lookup table for each type of parameter based on strings.
let quit_on_failure = false
var
expected = expected
lookup = build_specification_lookup()
keys = toSeq(lookup.keys())
# First generate the joined version of input parameters in a list.
var
seen = initHashSet[string]()
prefixes: seq[string] = @[]
helps: seq[string] = @[]
for key in keys:
if seen.contains(key):
continue
# Add the joined string to the list.
let param = lookup[key][]
var param_names = param.names
sort(param_names, ascii_cmp)
var prefix = join(param_names, ", ")
# Don't forget about the type, if the parameter consumes values
if param.consumes != PK_EMPTY and param.consumes != PK_HELP:
prefix &= " " & $param.consumes
prefixes.add(prefix)
helps.add(param.help_text)
# Ignore future elements.
for name in param.names: seen.incl(name)
# Calculate the biggest width and try to use that
let width = prefixes.map(proc (x: string): int = 3 + len(x)).max
for line in zip(prefixes, helps):
result.add(line[0] & spaces(width - line[0].len) & line[1])
proc echo_help*(expected: seq[Tparameter_specification] = @[],
type_of_positional_parameters = PK_STRING,
bad_prefixes = @["-", "--"], end_of_options = "--") =
## Prints out help on the terminal.
##
## This is just a wrapper around build_help. Note that calling this proc
## won't exit your program, you should call quit() yourself.
for line in build_help(expected,
type_of_positional_parameters, bad_prefixes, end_of_options):
echo line
when true:
# Simply tests code embedded in docs.
let
parsed_param1 = new_parsed_parameter(PK_FLOAT, 3.41)
parsed_param2 = new_parsed_parameter(PK_BIGGEST_INT, 2358123 * 23123)
#parsed_param3 = new_parsed_parameter(PK_INT, "231")