Files
Nim/compiler/ccgexprs.nim
2025-12-18 09:34:39 +01:00

4077 lines
152 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
when defined(nimCompilerStacktraceHints):
import std/stackframes
proc getNullValueAuxT(p: BProc; orig, t: PType; obj, constOrNil: PNode,
result: var Builder; init: var StructInitializer;
isConst: bool, info: TLineInfo)
# -------------------------- constant expressions ------------------------
proc rdSetElemLoc(conf: ConfigRef; a: TLoc, typ: PType; result: var Rope)
proc genLiteral(p: BProc, n: PNode, ty: PType; result: var Builder) =
case n.kind
of nkCharLit..nkUInt64Lit:
var k: TTypeKind
if ty != nil:
k = skipTypes(ty, abstractVarRange).kind
else:
case n.kind
of nkCharLit: k = tyChar
of nkUInt64Lit: k = tyUInt64
of nkInt64Lit: k = tyInt64
else: k = tyNil # don't go into the case variant that uses 'ty'
case k
of tyChar, tyNil:
result.addIntLiteral(n.intVal)
of tyBool:
if n.intVal != 0: result.add NimTrue
else: result.add NimFalse
of tyInt64: result.addInt64Literal(n.intVal)
of tyUInt64: result.addUint64Literal(uint64(n.intVal))
else:
result.addCast(getTypeDesc(p.module, ty)):
result.addIntLiteral(n.intVal)
of nkNilLit:
let k = if ty == nil: tyPointer else: skipTypes(ty, abstractVarRange).kind
if k == tyProc and skipTypes(ty, abstractVarRange).callConv == ccClosure:
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
let tmpName = p.module.tmpBase & rope(id)
if id == p.module.labels:
# not found in cache:
inc(p.module.labels)
let t = getTypeDesc(p.module, ty)
p.module.s[cfsStrData].addVarWithInitializer(kind = Const, name = tmpName, typ = t):
var closureInit: StructInitializer
p.module.s[cfsStrData].addStructInitializer(closureInit, kind = siOrderedStruct):
p.module.s[cfsStrData].addField(closureInit, name = "ClP_0"):
p.module.s[cfsStrData].add(NimNil)
p.module.s[cfsStrData].addField(closureInit, name = "ClE_0"):
p.module.s[cfsStrData].add(NimNil)
result.add tmpName
elif k in {tyPointer, tyNil, tyProc}:
result.add NimNil
else:
result.add cCast(getTypeDesc(p.module, ty), NimNil)
of nkStrLit..nkTripleStrLit:
let k = if ty == nil: tyString
else: skipTypes(ty, abstractVarRange + {tyStatic, tyUserTypeClass, tyUserTypeClassInst}).kind
case k
of tyNil:
genNilStringLiteral(p.module, n.info, result)
of tyString:
# with the new semantics for not 'nil' strings, we can map "" to nil and
# save tons of allocations:
if n.strVal.len == 0 and optSeqDestructors notin p.config.globalOptions:
genNilStringLiteral(p.module, n.info, result)
else:
genStringLiteral(p.module, n, result)
else:
result.add makeCString(n.strVal)
of nkFloatLit, nkFloat64Lit:
if ty.kind == tyFloat32:
result.add rope(n.floatVal.float32.toStrMaxPrecision)
else:
result.add rope(n.floatVal.toStrMaxPrecision)
of nkFloat32Lit:
result.add rope(n.floatVal.float32.toStrMaxPrecision)
else:
internalError(p.config, n.info, "genLiteral(" & $n.kind & ')')
proc genLiteral(p: BProc, n: PNode; result: var Builder) =
genLiteral(p, n, n.typ, result)
proc genRawSetData(cs: TBitSet, size: int; result: var Builder) =
if size > 8:
var setInit: StructInitializer
result.addStructInitializer(setInit, kind = siArray):
for i in 0..<size:
if i mod 8 == 0:
result.addNewline()
result.addField(setInit, name = ""):
result.add "0x"
result.add "0123456789abcdef"[cs[i] div 16]
result.add "0123456789abcdef"[cs[i] mod 16]
else:
result.addIntLiteral(cast[BiggestInt](bitSetToWord(cs, size)))
proc genSetNode(p: BProc, n: PNode; result: var Builder) =
var size = int(getSize(p.config, n.typ))
let cs = toBitSet(p.config, n)
if size > 8:
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
let tmpName = p.module.tmpBase & rope(id)
if id == p.module.labels:
# not found in cache:
inc(p.module.labels)
let td = getTypeDesc(p.module, n.typ)
p.module.s[cfsStrData].addVarWithInitializer(kind = Const, name = tmpName, typ = td):
genRawSetData(cs, size, p.module.s[cfsStrData])
result.add tmpName
else:
genRawSetData(cs, size, result)
proc getStorageLoc(n: PNode): TStorageLoc =
## deadcode
case n.kind
of nkSym:
case n.sym.kind
of skParam, skTemp:
result = OnStack
of skVar, skForVar, skResult, skLet:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnStack
of skConst:
if sfGlobal in n.sym.flags: result = OnHeap
else: result = OnUnknown
else: result = OnUnknown
of nkDerefExpr, nkHiddenDeref:
case n[0].typ.kind
of tyVar, tyLent: result = OnUnknown
of tyPtr: result = OnStack
of tyRef: result = OnHeap
else:
result = OnUnknown
doAssert(false, "getStorageLoc")
of nkBracketExpr, nkDotExpr, nkObjDownConv, nkObjUpConv:
result = getStorageLoc(n[0])
else: result = OnUnknown
proc canMove(p: BProc, n: PNode; dest: TLoc): bool =
# for now we're conservative here:
if n.kind == nkBracket:
# This needs to be kept consistent with 'const' seq code
# generation!
if not isDeepConstExpr(n) or n.len == 0:
if skipTypes(n.typ, abstractVarRange).kind == tySequence:
return true
elif n.kind in nkStrKinds and n.strVal.len == 0:
# Empty strings are codegen'd as NIM_NIL so it's just a pointer copy
return true
result = n.kind in nkCallKinds
#if not result and dest.k == locTemp:
# return true
#if result:
# echo n.info, " optimized ", n
# result = false
template simpleAsgn(builder: var Builder, dest, src: TLoc) =
let rd = rdLoc(dest)
let rs = rdLoc(src)
builder.addAssignment(rd, rs)
proc genRefAssign(p: BProc, dest, src: TLoc) =
if (dest.storage == OnStack and p.config.selectedGC != gcGo) or not usesWriteBarrier(p.config):
simpleAsgn(p.s(cpsStmts), dest, src)
else:
let fnName =
if dest.storage == OnHeap: cgsymValue(p.module, "asgnRef")
else: cgsymValue(p.module, "unsureAsgnRef")
let rad = addrLoc(p.config, dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(fnName, cCast(ptrType(CPointer), rad), rs)
proc asgnComplexity(n: PNode): int =
if n != nil:
case n.kind
of nkSym: result = 1
of nkRecCase:
# 'case objects' are too difficult to inline their assignment operation:
result = 100
of nkRecList:
result = 0
for t in items(n):
result += asgnComplexity(t)
else: result = 0
else:
result = 0
proc optAsgnLoc(a: TLoc, t: PType, field: Rope): TLoc =
assert field != ""
result = TLoc(k: locField,
storage: a.storage,
lode: lodeTyp t,
snippet: rdLoc(a) & "." & field
)
proc genOptAsgnTuple(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
let newflags =
if src.storage == OnStatic:
flags + {needToCopy}
elif tfShallow in dest.t.flags:
flags - {needToCopy}
else:
flags
let t = skipTypes(dest.t, abstractInst).getUniqueType()
for i, t in t.ikids:
let field = "Field$1" % [i.rope]
genAssignment(p, optAsgnLoc(dest, t, field),
optAsgnLoc(src, t, field), newflags)
proc genOptAsgnObject(p: BProc, dest, src: TLoc, flags: TAssignmentFlags,
t: PNode, typ: PType) =
if t == nil: return
let newflags =
if src.storage == OnStatic:
flags + {needToCopy}
elif tfShallow in dest.t.flags:
flags - {needToCopy}
else:
flags
case t.kind
of nkSym:
let field = t.sym
if field.loc.snippet == "": fillObjectFields(p.module, typ)
genAssignment(p, optAsgnLoc(dest, field.typ, field.loc.snippet),
optAsgnLoc(src, field.typ, field.loc.snippet), newflags)
of nkRecList:
for child in items(t): genOptAsgnObject(p, dest, src, newflags, child, typ)
else: discard
proc genGenericAsgn(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# Consider:
# type TMyFastString {.shallow.} = string
# Due to the implementation of pragmas this would end up to set the
# tfShallow flag for the built-in string type too! So we check only
# here for this flag, where it is reasonably safe to do so
# (for objects, etc.):
if optSeqDestructors in p.config.globalOptions:
simpleAsgn(p.s(cpsStmts), dest, src)
elif needToCopy notin flags or
tfShallow in skipTypes(dest.t, abstractVarRange).flags:
if (dest.storage == OnStack and p.config.selectedGC != gcGo) or not usesWriteBarrier(p.config):
let rad = addrLoc(p.config, dest)
let ras = addrLoc(p.config, src)
let rd = rdLoc(dest)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimCopyMem"),
cCast(CPointer, rad),
cCast(CConstPointer, ras),
cSizeof(rd))
else:
let rad = addrLoc(p.config, dest)
let ras = addrLoc(p.config, src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericShallowAssign"),
cCast(CPointer, rad),
cCast(CPointer, ras),
genTypeInfoV1(p.module, dest.t, dest.lode.info))
else:
let rad = addrLoc(p.config, dest)
let ras = addrLoc(p.config, src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericAssign"),
cCast(CPointer, rad),
cCast(CPointer, ras),
genTypeInfoV1(p.module, dest.t, dest.lode.info))
proc genOpenArrayConv(p: BProc; d: TLoc; a: TLoc; flags: TAssignmentFlags) =
assert d.k != locNone
# getTemp(p, d.t, d)
case a.t.skipTypes(abstractVar).kind
of tyOpenArray, tyVarargs:
if reifiedOpenArray(a.lode):
if needTempForOpenArray in flags:
var tmp: TLoc = getTemp(p, a.t)
let rtmp = tmp.rdLoc
let ra = a.rdLoc
p.s(cpsStmts).addAssignment(rtmp, ra)
let rd = d.rdLoc
p.s(cpsStmts).addMutualFieldAssignment(rd, rtmp, "Field0")
p.s(cpsStmts).addMutualFieldAssignment(rd, rtmp, "Field1")
else:
let rd = d.rdLoc
let ra = a.rdLoc
p.s(cpsStmts).addMutualFieldAssignment(rd, ra, "Field0")
p.s(cpsStmts).addMutualFieldAssignment(rd, ra, "Field1")
else:
let rd = d.rdLoc
let ra = a.rdLoc
p.s(cpsStmts).addFieldAssignment(rd, "Field0", ra)
p.s(cpsStmts).addFieldAssignment(rd, "Field1", ra & "Len_0")
of tySequence:
let rd = d.rdLoc
let ra = a.rdLoc
let la = lenExpr(p, a)
p.s(cpsStmts).addFieldAssignment(rd, "Field0",
cIfExpr(dataFieldAccessor(p, ra), dataField(p, ra), NimNil))
p.s(cpsStmts).addFieldAssignment(rd, "Field1", la)
of tyArray:
let rd = d.rdLoc
let ra = a.rdLoc
p.s(cpsStmts).addFieldAssignment(rd, "Field0", ra)
p.s(cpsStmts).addFieldAssignment(rd, "Field1", lengthOrd(p.config, a.t))
of tyString:
let etyp = skipTypes(a.t, abstractInst)
if etyp.kind in {tyVar} and optSeqDestructors in p.config.globalOptions:
let bra = byRefLoc(p, a)
p.s(cpsStmts).addCallStmt(
cgsymValue(p.module, "nimPrepareStrMutationV2"),
bra)
let rd = d.rdLoc
let ra = a.rdLoc
p.s(cpsStmts).addFieldAssignment(rd, "Field0",
cIfExpr(dataFieldAccessor(p, ra), dataField(p, ra), NimNil))
let la = lenExpr(p, a)
p.s(cpsStmts).addFieldAssignment(rd, "Field1", la)
else:
internalError(p.config, a.lode.info, "cannot handle " & $a.t.kind)
template cgCall(p: BProc, name: string, args: varargs[untyped]): untyped =
cCall(cgsymValue(p.module, name), args)
proc genAssignment(p: BProc, dest, src: TLoc, flags: TAssignmentFlags) =
# This function replaces all other methods for generating
# the assignment operation in C.
if src.t != nil and src.t.kind == tyPtr:
# little HACK to support the new 'var T' as return type:
simpleAsgn(p.s(cpsStmts), dest, src)
return
let ty = skipTypes(dest.t, abstractRange + tyUserTypeClasses + {tyStatic})
case ty.kind
of tyRef:
genRefAssign(p, dest, src)
of tySequence:
if optSeqDestructors in p.config.globalOptions:
genGenericAsgn(p, dest, src, flags)
elif (needToCopy notin flags and src.storage != OnStatic) or canMove(p, src.lode, dest):
genRefAssign(p, dest, src)
else:
let rad = addrLoc(p.config, dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericSeqAssign"),
rad,
rs,
genTypeInfoV1(p.module, dest.t, dest.lode.info))
of tyString:
if optSeqDestructors in p.config.globalOptions:
genGenericAsgn(p, dest, src, flags)
elif (needToCopy notin flags and src.storage != OnStatic) or canMove(p, src.lode, dest):
genRefAssign(p, dest, src)
else:
if (dest.storage == OnStack and p.config.selectedGC != gcGo) or not usesWriteBarrier(p.config):
let rd = rdLoc(dest)
let rs = rdLoc(src)
p.s(cpsStmts).addAssignmentWithValue(rd):
p.s(cpsStmts).addCall(cgsymValue(p.module, "copyString"), rs)
elif dest.storage == OnHeap:
let rd = rdLoc(dest)
let rs = rdLoc(src)
# we use a temporary to care for the dreaded self assignment:
var tmp: TLoc = getTemp(p, ty)
let rtmp = rdLoc(tmp)
p.s(cpsStmts).addAssignment(rtmp, rd)
p.s(cpsStmts).addAssignmentWithValue(rd):
p.s(cpsStmts).addCall(cgsymValue(p.module, "copyStringRC1"), rs)
p.s(cpsStmts).addSingleIfStmt(rtmp):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimGCunrefNoCycle"), rtmp)
else:
let rad = addrLoc(p.config, dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "unsureAsgnRef"),
cCast(ptrType(CPointer), rad),
cgCall(p, "copyString", rs))
of tyProc:
if containsGarbageCollectedRef(dest.t):
# optimize closure assignment:
let a = optAsgnLoc(dest, dest.t, "ClE_0".rope)
let b = optAsgnLoc(src, dest.t, "ClE_0".rope)
genRefAssign(p, a, b)
let rd = rdLoc(dest)
let rs = rdLoc(src)
p.s(cpsStmts).addMutualFieldAssignment(rd, rs, "ClP_0")
else:
simpleAsgn(p.s(cpsStmts), dest, src)
of tyTuple:
if containsGarbageCollectedRef(dest.t):
if dest.t.kidsLen <= 4: genOptAsgnTuple(p, dest, src, flags)
else: genGenericAsgn(p, dest, src, flags)
else:
simpleAsgn(p.s(cpsStmts), dest, src)
of tyObject:
# XXX: check for subtyping?
if ty.isImportedCppType:
simpleAsgn(p.s(cpsStmts), dest, src)
elif not isObjLackingTypeField(ty):
genGenericAsgn(p, dest, src, flags)
elif containsGarbageCollectedRef(ty):
if ty[0].isNil and asgnComplexity(ty.n) <= 4 and
needAssignCall notin flags: # calls might contain side effects
discard getTypeDesc(p.module, ty)
internalAssert p.config, ty.n != nil
genOptAsgnObject(p, dest, src, flags, ty.n, ty)
else:
genGenericAsgn(p, dest, src, flags)
else:
simpleAsgn(p.s(cpsStmts), dest, src)
of tyArray:
if containsGarbageCollectedRef(dest.t) and p.config.selectedGC notin {gcArc, gcAtomicArc, gcOrc, gcHooks}:
genGenericAsgn(p, dest, src, flags)
else:
let rd = rdLoc(dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimCopyMem"),
cCast(CPointer, rd),
cCast(CConstPointer, rs),
cSizeof(getTypeDesc(p.module, dest.t)))
of tyOpenArray, tyVarargs:
# open arrays are always on the stack - really? What if a sequence is
# passed to an open array?
if reifiedOpenArray(dest.lode):
genOpenArrayConv(p, dest, src, flags)
elif containsGarbageCollectedRef(dest.t):
let rad = addrLoc(p.config, dest)
let ras = addrLoc(p.config, src)
# XXX: is this correct for arrays?
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericAssignOpenArray"),
cCast(CPointer, rad),
cCast(CPointer, ras),
rad & "Len_0",
genTypeInfoV1(p.module, dest.t, dest.lode.info))
else:
simpleAsgn(p.s(cpsStmts), dest, src)
#linefmt(p, cpsStmts,
# bug #4799, keep the nimCopyMem for a while
#"#nimCopyMem((void*)$1, (NIM_CONST void*)$2, sizeof($1[0])*$1Len_0);\n")
of tySet:
if mapSetType(p.config, ty) == ctArray:
let rd = rdLoc(dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimCopyMem"),
cCast(CPointer, rd),
cCast(CConstPointer, rs),
cIntValue(getSize(p.config, dest.t)))
else:
simpleAsgn(p.s(cpsStmts), dest, src)
of tyPtr, tyPointer, tyChar, tyBool, tyEnum, tyCstring,
tyInt..tyUInt64, tyRange, tyVar, tyLent, tyNil:
simpleAsgn(p.s(cpsStmts), dest, src)
else: internalError(p.config, "genAssignment: " & $ty.kind)
if optMemTracker in p.options and dest.storage in {OnHeap, OnUnknown}:
#writeStackTrace()
#echo p.currLineInfo, " requesting"
let rad = addrLoc(p.config, dest)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "memTrackerWrite"),
cCast(CPointer, rad),
cIntValue(getSize(p.config, dest.t)),
makeCString(toFullPath(p.config, p.currLineInfo)),
cIntValue(p.currLineInfo.safeLineNm))
proc genDeepCopy(p: BProc; dest, src: TLoc) =
template addrLocOrTemp(a: TLoc): Rope =
if a.k == locExpr:
var tmp: TLoc = getTemp(p, a.t)
genAssignment(p, tmp, a, {})
addrLoc(p.config, tmp)
else:
addrLoc(p.config, a)
var ty = skipTypes(dest.t, abstractVarRange + {tyStatic})
case ty.kind
of tyPtr, tyRef, tyProc, tyTuple, tyObject, tyArray:
# XXX optimize this
let rad = addrLoc(p.config, dest)
let rats = addrLocOrTemp(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericDeepCopy"),
cCast(CPointer, rad),
cCast(CPointer, rats),
genTypeInfoV1(p.module, dest.t, dest.lode.info))
of tySequence, tyString:
if optTinyRtti in p.config.globalOptions:
let rad = addrLoc(p.config, dest)
let rats = addrLocOrTemp(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericDeepCopy"),
cCast(CPointer, rad),
cCast(CPointer, rats),
genTypeInfoV1(p.module, dest.t, dest.lode.info))
else:
let rad = addrLoc(p.config, dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericSeqDeepCopy"),
rad,
rs,
genTypeInfoV1(p.module, dest.t, dest.lode.info))
of tyOpenArray, tyVarargs:
let source = addrLocOrTemp(src)
let rad = addrLoc(p.config, dest)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "genericDeepCopyOpenArray"),
cCast(CPointer, rad),
cCast(CPointer, source),
derefField(source, "Field1"),
genTypeInfoV1(p.module, dest.t, dest.lode.info))
of tySet:
if mapSetType(p.config, ty) == ctArray:
let rd = rdLoc(dest)
let rs = rdLoc(src)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimCopyMem"),
cCast(CPointer, rd),
cCast(CConstPointer, rs),
cIntValue(getSize(p.config, dest.t)))
else:
simpleAsgn(p.s(cpsStmts), dest, src)
of tyPointer, tyChar, tyBool, tyEnum, tyCstring,
tyInt..tyUInt64, tyRange, tyVar, tyLent:
simpleAsgn(p.s(cpsStmts), dest, src)
else: internalError(p.config, "genDeepCopy: " & $ty.kind)
proc putLocIntoDest(p: BProc, d: var TLoc, s: TLoc) =
if d.k != locNone:
if lfNoDeepCopy in d.flags: genAssignment(p, d, s, {})
else: genAssignment(p, d, s, {needToCopy})
else:
d = s # ``d`` is free, so fill it with ``s``
proc putDataIntoDest(p: BProc, d: var TLoc, n: PNode, r: Rope) =
if d.k != locNone:
var a: TLoc = initLoc(locData, n, OnStatic)
# need to generate an assignment here
a.snippet = r
if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {})
else: genAssignment(p, d, a, {needToCopy})
else:
# we cannot call initLoc() here as that would overwrite
# the flags field!
d.k = locData
d.lode = n
d.snippet = r
proc putIntoDest(p: BProc, d: var TLoc, n: PNode, r: Rope; s=OnUnknown) =
if d.k != locNone:
# need to generate an assignment here
var a: TLoc = initLoc(locExpr, n, s)
a.snippet = r
if lfNoDeepCopy in d.flags: genAssignment(p, d, a, {})
else: genAssignment(p, d, a, {needToCopy})
else:
# we cannot call initLoc() here as that would overwrite
# the flags field!
d.k = locExpr
d.lode = n
d.snippet = r
proc binaryStmt(p: BProc, e: PNode, d: var TLoc, op: TypedBinaryOp) =
if d.k != locNone: internalError(p.config, e.info, "binaryStmt")
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ra = rdLoc(a)
let rb = rdLoc(b)
p.s(cpsStmts).addInPlaceOp(op, getSimpleTypeDesc(p.module, e[1].typ), ra, rb)
proc binaryStmtAddr(p: BProc, e: PNode, d: var TLoc, cpname: string) =
if d.k != locNone: internalError(p.config, e.info, "binaryStmtAddr")
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let bra = byRefLoc(p, a)
let rb = rdLoc(b)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, cpname), bra, rb)
template binaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: untyped) =
assert(e[1].typ != nil)
assert(e[2].typ != nil)
block:
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ra {.inject.} = rdLoc(a)
let rb {.inject.} = rdLoc(b)
putIntoDest(p, d, e, frmt)
template binaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: untyped) =
assert(e[1].typ != nil)
assert(e[2].typ != nil)
block:
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ra {.inject.} = rdCharLoc(a)
let rb {.inject.} = rdCharLoc(b)
putIntoDest(p, d, e, frmt)
template unaryExpr(p: BProc, e: PNode, d: var TLoc, frmt: untyped) =
block:
var a: TLoc = initLocExpr(p, e[1])
let ra {.inject.} = rdLoc(a)
putIntoDest(p, d, e, frmt)
template unaryExprChar(p: BProc, e: PNode, d: var TLoc, frmt: untyped) =
block:
var a: TLoc = initLocExpr(p, e[1])
let ra {.inject.} = rdCharLoc(a)
putIntoDest(p, d, e, frmt)
template binaryArithOverflowRaw(p: BProc, t: PType, a, b: TLoc;
cpname: string): Rope =
var size = getSize(p.config, t)
let storage = if size < p.config.target.intSize: NimInt
else: getTypeDesc(p.module, t)
var result = getTempName(p.module)
p.s(cpsLocals).addVar(kind = Local, name = result, typ = storage)
let rca = rdCharLoc(a)
let rcb = rdCharLoc(b)
p.s(cpsStmts).addSingleIfStmtWithCond():
p.s(cpsStmts).addCall(cgsymValue(p.module, cpname),
rca,
rcb,
cAddr(result))
do:
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseOverflow"))
raiseInstr(p, p.s(cpsStmts))
if size < p.config.target.intSize or t.kind in {tyRange, tyEnum}:
let first = cIntLiteral(firstOrd(p.config, t))
let last = cIntLiteral(lastOrd(p.config, t))
p.s(cpsStmts).addSingleIfStmtWithCond():
p.s(cpsStmts).addOp(Or,
cOp(LessThan, result, first),
cOp(GreaterThan, result, last))
do:
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseOverflow"))
raiseInstr(p, p.s(cpsStmts))
result
proc binaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
const
prc: array[mAddI..mPred, string] = [
"nimAddInt", "nimSubInt",
"nimMulInt", "nimDivInt", "nimModInt",
"nimAddInt", "nimSubInt"
]
prc64: array[mAddI..mPred, string] = [
"nimAddInt64", "nimSubInt64",
"nimMulInt64", "nimDivInt64", "nimModInt64",
"nimAddInt64", "nimSubInt64"
]
opr: array[mAddI..mPred, TypedBinaryOp] = [Add, Sub, Mul, Div, Mod, Add, Sub]
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
# skipping 'range' is correct here as we'll generate a proper range check
# later via 'chckRange'
let t = e.typ.skipTypes(abstractRange)
if optOverflowCheck notin p.options or (m in {mSucc, mPred} and t.kind in {tyUInt..tyUInt64}):
let typ = getTypeDesc(p.module, e.typ)
let res = cCast(typ, cOp(opr[m], typ, rdLoc(a), rdLoc(b)))
putIntoDest(p, d, e, res)
else:
# we handle div by zero here so that we know that the compilerproc's
# result is only for overflows.
var needsOverflowCheck = true
if m in {mDivI, mModI}:
var canBeZero = true
if e[2].kind in {nkIntLit..nkUInt64Lit}:
canBeZero = e[2].intVal == 0
if e[2].kind in {nkIntLit..nkInt64Lit}:
needsOverflowCheck = e[2].intVal == -1
if canBeZero:
# remove extra paren from `==` op here to avoid Wparentheses-equality:
p.s(cpsStmts).addSingleIfStmt(removeSinglePar(cOp(Equal, rdLoc(b), cIntValue(0)))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseDivByZero"))
raiseInstr(p, p.s(cpsStmts))
if needsOverflowCheck:
let res = binaryArithOverflowRaw(p, t, a, b,
if t.kind == tyInt64: prc64[m] else: prc[m])
putIntoDest(p, d, e, cCast(getTypeDesc(p.module, e.typ), res))
else:
let typ = getTypeDesc(p.module, e.typ)
let res = cCast(typ, cOp(opr[m], typ, wrapPar(rdLoc(a)), wrapPar(rdLoc(b))))
putIntoDest(p, d, e, res)
proc unaryArithOverflow(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
var t: PType
assert(e[1].typ != nil)
var a: TLoc = initLocExpr(p, e[1])
t = skipTypes(e.typ, abstractRange)
let ra = rdLoc(a)
if optOverflowCheck in p.options:
let first = cIntLiteral(firstOrd(p.config, t))
# remove extra paren from `==` op here to avoid Wparentheses-equality:
p.s(cpsStmts).addSingleIfStmt(removeSinglePar(cOp(Equal, ra, first))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseOverflow"))
raiseInstr(p, p.s(cpsStmts))
case m
of mUnaryMinusI:
let typ = cIntType(getSize(p.config, t) * 8)
putIntoDest(p, d, e, cCast(typ, cOp(Neg, typ, ra)))
of mUnaryMinusI64:
putIntoDest(p, d, e, cOp(Neg, getTypeDesc(p.module, t), ra))
of mAbsI:
putIntoDest(p, d, e,
cIfExpr(cOp(GreaterThan, ra, cIntValue(0)),
wrapPar(ra),
cOp(Neg, getTypeDesc(p.module, t), ra)))
else:
assert(false, $m)
proc binaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var
s, k: BiggestInt = 0
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
# BUGFIX: cannot use result-type here, as it may be a boolean
s = max(getSize(p.config, a.t), getSize(p.config, b.t)) * 8
k = getSize(p.config, a.t) * 8
var res = ""
template getType(): untyped =
getSimpleTypeDesc(p.module, e.typ)
let ra = rdLoc(a)
let rb = rdLoc(b)
case op
of mAddF64:
let t = getType()
res = cOp(Add, t, cCast(t, ra), cCast(t, rb))
of mSubF64:
let t = getType()
res = cOp(Sub, t, cCast(t, ra), cCast(t, rb))
of mMulF64:
let t = getType()
res = cOp(Mul, t, cCast(t, ra), cCast(t, rb))
of mDivF64:
let t = getType()
res = cOp(Div, t, cCast(t, ra), cCast(t, rb))
of mShrI:
let t = getType()
let at = cUintType(k)
let bt = cUintType(s)
res = cCast(t, cOp(Shr, at, cCast(at, ra), cCast(bt, rb)))
of mShlI:
let t = getType()
let at = cUintType(s)
res = cCast(t, cOp(Shl, at, cCast(at, ra), cCast(at, rb)))
of mAshrI:
let t = getType()
let at = cIntType(s)
let bt = cUintType(s)
res = cCast(t, cOp(Shr, at, cCast(at, ra), cCast(bt, rb)))
of mBitandI:
let t = getType()
res = cCast(t, cOp(BitAnd, t, ra, rb))
of mBitorI:
let t = getType()
res = cCast(t, cOp(BitOr, t, ra, rb))
of mBitxorI:
let t = getType()
res = cCast(t, cOp(BitXor, t, ra, rb))
of mMinI:
res = cIfExpr(cOp(LessEqual, ra, rb), ra, rb)
of mMaxI:
res = cIfExpr(cOp(GreaterEqual, ra, rb), ra, rb)
of mAddU:
let t = getType()
let ot = cUintType(s)
res = cCast(t, cOp(Add, ot, cCast(ot, ra), cCast(ot, rb)))
of mSubU:
let t = getType()
let ot = cUintType(s)
res = cCast(t, cOp(Sub, ot, cCast(ot, ra), cCast(ot, rb)))
of mMulU:
let t = getType()
let ot = cUintType(s)
res = cCast(t, cOp(Mul, ot, cCast(ot, ra), cCast(ot, rb)))
of mDivU:
let t = getType()
let ot = cUintType(s)
res = cCast(t, cOp(Div, ot, cCast(ot, ra), cCast(ot, rb)))
of mModU:
let t = getType()
let ot = cUintType(s)
res = cCast(t, cOp(Mod, ot, cCast(ot, ra), cCast(ot, rb)))
of mEqI:
res = cOp(Equal, ra, rb)
of mLeI:
res = cOp(LessEqual, ra, rb)
of mLtI:
res = cOp(LessThan, ra, rb)
of mEqF64:
res = cOp(Equal, ra, rb)
of mLeF64:
res = cOp(LessEqual, ra, rb)
of mLtF64:
res = cOp(LessThan, ra, rb)
of mLeU:
let ot = cUintType(s)
res = cOp(LessEqual, cCast(ot, ra), cCast(ot, rb))
of mLtU:
let ot = cUintType(s)
res = cOp(LessThan, cCast(ot, ra), cCast(ot, rb))
of mEqEnum:
res = cOp(Equal, ra, rb)
of mLeEnum:
res = cOp(LessEqual, ra, rb)
of mLtEnum:
res = cOp(LessThan, ra, rb)
of mEqCh:
res = cOp(Equal, cCast(NimUint8, ra), cCast(NimUint8, rb))
of mLeCh:
res = cOp(LessEqual, cCast(NimUint8, ra), cCast(NimUint8, rb))
of mLtCh:
res = cOp(LessThan, cCast(NimUint8, ra), cCast(NimUint8, rb))
of mEqB:
res = cOp(Equal, ra, rb)
of mLeB:
res = cOp(LessEqual, ra, rb)
of mLtB:
res = cOp(LessThan, ra, rb)
of mEqRef:
res = cOp(Equal, ra, rb)
of mLePtr:
res = cOp(LessEqual, ra, rb)
of mLtPtr:
res = cOp(LessThan, ra, rb)
of mXor:
res = cOp(NotEqual, ra, rb)
else:
assert(false, $op)
putIntoDest(p, d, e, res)
proc genEqProc(p: BProc, e: PNode, d: var TLoc) =
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ra = rdLoc(a)
let rb = rdLoc(b)
if a.t.skipTypes(abstractInstOwned).callConv == ccClosure:
putIntoDest(p, d, e, cOp(And,
cOp(Equal, dotField(ra, "ClP_0"), dotField(rb, "ClP_0")),
cOp(Equal, dotField(ra, "ClE_0"), dotField(rb, "ClE_0"))))
else:
putIntoDest(p, d, e, cOp(Equal, ra, rb))
proc genIsNil(p: BProc, e: PNode, d: var TLoc) =
let t = skipTypes(e[1].typ, abstractRange)
var a: TLoc = initLocExpr(p, e[1])
let ra = rdLoc(a)
var res = ""
if t.kind == tyProc and t.callConv == ccClosure:
res = cOp(Equal, dotField(ra, "ClP_0"), cIntValue(0))
else:
res = cOp(Equal, ra, cIntValue(0))
putIntoDest(p, d, e, res)
proc unaryArith(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var
t: PType
assert(e[1].typ != nil)
var a = initLocExpr(p, e[1])
t = skipTypes(e.typ, abstractRange)
var res = ""
let ra = rdLoc(a)
case op
of mNot:
res = cOp(Not, ra)
of mUnaryPlusI:
res = ra
of mBitnotI:
let at = cUintType(getSize(p.config, t) * 8)
let t = getSimpleTypeDesc(p.module, e.typ)
res = cCast(t, cCast(at, cOp(BitNot, t, ra)))
of mUnaryPlusF64:
res = ra
of mUnaryMinusF64:
res = cOp(Neg, getSimpleTypeDesc(p.module, e.typ), ra)
else:
assert false, $op
putIntoDest(p, d, e, res)
proc isCppRef(p: BProc; typ: PType): bool {.inline.} =
result = p.module.compileToCpp and
skipTypes(typ, abstractInstOwned).kind in {tyVar} and
tfVarIsPtr notin skipTypes(typ, abstractInstOwned).flags
proc genDeref(p: BProc, e: PNode, d: var TLoc) =
let mt = mapType(p.config, e[0].typ, mapTypeChooser(e[0]) == skParam)
if mt in {ctArray, ctPtrToArray} and lfEnforceDeref notin d.flags:
# XXX the amount of hacks for C's arrays is incredible, maybe we should
# simply wrap them in a struct? --> Losing auto vectorization then?
expr(p, e[0], d)
if e[0].typ.skipTypes(abstractInstOwned).kind == tyRef:
d.storage = OnHeap
else:
var a: TLoc
var typ = e[0].typ
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst} and typ.isResolvedUserTypeClass:
typ = typ.last
typ = typ.skipTypes(abstractInstOwned)
if typ.kind in {tyVar} and tfVarIsPtr notin typ.flags and
p.module.compileToCpp and e[0].kind == nkHiddenAddr and
# don't override existing location:
d.k == locNone:
d = initLocExprSingleUse(p, e[0][0])
return
else:
a = initLocExprSingleUse(p, e[0])
if e.typ != nil and e.typ.kind == tyObject:
# bug #23453 #25265
discard getTypeDesc(p.module, e.typ)
if d.k == locNone:
# dest = *a; <-- We do not know that 'dest' is on the heap!
# It is completely wrong to set 'd.storage' here, unless it's not yet
# been assigned to.
case typ.kind
of tyRef:
d.storage = OnHeap
of tyVar, tyLent:
d.storage = OnUnknown
if tfVarIsPtr notin typ.flags and p.module.compileToCpp and
e.kind == nkHiddenDeref:
putIntoDest(p, d, e, rdLoc(a), a.storage)
return
of tyPtr:
d.storage = OnUnknown # BUGFIX!
else:
internalError(p.config, e.info, "genDeref " & $typ.kind)
elif p.module.compileToCpp:
if typ.kind in {tyVar} and tfVarIsPtr notin typ.flags and
e.kind == nkHiddenDeref:
putIntoDest(p, d, e, rdLoc(a), a.storage)
return
if mt == ctPtrToArray and lfEnforceDeref in d.flags:
# we lie about the type for better C interop: 'ptr array[3,T]' is
# translated to 'ptr T', but for deref'ing this produces wrong code.
# See tmissingderef. So we get rid of the deref instead. The codegen
# ends up using 'memcpy' for the array assignment,
# so the '&' and '*' cancel out:
putIntoDest(p, d, e, rdLoc(a), a.storage)
else:
putIntoDest(p, d, e, cDeref(rdLoc(a)), a.storage)
proc cowBracket(p: BProc; n: PNode) =
if n.kind == nkBracketExpr and optSeqDestructors in p.config.globalOptions:
let strCandidate = n[0]
if strCandidate.typ.skipTypes(abstractInst).kind == tyString:
var a: TLoc = initLocExpr(p, strCandidate)
let raa = byRefLoc(p, a)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimPrepareStrMutationV2"), raa)
proc cow(p: BProc; n: PNode) {.inline.} =
if n.kind == nkHiddenAddr: cowBracket(p, n[0])
template ignoreConv(e: PNode): bool =
let destType = e.typ.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink})
let srcType = e[1].typ.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink})
sameBackendTypePickyAliases(destType, srcType)
proc genAddr(p: BProc, e: PNode, d: var TLoc) =
# careful 'addr(myptrToArray)' needs to get the ampersand:
if e[0].typ.skipTypes(abstractInstOwned).kind in {tyRef, tyPtr}:
var a: TLoc = initLocExpr(p, e[0])
putIntoDest(p, d, e, cAddr(a.snippet), a.storage)
#Message(e.info, warnUser, "HERE NEW &")
elif mapType(p.config, e[0].typ, mapTypeChooser(e[0]) == skParam) == ctArray or isCppRef(p, e.typ):
expr(p, e[0], d)
# bug #19497
d.lode = e
else:
var a: TLoc = initLocExpr(p, e[0])
if e[0].kind in {nkHiddenStdConv, nkHiddenSubConv, nkConv} and not ignoreConv(e[0]):
# addr (conv x) introduces a temp because `conv x` is not a rvalue
# transform addr ( conv ( x ) ) -> conv ( addr ( x ) )
var exprLoc: TLoc = initLocExpr(p, e[0][1])
var tmp = getTemp(p, e.typ, needsInit=false)
putIntoDest(p, tmp, e, cCast(getTypeDesc(p.module, e.typ), addrLoc(p.config, exprLoc)))
putIntoDest(p, d, e, rdLoc(tmp))
else:
putIntoDest(p, d, e, addrLoc(p.config, a), a.storage)
template inheritLocation(d: var TLoc, a: TLoc) =
if d.k == locNone: d.storage = a.storage
proc genRecordFieldAux(p: BProc, e: PNode, d: var TLoc, a: var TLoc) =
a = initLocExpr(p, e[0])
if e[1].kind != nkSym: internalError(p.config, e.info, "genRecordFieldAux")
d.inheritLocation(a)
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
proc genTupleElem(p: BProc, e: PNode, d: var TLoc) =
var
i: int = 0
var a: TLoc = initLocExpr(p, e[0])
let tupType = a.t.skipTypes(abstractInst+{tyVar}+tyUserTypeClasses) # ref #25227
assert tupType.kind == tyTuple
d.inheritLocation(a)
discard getTypeDesc(p.module, a.t) # fill the record's fields.loc
var r = rdLoc(a)
case e[1].kind
of nkIntLit..nkUInt64Lit: i = int(e[1].intVal)
else: internalError(p.config, e.info, "genTupleElem")
r = dotField(r, "Field" & $i)
putIntoDest(p, d, e, r, a.storage)
proc lookupFieldAgain(p: BProc, ty: PType; field: PSym; r: var Rope;
resTyp: ptr PType = nil): PSym =
result = nil
var ty = ty
assert r != ""
while ty != nil:
ty = ty.skipTypes(skipPtrs)
assert(ty.kind in {tyTuple, tyObject})
result = lookupInRecord(ty.n, field.name)
if result != nil:
if resTyp != nil: resTyp[] = ty
break
if not p.module.compileToCpp:
r = dotField(r, "Sup")
ty = ty[0]
if result == nil: internalError(p.config, field.info, "genCheckedRecordField")
proc genRecordField(p: BProc, e: PNode, d: var TLoc) =
var a: TLoc = default(TLoc)
if p.module.compileToCpp and e.kind == nkDotExpr and e[1].kind == nkSym and e[1].typ.kind == tyPtr:
# special case for C++: we need to pull the type of the field as member and friends require the complete type.
let typ = e[1].typ.elementType
if typ.itemId in p.module.g.graph.memberProcsPerType:
discard getTypeDesc(p.module, typ)
genRecordFieldAux(p, e, d, a)
var r = rdLoc(a)
var f = e[1].sym
let ty = skipTypes(a.t, abstractInstOwned + tyUserTypeClasses)
if ty.kind == tyTuple:
# we found a unique tuple type which lacks field information
# so we use Field$i
r = dotField(r, "Field" & $f.position)
putIntoDest(p, d, e, r, a.storage)
else:
var rtyp: PType = nil
let field = lookupFieldAgain(p, ty, f, r, addr rtyp)
if field.loc.snippet == "" and rtyp != nil: fillObjectFields(p.module, rtyp)
if field.loc.snippet == "": internalError(p.config, e.info, "genRecordField 3 " & typeToString(ty))
r = dotField(r, field.loc.snippet)
putIntoDest(p, d, e, r, a.storage)
r.freeze
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc)
proc genFieldCheck(p: BProc, e: PNode, obj: Rope, field: PSym) =
var test, u, v: TLoc
for i in 1..<e.len:
var it = e[i]
assert(it.kind in nkCallKinds)
assert(it[0].kind == nkSym)
let op = it[0].sym
if op.magic == mNot: it = it[1]
let disc = it[2].skipConv
assert(disc.kind == nkSym)
test = initLoc(locNone, it, OnStack)
u = initLocExpr(p, it[1])
v = initLoc(locExpr, disc, OnUnknown)
v.snippet = dotField(obj, disc.sym.loc.snippet)
genInExprAux(p, it, u, v, test)
var msg = ""
if optDeclaredLocs in p.config.globalOptions:
# xxx this should be controlled by a separate flag, and
# used for other similar defects so that location information is shown
# even without the expensive `--stacktrace`; binary size could be optimized
# by encoding the file names separately from `file(line:col)`, essentially
# passing around `TLineInfo` + the set of files in the project.
msg.add toFileLineCol(p.config, e.info) & " "
msg.add genFieldDefect(p.config, field.name.s, disc.sym)
var strLitBuilder = newBuilder("")
genStringLiteral(p.module, newStrNode(nkStrLit, msg), strLitBuilder)
let strLit = extract(strLitBuilder)
## discriminant check
let rt = rdLoc(test)
let cond = if op.magic == mNot: rt else: cOp(Not, rt)
p.s(cpsStmts).addSingleIfStmt(cond):
## call raiseFieldError2 on failure
var discIndex = newRopeAppender()
rdSetElemLoc(p.config, v, u.t, discIndex)
if optTinyRtti in p.config.globalOptions:
let base = disc.typ.skipTypes(abstractInst+{tyRange})
case base.kind
of tyEnum:
let toStrProc = getToStringProc(p.module.g.graph, base)
# XXX need to modify this logic for IC.
# need to analyze nkFieldCheckedExpr and marks procs "used" like range checks in dce
var toStr: TLoc = default(TLoc)
expr(p, newSymNode(toStrProc), toStr)
let rToStr = rdLoc(toStr)
let rv = rdLoc(v)
var raiseCall: CallBuilder
p.s(cpsStmts).addStmt():
p.s(cpsStmts).addCall(raiseCall, cgsymValue(p.module, "raiseFieldErrorStr")):
p.s(cpsStmts).addArgument(raiseCall):
p.s(cpsStmts).add(strLit)
p.s(cpsStmts).addArgument(raiseCall):
p.s(cpsStmts).addCall(rToStr, rv)
else:
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseFieldError2"),
strLit,
cCast(NimInt, discIndex))
else:
# complication needed for signed types
let first = p.config.firstOrd(disc.sym.typ)
let firstLit = cInt64Literal(cast[int](first))
let discName = genTypeInfo(p.config, p.module, disc.sym.typ, e.info)
var raiseCall: CallBuilder
p.s(cpsStmts).addStmt():
p.s(cpsStmts).addCall(raiseCall, cgsymValue(p.module, "raiseFieldError2")):
p.s(cpsStmts).addArgument(raiseCall):
p.s(cpsStmts).add(strLit)
p.s(cpsStmts).addArgument(raiseCall):
p.s(cpsStmts).addCall(cgsymValue(p.module, "reprDiscriminant"),
cOp(Add, NimInt, cCast(NimInt, discIndex), cCast(NimInt, firstLit)),
discName)
raiseInstr(p, p.s(cpsStmts))
proc genCheckedRecordField(p: BProc, e: PNode, d: var TLoc) =
assert e[0].kind == nkDotExpr
if optFieldCheck in p.options:
var a: TLoc = default(TLoc)
genRecordFieldAux(p, e[0], d, a)
let ty = skipTypes(a.t, abstractInst + tyUserTypeClasses)
var r = rdLoc(a)
let f = e[0][1].sym
let field = lookupFieldAgain(p, ty, f, r)
if field.loc.snippet == "": fillObjectFields(p.module, ty)
if field.loc.snippet == "":
internalError(p.config, e.info, "genCheckedRecordField") # generate the checks:
genFieldCheck(p, e, r, field)
r = dotField(r, field.loc.snippet)
putIntoDest(p, d, e[0], r, a.storage)
r.freeze
else:
genRecordField(p, e[0], d)
proc genUncheckedArrayElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a = initLocExpr(p, x)
var b = initLocExpr(p, y)
d.inheritLocation(a)
putIntoDest(p, d, n, subscript(rdLoc(a), rdCharLoc(b)),
a.storage)
proc genArrayElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a = initLocExpr(p, x)
var b = initLocExpr(p, y)
var ty = skipTypes(a.t, abstractVarRange + abstractPtrs + tyUserTypeClasses)
let first = cIntLiteral(firstOrd(p.config, ty))
# emit range check:
if optBoundsCheck in p.options and ty.kind != tyUncheckedArray:
if not isConstExpr(y):
# semantic pass has already checked for const index expressions
if firstOrd(p.config, ty) == 0 and lastOrd(p.config, ty) >= 0:
if (firstOrd(p.config, b.t) < firstOrd(p.config, ty)) or (lastOrd(p.config, b.t) > lastOrd(p.config, ty)):
let last = cIntLiteral(lastOrd(p.config, ty))
let rcb = rdCharLoc(b)
p.s(cpsStmts).addSingleIfStmt(
cOp(GreaterThan, cCast(NimUint, rcb), cCast(NimUint, last))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError2"),
rcb,
last)
raiseInstr(p, p.s(cpsStmts))
else:
let last = cIntLiteral(lastOrd(p.config, ty))
let rcb = rdCharLoc(b)
p.s(cpsStmts).addSingleIfStmt(
cOp(Or, cOp(LessThan, rcb, first), cOp(GreaterThan, rcb, last))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError3"),
rcb,
first,
last)
raiseInstr(p, p.s(cpsStmts))
else:
let idx = getOrdValue(y)
if idx < firstOrd(p.config, ty) or idx > lastOrd(p.config, ty):
localError(p.config, x.info, formatErrorIndexBound(idx, firstOrd(p.config, ty), lastOrd(p.config, ty)))
d.inheritLocation(a)
let ra = rdLoc(a)
let rcb = rdCharLoc(b)
putIntoDest(p, d, n, subscript(ra, cOp(Sub, NimInt, rcb, first)), a.storage)
proc genCStringElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a = initLocExpr(p, x)
var b = initLocExpr(p, y)
inheritLocation(d, a)
let ra = rdLoc(a)
let rcb = rdLoc(b)
putIntoDest(p, d, n, subscript(ra, rcb), a.storage)
proc genBoundsCheck(p: BProc; arr, a, b: TLoc; arrTyp: PType) =
let ty = arrTyp
case ty.kind
of tyOpenArray, tyVarargs:
let ra = rdLoc(a)
let rb = rdLoc(b)
let rarr = rdLoc(arr)
let arrlen =
if reifiedOpenArray(arr.lode):
dotField(rarr, "Field1")
else:
rarr & "Len_0"
p.s(cpsStmts).addSingleIfStmt(cOp(And,
cOp(NotEqual, cOp(Sub, NimInt, rb, ra), cIntValue(-1)),
cOp(Or,
cOp(Or, cOp(LessThan, ra, cIntValue(0)), cOp(GreaterEqual, ra, arrlen)),
cOp(Or, cOp(LessThan, rb, cIntValue(0)), cOp(GreaterEqual, rb, arrlen))))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError4"),
ra, rb, arrlen)
raiseInstr(p, p.s(cpsStmts))
of tyArray:
let first = cIntLiteral(firstOrd(p.config, ty))
let last = cIntLiteral(lastOrd(p.config, ty))
let rca = rdCharLoc(a)
let rcb = rdCharLoc(b)
p.s(cpsStmts).addSingleIfStmt(cOp(And,
cOp(NotEqual, cOp(Sub, NimInt, rcb, rca), cIntValue(-1)),
cOp(Or,
cOp(LessThan, cOp(Sub, NimInt, rcb, rca), cIntValue(-1)),
cOp(Or,
cOp(Or, cOp(LessThan, rca, first), cOp(GreaterThan, rca, last)),
cOp(Or, cOp(LessThan, rcb, first), cOp(GreaterThan, rcb, last)))))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError"))
raiseInstr(p, p.s(cpsStmts))
of tySequence, tyString:
let ra = rdLoc(a)
let rb = rdLoc(b)
let arrlen = lenExpr(p, arr)
p.s(cpsStmts).addSingleIfStmt(cOp(And,
cOp(NotEqual, cOp(Sub, NimInt, rb, ra), cIntValue(-1)),
cOp(Or,
cOp(Or, cOp(LessThan, ra, cIntValue(0)), cOp(GreaterEqual, ra, arrlen)),
cOp(Or, cOp(LessThan, rb, cIntValue(0)), cOp(GreaterEqual, rb, arrlen))))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError4"),
ra, rb, arrlen)
raiseInstr(p, p.s(cpsStmts))
else: discard
proc genOpenArrayElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a = initLocExpr(p, x)
var b = initLocExpr(p, y)
let ra = rdLoc(a)
let rcb = rdCharLoc(b)
var arrData, arrLen: Snippet
if not reifiedOpenArray(x):
arrData = ra
arrLen = ra & "Len_0"
else:
arrData = dotField(ra, "Field0")
arrLen = dotField(ra, "Field1")
# emit range check:
if optBoundsCheck in p.options:
p.s(cpsStmts).addSingleIfStmt(cOp(Or,
cOp(LessThan, rcb, cIntValue(0)),
cOp(GreaterEqual, rcb, arrLen))): # BUGFIX: ``>=`` and not ``>``!
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError2"),
rcb,
cOp(Sub, NimInt, arrLen, cIntValue(1)))
raiseInstr(p, p.s(cpsStmts))
inheritLocation(d, a)
putIntoDest(p, d, n, subscript(arrData, rcb), a.storage)
proc genSeqElem(p: BProc, n, x, y: PNode, d: var TLoc) =
var a = initLocExpr(p, x)
var b = initLocExpr(p, y)
var ty = skipTypes(a.t, abstractVarRange)
if ty.kind in {tyRef, tyPtr}:
ty = skipTypes(ty.elementType, abstractVarRange)
let rcb = rdCharLoc(b)
# emit range check:
if optBoundsCheck in p.options:
let arrLen = lenExpr(p, a)
p.s(cpsStmts).addSingleIfStmt(cOp(Or,
cOp(LessThan, rcb, cIntValue(0)),
cOp(GreaterEqual, rcb, arrLen))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseIndexError2"),
rcb,
cOp(Sub, NimInt, arrLen, cIntValue(1)))
raiseInstr(p, p.s(cpsStmts))
if d.k == locNone: d.storage = OnHeap
if skipTypes(a.t, abstractVar).kind in {tyRef, tyPtr}:
a.snippet = cDeref(a.snippet)
if lfPrepareForMutation in d.flags and ty.kind == tyString and
optSeqDestructors in p.config.globalOptions:
let bra = byRefLoc(p, a)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimPrepareStrMutationV2"),
bra)
let ra = rdLoc(a)
putIntoDest(p, d, n, subscript(dataField(p, ra), rcb), a.storage)
proc genBracketExpr(p: BProc; n: PNode; d: var TLoc) =
var ty = skipTypes(n[0].typ, abstractVarRange + tyUserTypeClasses)
if ty.kind in {tyRef, tyPtr}: ty = skipTypes(ty.elementType, abstractVarRange)
case ty.kind
of tyUncheckedArray: genUncheckedArrayElem(p, n, n[0], n[1], d)
of tyArray: genArrayElem(p, n, n[0], n[1], d)
of tyOpenArray, tyVarargs: genOpenArrayElem(p, n, n[0], n[1], d)
of tySequence, tyString: genSeqElem(p, n, n[0], n[1], d)
of tyCstring: genCStringElem(p, n, n[0], n[1], d)
of tyTuple: genTupleElem(p, n, d)
else: internalError(p.config, n.info, "expr(nkBracketExpr, " & $ty.kind & ')')
discard getTypeDesc(p.module, n.typ)
proc isSimpleExpr(n: PNode): bool =
# calls all the way down --> can stay expression based
case n.kind
of nkCallKinds, nkDotExpr, nkPar, nkTupleConstr,
nkObjConstr, nkBracket, nkCurly, nkHiddenDeref, nkDerefExpr, nkHiddenAddr,
nkHiddenStdConv, nkHiddenSubConv, nkConv, nkAddr:
for c in n:
if not isSimpleExpr(c): return false
result = true
of nkStmtListExpr:
for i in 0..<n.len-1:
if n[i].kind notin {nkCommentStmt, nkEmpty}: return false
result = isSimpleExpr(n.lastSon)
else:
result = n.isAtom
proc genAndOr(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
# how to generate code?
# 'expr1 and expr2' becomes:
# result = expr1
# fjmp result, end
# result = expr2
# end:
# ... (result computed)
# BUGFIX:
# a = b or a
# used to generate:
# a = b
# if a: goto end
# a = a
# end:
# now it generates:
# tmp = b
# if tmp: goto end
# tmp = a
# end:
# a = tmp
when false:
#if isSimpleExpr(e) and p.module.compileToCpp:
#getTemp(p, e.typ, tmpA)
#getTemp(p, e.typ, tmpB)
var tmpA = initLocExprSingleUse(p, e[1])
var tmpB = initLocExprSingleUse(p, e[2])
tmpB.k = locExpr
if m == mOr:
tmpB.snippet = cOp(Or, rdLoc(tmpA), rdLoc(tmpB))
else:
tmpB.snippet = cOp(And, rdLoc(tmpA), rdLoc(tmpB))
if d.k == locNone:
d = tmpB
else:
genAssignment(p, d, tmpB, {})
else:
var
L: TLabel
var tmp: TLoc = getTemp(p, e.typ) # force it into a temp!
inc p.splitDecls
expr(p, e[1], tmp)
L = getLabel(p)
let rtmp = rdLoc(tmp)
let cond = if m == mOr: rtmp else: cOp(Not, rtmp)
p.s(cpsStmts).addSingleIfStmt(cond):
p.s(cpsStmts).addGoto(L)
expr(p, e[2], tmp)
fixLabel(p, L)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
dec p.splitDecls
proc genEcho(p: BProc, n: PNode) =
# this unusual way of implementing it ensures that e.g. ``echo("hallo", 45)``
# is threadsafe.
internalAssert p.config, n.kind == nkBracket
if p.config.target.targetOS == osGenode:
# echo directly to the Genode LOG session
p.module.includeHeader("<base/log.h>")
p.module.includeHeader("<util/string.h>")
var a: TLoc
let logName = "Genode::log"
var logCall: CallBuilder
p.s(cpsStmts).addStmt():
p.s(cpsStmts).addCall(logCall, logName):
for it in n.sons:
if it.skipConv.kind == nkNilLit:
p.s(cpsStmts).addArgument(logCall):
p.s(cpsStmts).add("\"\"")
elif n.len != 0:
a = initLocExpr(p, it)
let ra = a.rdLoc
let fnName = "Genode::Cstring"
p.s(cpsStmts).addArgument(logCall):
case detectStrVersion(p.module)
of 2:
p.s(cpsStmts).addCall(fnName,
dotField(derefField(ra, "p"), "data"),
dotField(ra, "len"))
else:
p.s(cpsStmts).addCall(fnName,
derefField(ra, "data"),
derefField(ra, "len"))
else:
if n.len == 0:
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "echoBinSafe"),
NimNil,
cIntValue(n.len))
else:
var a: TLoc = initLocExpr(p, n)
let ra = a.rdLoc
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "echoBinSafe"),
ra,
cIntValue(n.len))
when false:
p.module.includeHeader("<stdio.h>")
linefmt(p, cpsStmts, "printf($1$2);$n",
makeCString(repeat("%s", n.len) & "\L"), [args])
linefmt(p, cpsStmts, "fflush(stdout);$n", [])
proc gcUsage(conf: ConfigRef; n: PNode) =
if conf.selectedGC == gcNone: message(conf, n.info, warnGcMem, n.renderTree)
proc strLoc(p: BProc; d: TLoc): Rope =
if optSeqDestructors in p.config.globalOptions:
result = byRefLoc(p, d)
else:
result = rdLoc(d)
proc genStrConcat(p: BProc, e: PNode, d: var TLoc) =
# <Nim code>
# s = "Hello " & name & ", how do you feel?" & 'z'
#
# <generated C code>
# {
# string tmp0;
# ...
# tmp0 = rawNewString(6 + 17 + 1 + s2->len);
# // we cannot generate s = rawNewString(...) here, because
# // ``s`` may be used on the right side of the expression
# appendString(tmp0, strlit_1);
# appendString(tmp0, name);
# appendString(tmp0, strlit_2);
# appendChar(tmp0, 'z');
# asgn(s, tmp0);
# }
var a: TLoc
var tmp: TLoc = getTemp(p, e.typ)
var L = 0
var appends: seq[Snippet] = @[]
var lens: seq[Snippet] = @[]
for i in 0..<e.len - 1:
# compute the length expression:
a = initLocExpr(p, e[i + 1])
let rstmp = strLoc(p, tmp)
let ra = rdLoc(a)
if skipTypes(e[i + 1].typ, abstractVarRange).kind == tyChar:
inc(L)
appends.add(cgCall(p, "appendChar", rstmp, ra))
else:
if e[i + 1].kind in {nkStrLit..nkTripleStrLit}:
inc(L, e[i + 1].strVal.len)
else:
lens.add(lenExpr(p, a))
appends.add(cgCall(p, "appendString", rstmp, ra))
var exprL = cIntValue(L)
for len in lens:
exprL = cOp(Add, NimInt, exprL, len)
p.s(cpsStmts).addAssignmentWithValue(tmp.snippet):
p.s(cpsStmts).addCall(cgsymValue(p.module, "rawNewString"), exprL)
for append in appends:
p.s(cpsStmts).addStmt():
p.s(cpsStmts).add(append)
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {}) # no need for deep copying
gcUsage(p.config, e)
proc genStrAppend(p: BProc, e: PNode, d: var TLoc) =
# <Nim code>
# s &= "Hello " & name & ", how do you feel?" & 'z'
# // BUG: what if s is on the left side too?
# <generated C code>
# {
# s = resizeString(s, 6 + 17 + 1 + name->len);
# appendString(s, strlit_1);
# appendString(s, name);
# appendString(s, strlit_2);
# appendChar(s, 'z');
# }
var
a, call: TLoc
appends: seq[Snippet] = @[]
assert(d.k == locNone)
var L = 0
var lens: seq[Snippet] = @[]
var dest = initLocExpr(p, e[1])
let rsd = strLoc(p, dest)
for i in 0..<e.len - 2:
# compute the length expression:
a = initLocExpr(p, e[i + 2])
let ra = rdLoc(a)
if skipTypes(e[i + 2].typ, abstractVarRange).kind == tyChar:
inc(L)
appends.add(cgCall(p, "appendChar", rsd, ra))
else:
if e[i + 2].kind in {nkStrLit..nkTripleStrLit}:
inc(L, e[i + 2].strVal.len)
else:
lens.add(lenExpr(p, a))
appends.add(cgCall(p, "appendString", rsd, ra))
var exprL = cIntValue(L)
for len in lens:
exprL = cOp(Add, NimInt, exprL, len)
if optSeqDestructors in p.config.globalOptions:
let brd = byRefLoc(p, dest)
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "prepareAdd"),
brd,
exprL)
else:
call = initLoc(locCall, e, OnHeap)
let rd = rdLoc(dest)
call.snippet = cgCall(p, "resizeString",
rd,
exprL)
genAssignment(p, dest, call, {})
gcUsage(p.config, e)
for append in appends:
p.s(cpsStmts).addStmt():
p.s(cpsStmts).add(append)
proc genSeqElemAppend(p: BProc, e: PNode, d: var TLoc) =
# seq &= x -->
# seq = (typeof seq) incrSeq(&seq->Sup, sizeof(x));
# seq->data[seq->len-1] = x;
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let seqType = skipTypes(e[1].typ, {tyVar})
var call = initLoc(locCall, e, OnHeap)
let ra = rdLoc(a)
call.snippet = cCast(getTypeDesc(p.module, e[1].typ),
cgCall(p, "incrSeqV3",
if not p.module.compileToCpp: cCast(ptrType("TGenericSeq"), ra) else: ra,
genTypeInfoV1(p.module, seqType, e.info)))
# emit the write barrier if required, but we can always move here, so
# use 'genRefAssign' for the seq.
genRefAssign(p, a, call)
#if bt != b.t:
# echo "YES ", e.info, " new: ", typeToString(bt), " old: ", typeToString(b.t)
var dest = initLoc(locExpr, e[2], OnHeap)
var tmpL = getIntTemp(p)
p.s(cpsStmts).addAssignment(tmpL.snippet, lenField(p, ra))
p.s(cpsStmts).addIncr(lenField(p, ra))
dest.snippet = subscript(dataField(p, ra), tmpL.snippet)
genAssignment(p, dest, b, {needToCopy})
gcUsage(p.config, e)
proc genDefault(p: BProc; n: PNode; d: var TLoc) =
if d.k == locNone: d = getTemp(p, n.typ, needsInit=true)
else: resetLoc(p, d)
proc rawGenNew(p: BProc, a: var TLoc, sizeExpr: Rope; needsInit: bool) =
var sizeExpr = sizeExpr
let typ = a.t
var b: TLoc = initLoc(locExpr, a.lode, OnHeap)
let refType = typ.skipTypes(abstractInstOwned)
assert refType.kind == tyRef
let bt = refType.elementType
if sizeExpr == "":
sizeExpr = cSizeof(getTypeDesc(p.module, bt))
if optTinyRtti in p.config.globalOptions:
let fnName = cgsymValue(p.module, if needsInit: "nimNewObj" else: "nimNewObjUninit")
b.snippet = cCast(getTypeDesc(p.module, typ),
cCall(fnName,
sizeExpr,
cAlignof(getTypeDesc(p.module, bt))))
genAssignment(p, a, b, {})
else:
let ti = genTypeInfoV1(p.module, typ, a.lode.info)
let op = getAttachedOp(p.module.g.graph, bt, attachedDestructor)
if op != nil and not isTrivialProc(p.module.g.graph, op):
# the prototype of a destructor is ``=destroy(x: var T)`` and that of a
# finalizer is: ``proc (x: ref T) {.nimcall.}``. We need to check the calling
# convention at least:
if op.typ == nil or op.typ.callConv != ccNimCall:
localError(p.module.config, a.lode.info,
"the destructor that is turned into a finalizer needs " &
"to have the 'nimcall' calling convention")
var f: TLoc = initLocExpr(p, newSymNode(op))
let rf = rdLoc(f)
p.module.s[cfsTypeInit3].addDerefFieldAssignment(ti, "finalizer",
cCast(CPointer, rf))
if a.storage == OnHeap and usesWriteBarrier(p.config):
let unrefFnName = cgsymValue(p.module,
if canFormAcycle(p.module.g.graph, a.t):
"nimGCunrefRC1"
else:
"nimGCunrefNoCycle")
let ra = a.rdLoc
p.s(cpsStmts).addSingleIfStmt(ra):
p.s(cpsStmts).addCallStmt(unrefFnName, ra)
p.s(cpsStmts).addAssignment(ra, NimNil)
if p.config.selectedGC == gcGo:
# newObjRC1() would clash with unsureAsgnRef() - which is used by gcGo to
# implement the write barrier
b.snippet = cCast(getTypeDesc(p.module, typ),
cgCall(p, "newObj",
ti,
sizeExpr))
let raa = addrLoc(p.config, a)
let rb = b.rdLoc
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "unsureAsgnRef"),
cCast(ptrType(CPointer), raa),
rb)
else:
# use newObjRC1 as an optimization
b.snippet = cCast(getTypeDesc(p.module, typ),
cgCall(p, "newObjRC1",
ti,
sizeExpr))
let ra = a.rdLoc
let rb = b.rdLoc
p.s(cpsStmts).addAssignment(ra, rb)
else:
b.snippet = cCast(getTypeDesc(p.module, typ),
cgCall(p, "newObj",
ti,
sizeExpr))
genAssignment(p, a, b, {})
# set the object type:
genObjectInit(p, cpsStmts, bt, a, constructRefObj)
proc genNew(p: BProc, e: PNode) =
var a: TLoc = initLocExpr(p, e[1])
# 'genNew' also handles 'unsafeNew':
if e.len == 3:
var se: TLoc = initLocExpr(p, e[2])
rawGenNew(p, a, se.rdLoc, needsInit = true)
else:
rawGenNew(p, a, "", needsInit = true)
gcUsage(p.config, e)
proc genNewSeqAux(p: BProc, dest: TLoc, length: Rope; lenIsZero: bool) =
let seqtype = skipTypes(dest.t, abstractVarRange)
var call: TLoc = initLoc(locExpr, dest.lode, OnHeap)
if dest.storage == OnHeap and usesWriteBarrier(p.config):
let unrefFnName = cgsymValue(p.module,
if canFormAcycle(p.module.g.graph, dest.t):
"nimGCunrefRC1"
else:
"nimGCunrefNoCycle")
let rd = dest.rdLoc
p.s(cpsStmts).addSingleIfStmt(rd):
p.s(cpsStmts).addCallStmt(unrefFnName, rd)
p.s(cpsStmts).addAssignment(rd, NimNil)
if not lenIsZero:
let st = getTypeDesc(p.module, seqtype)
let typinfo = genTypeInfoV1(p.module, seqtype, dest.lode.info)
if p.config.selectedGC == gcGo:
# we need the write barrier
call.snippet = cCast(st,
cgCall(p, "newSeq", typinfo, length))
let rad = addrLoc(p.config, dest)
let rc = call.rdLoc
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "unsureAsgnRef"),
cCast(ptrType(CPointer), rad),
rc)
else:
call.snippet = cCast(st,
cgCall(p, "newSeqRC1", typinfo, length))
let rd = dest.rdLoc
let rc = call.rdLoc
p.s(cpsStmts).addAssignment(rd, rc)
else:
if lenIsZero:
call.snippet = NimNil
else:
let st = getTypeDesc(p.module, seqtype)
let typinfo = genTypeInfoV1(p.module, seqtype, dest.lode.info)
call.snippet = cCast(st,
cgCall(p, "newSeq", typinfo, length))
genAssignment(p, dest, call, {})
proc genNewSeq(p: BProc, e: PNode) =
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
if optSeqDestructors in p.config.globalOptions:
let seqtype = skipTypes(e[1].typ, abstractVarRange)
let ra = a.rdLoc
let rb = b.rdLoc
let et = getTypeDesc(p.module, seqtype.elementType)
let pt = getSeqPayloadType(p.module, seqtype)
p.s(cpsStmts).addFieldAssignment(ra, "len", rb)
p.s(cpsStmts).addFieldAssignmentWithValue(ra, "p"):
p.s(cpsStmts).addCast(ptrType(pt)):
p.s(cpsStmts).addCall(cgsymValue(p.module, "newSeqPayload"),
rb,
cSizeof(et),
cAlignof(et))
else:
let lenIsZero = e[2].kind == nkIntLit and e[2].intVal == 0
genNewSeqAux(p, a, b.rdLoc, lenIsZero)
gcUsage(p.config, e)
proc genNewSeqOfCap(p: BProc; e: PNode; d: var TLoc) =
let seqtype = skipTypes(e.typ, abstractVarRange)
var a: TLoc = initLocExpr(p, e[1])
if optSeqDestructors in p.config.globalOptions:
if d.k == locNone: d = getTemp(p, e.typ, needsInit=false)
let rd = d.rdLoc
let ra = a.rdLoc
let et = getTypeDesc(p.module, seqtype.elementType)
let pt = getSeqPayloadType(p.module, seqtype)
p.s(cpsStmts).addFieldAssignment(rd, "len", cIntValue(0))
p.s(cpsStmts).addFieldAssignmentWithValue(rd, "p"):
p.s(cpsStmts).addCast(ptrType(pt)):
p.s(cpsStmts).addCall(cgsymValue(p.module, "newSeqPayloadUninit"),
ra,
cSizeof(et),
cAlignof(et))
else:
if d.k == locNone: d = getTemp(p, e.typ, needsInit=false) # bug #22560
let ra = a.rdLoc
let dres = cCast(getTypeDesc(p.module, seqtype),
cgCall(p, "nimNewSeqOfCap",
genTypeInfoV1(p.module, seqtype, e.info),
ra))
putIntoDest(p, d, e, dres)
gcUsage(p.config, e)
proc rawConstExpr(p: BProc, n: PNode; d: var TLoc) =
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
fillLoc(d, locData, n, p.module.tmpBase & rope(id), OnStatic)
if id == p.module.labels:
# expression not found in the cache:
inc(p.module.labels)
let td = getTypeDesc(p.module, t)
var data = newBuilder("")
data.addVarWithInitializer(kind = Const, name = d.snippet, typ = td):
# bug #23627; when generating const object fields, it's likely that
# we need to generate type infos for the object, which may be an object with
# custom hooks. We need to generate potential consts in the hooks first.
genBracedInit(p, n, isConst = true, t, data)
p.module.s[cfsData].add(extract(data))
proc handleConstExpr(p: BProc, n: PNode, d: var TLoc): bool =
if d.k == locNone and n.len > ord(n.kind == nkObjConstr) and n.isDeepConstExpr:
rawConstExpr(p, n, d)
result = true
else:
result = false
proc genFieldObjConstr(p: BProc; ty: PType; useTemp, isRef: bool; nField, val, check: PNode; d: var TLoc; r: Rope; info: TLineInfo) =
var tmp2 = TLoc(snippet: r)
let field = lookupFieldAgain(p, ty, nField.sym, tmp2.snippet)
if field.loc.snippet == "": fillObjectFields(p.module, ty)
if field.loc.snippet == "": internalError(p.config, info, "genFieldObjConstr")
if check != nil and optFieldCheck in p.options:
genFieldCheck(p, check, r, field)
tmp2.snippet = dotField(tmp2.snippet, field.loc.snippet)
if useTemp:
tmp2.k = locTemp
tmp2.storage = if isRef: OnHeap else: OnStack
else:
tmp2.k = d.k
tmp2.storage = if isRef: OnHeap else: d.storage
tmp2.lode = val
if nField.typ.skipTypes(abstractVar).kind in {tyOpenArray, tyVarargs}:
var tmp3 = getTemp(p, val.typ)
expr(p, val, tmp3)
genOpenArrayConv(p, tmp2, tmp3, {})
else:
expr(p, val, tmp2)
proc genObjConstr(p: BProc, e: PNode, d: var TLoc) =
# inheritance in C++ does not allow struct initialization so
# we skip this step here:
if not p.module.compileToCpp and optSeqDestructors notin p.config.globalOptions:
# disabled optimization: it is wrong for C++ and now also
# causes trouble for --gc:arc, see bug #13240
#[
var box: seq[Thing]
for i in 0..3:
box.add Thing(s1: "121") # pass by sink can mutate Thing.
]#
if handleConstExpr(p, e, d): return
var t = e.typ.skipTypes(abstractInstOwned)
let isRef = t.kind == tyRef
# check if we need to construct the object in a temporary
var useTemp =
isRef or
(d.k notin {locTemp,locLocalVar,locGlobalVar,locParam,locField}) or
(isPartOf(d.lode, e) != arNo)
var tmp: TLoc = default(TLoc)
var r: Rope
let needsZeroMem = p.config.selectedGC notin {gcArc, gcAtomicArc, gcOrc} or nfAllFieldsSet notin e.flags
if useTemp:
tmp = getTemp(p, t)
r = rdLoc(tmp)
if isRef:
rawGenNew(p, tmp, "", needsInit = nfAllFieldsSet notin e.flags)
t = t.elementType.skipTypes(abstractInstOwned)
r = cDeref(r)
gcUsage(p.config, e)
elif needsZeroMem:
constructLoc(p, tmp)
else:
genObjectInit(p, cpsStmts, t, tmp, constructObj)
else:
if needsZeroMem: resetLoc(p, d)
else: genObjectInit(p, cpsStmts, d.t, d, if isRef: constructRefObj else: constructObj)
r = rdLoc(d)
discard getTypeDesc(p.module, t)
let ty = getUniqueType(t)
for i in 1..<e.len:
if nfPreventCg in e[i].flags:
# this is an object constructor node generated by the VM and
# this field is in an inactive case branch, don't generate assignment
continue
var check: PNode = nil
if e[i].len == 3 and optFieldCheck in p.options:
check = e[i][2]
genFieldObjConstr(p, ty, useTemp, isRef, e[i][0], e[i][1], check, d, r, e.info)
if useTemp:
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {})
proc lhsDoesAlias(a, b: PNode): bool =
result = false
for y in b:
if isPartOf(a, y) != arNo: return true
proc genSeqConstr(p: BProc, n: PNode, d: var TLoc) =
var arr: TLoc
var tmp: TLoc = default(TLoc)
# bug #668
let doesAlias = lhsDoesAlias(d.lode, n)
let dest = if doesAlias: addr(tmp) else: addr(d)
if doesAlias:
tmp = getTemp(p, n.typ)
elif d.k == locNone:
d = getTemp(p, n.typ)
let lit = cIntLiteral(n.len)
if optSeqDestructors in p.config.globalOptions:
let seqtype = n.typ
let rd = rdLoc dest[]
let et = getTypeDesc(p.module, seqtype.elementType)
let pt = getSeqPayloadType(p.module, seqtype)
p.s(cpsStmts).addFieldAssignment(rd, "len", lit)
p.s(cpsStmts).addFieldAssignmentWithValue(rd, "p"):
p.s(cpsStmts).addCast(ptrType(pt)):
p.s(cpsStmts).addCall(cgsymValue(p.module, "newSeqPayload"),
lit,
cSizeof(et),
cAlignof(et))
else:
# generate call to newSeq before adding the elements per hand:
genNewSeqAux(p, dest[], lit, n.len == 0)
for i in 0..<n.len:
arr = initLoc(locExpr, n[i], OnHeap)
let lit = cIntLiteral(i)
let rd = rdLoc dest[]
arr.snippet = subscript(dataField(p, rd), lit)
arr.storage = OnHeap # we know that sequences are on the heap
expr(p, n[i], arr)
gcUsage(p.config, n)
if doesAlias:
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {})
proc genArrToSeq(p: BProc, n: PNode, d: var TLoc) =
var elem, arr: TLoc
if n[1].kind == nkBracket:
n[1].typ = n.typ
genSeqConstr(p, n[1], d)
return
if d.k == locNone:
d = getTemp(p, n.typ)
var a = initLocExpr(p, n[1])
# generate call to newSeq before adding the elements per hand:
let L = toInt(lengthOrd(p.config, n[1].typ))
if optSeqDestructors in p.config.globalOptions:
let seqtype = n.typ
let rd = rdLoc d
let valL = cIntValue(L)
let et = getTypeDesc(p.module, seqtype.elementType)
let pt = getSeqPayloadType(p.module, seqtype)
p.s(cpsStmts).addFieldAssignment(rd, "len", valL)
p.s(cpsStmts).addFieldAssignmentWithValue(rd, "p"):
p.s(cpsStmts).addCast(ptrType(pt)):
p.s(cpsStmts).addCall(cgsymValue(p.module, "newSeqPayload"),
valL,
cSizeof(et),
cAlignof(et))
else:
let lit = cIntLiteral(L)
genNewSeqAux(p, d, lit, L == 0)
# bug #5007; do not produce excessive C source code:
if L < 10:
for i in 0..<L:
elem = initLoc(locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), OnHeap)
let lit = cIntLiteral(i)
elem.snippet = subscript(dataField(p, rdLoc(d)), lit)
elem.storage = OnHeap # we know that sequences are on the heap
arr = initLoc(locExpr, lodeTyp elemType(skipTypes(n[1].typ, abstractInst)), a.storage)
arr.snippet = subscript(rdLoc(a), lit)
genAssignment(p, elem, arr, {needToCopy})
else:
var i: TLoc = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyInt))
p.s(cpsStmts).addForRangeExclusive(i.snippet, cIntValue(0), cIntValue(L)):
elem = initLoc(locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), OnHeap)
elem.snippet = subscript(dataField(p, rdLoc(d)), rdLoc(i))
elem.storage = OnHeap # we know that sequences are on the heap
arr = initLoc(locExpr, lodeTyp elemType(skipTypes(n[1].typ, abstractInst)), a.storage)
arr.snippet = subscript(rdLoc(a), rdLoc(i))
genAssignment(p, elem, arr, {needToCopy})
proc genNewFinalize(p: BProc, e: PNode) =
var
b: TLoc
refType, bt: PType
ti: Rope
refType = skipTypes(e[1].typ, abstractVarRange)
var a = initLocExpr(p, e[1])
var f = initLocExpr(p, e[2])
b = initLoc(locExpr, a.lode, OnHeap)
ti = genTypeInfo(p.config, p.module, refType, e.info)
p.module.s[cfsTypeInit3].addDerefFieldAssignment(ti, "finalizer", cCast(CPointer, rdLoc(f)))
b.snippet = cCast(getTypeDesc(p.module, refType),
cgCall(p, "newObj",
ti,
cSizeof(getTypeDesc(p.module, skipTypes(refType.elementType, abstractRange)))))
genAssignment(p, a, b, {}) # set the object type:
bt = skipTypes(refType.elementType, abstractRange)
genObjectInit(p, cpsStmts, bt, a, constructRefObj)
gcUsage(p.config, e)
proc genOfHelper(p: BProc; dest: PType; a: Rope; info: TLineInfo; result: var Builder) =
if optTinyRtti in p.config.globalOptions:
let token = $genDisplayElem(MD5Digest(hashType(dest, p.config)))
result.addCall(cgsymValue(p.module, "isObjDisplayCheck"),
dotField(a, "m_type"),
cIntValue(int(getObjDepth(dest))),
token)
else:
# unfortunately 'genTypeInfoV1' sets tfObjHasKids as a side effect, so we
# have to call it here first:
let ti = genTypeInfoV1(p.module, dest, info)
if tfFinal in dest.flags or (objHasKidsValid in p.module.flags and
tfObjHasKids notin dest.flags):
result.addOp(Equal, dotField(a, "m_type"), ti)
else:
cgsym(p.module, "TNimType")
inc p.module.labels
let cache = "Nim_OfCheck_CACHE" & p.module.labels.rope
p.module.s[cfsVars].addArrayVar(kind = Global,
name = cache,
elementType = ptrType("TNimType"),
len = 2)
result.addCall(cgsymValue(p.module, "isObjWithCache"),
dotField(a, "m_type"),
ti,
cache)
proc genOf(p: BProc, x: PNode, typ: PType, d: var TLoc) =
var a: TLoc = initLocExpr(p, x)
var dest = skipTypes(typ, typedescPtrs)
var r = rdLoc(a)
var nilCheck: Rope = ""
var t = skipTypes(a.t, abstractInstOwned)
while t.kind in {tyVar, tyLent, tyPtr, tyRef}:
if t.kind notin {tyVar, tyLent}: nilCheck = r
if t.kind notin {tyVar, tyLent} or not p.module.compileToCpp:
r = cDeref(r)
t = skipTypes(t.elementType, typedescInst+{tyOwned})
discard getTypeDesc(p.module, t)
if not p.module.compileToCpp:
while t.kind == tyObject and t.baseClass != nil:
r = dotField(r, "Sup")
t = skipTypes(t.baseClass, skipPtrs)
if isObjLackingTypeField(t):
globalError(p.config, x.info,
"no 'of' operator available for pure objects")
var ro = newBuilder("")
genOfHelper(p, dest, r, x.info, ro)
var ofExpr = extract(ro)
if nilCheck != "":
ofExpr = cOp(And, nilCheck, ofExpr)
putIntoDest(p, d, x, ofExpr, a.storage)
proc genOf(p: BProc, n: PNode, d: var TLoc) =
genOf(p, n[1], n[2].typ, d)
proc genRepr(p: BProc, e: PNode, d: var TLoc) =
if optTinyRtti in p.config.globalOptions:
localError(p.config, e.info, "'repr' is not available for --newruntime")
var a: TLoc = initLocExpr(p, e[1])
var t = skipTypes(e[1].typ, abstractVarRange)
template cgCall(name: string, args: varargs[untyped]): untyped =
cCall(cgsymValue(p.module, name), args)
case t.kind
of tyInt..tyInt64, tyUInt..tyUInt64:
let ra = rdLoc(a)
putIntoDest(p, d, e, cgCall("reprInt", cCast(NimInt64, ra)), a.storage)
of tyFloat..tyFloat128:
let ra = rdLoc(a)
putIntoDest(p, d, e, cgCall("reprFloat", ra), a.storage)
of tyBool:
let ra = rdLoc(a)
putIntoDest(p, d, e, cgCall("reprBool", ra), a.storage)
of tyChar:
let ra = rdLoc(a)
putIntoDest(p, d, e, cgCall("reprChar", ra), a.storage)
of tyEnum, tyOrdinal:
let ra = rdLoc(a)
let rti = genTypeInfoV1(p.module, t, e.info)
putIntoDest(p, d, e, cgCall("reprEnum", cCast(NimInt, ra), rti), a.storage)
of tyString:
let ra = rdLoc(a)
putIntoDest(p, d, e, cgCall("reprStr", ra), a.storage)
of tySet:
let raa = addrLoc(p.config, a)
let rti = genTypeInfoV1(p.module, t, e.info)
putIntoDest(p, d, e, cgCall("reprSet", raa, rti), a.storage)
of tyOpenArray, tyVarargs:
var b: TLoc = default(TLoc)
case skipTypes(a.t, abstractVarRange).kind
of tyOpenArray, tyVarargs:
let ra = rdLoc(a)
putIntoDest(p, b, e, ra & cArgumentSeparator & ra & "Len_0", a.storage)
of tyString, tySequence:
let ra = rdLoc(a)
let la = lenExpr(p, a)
putIntoDest(p, b, e,
cIfExpr(dataFieldAccessor(p, ra), dataField(p, ra), NimNil) &
cArgumentSeparator & la,
a.storage)
of tyArray:
let ra = rdLoc(a)
let la = cIntValue(lengthOrd(p.config, a.t))
putIntoDest(p, b, e, ra & cArgumentSeparator & la, a.storage)
else: internalError(p.config, e[0].info, "genRepr()")
let rb = rdLoc(b)
let rti = genTypeInfoV1(p.module, elemType(t), e.info)
putIntoDest(p, d, e, cgCall("reprOpenArray", rb, rti), a.storage)
of tyCstring, tyArray, tyRef, tyPtr, tyPointer, tyNil, tySequence:
let ra = rdLoc(a)
let rti = genTypeInfoV1(p.module, t, e.info)
putIntoDest(p, d, e, cgCall("reprAny", ra, rti), a.storage)
of tyEmpty, tyVoid:
localError(p.config, e.info, "'repr' doesn't support 'void' type")
else:
let raa = addrLoc(p.config, a)
let rti = genTypeInfoV1(p.module, t, e.info)
putIntoDest(p, d, e, cgCall("reprAny", raa, rti), a.storage)
gcUsage(p.config, e)
proc rdMType(p: BProc; a: TLoc; nilCheck: var Rope; result: var Snippet; enforceV1 = false) =
var derefs = rdLoc(a)
var t = skipTypes(a.t, abstractInst)
while t.kind in {tyVar, tyLent, tyPtr, tyRef}:
if t.kind notin {tyVar, tyLent}: nilCheck = derefs
if t.kind notin {tyVar, tyLent} or not p.module.compileToCpp:
derefs = cDeref(derefs)
t = skipTypes(t.elementType, abstractInst)
result.add derefs
discard getTypeDesc(p.module, t)
if not p.module.compileToCpp:
while t.kind == tyObject and t.baseClass != nil:
result = dotField(result, "Sup")
t = skipTypes(t.baseClass, skipPtrs)
result = dotField(result, "m_type")
if optTinyRtti in p.config.globalOptions and enforceV1:
result = derefField(result, "typeInfoV1")
proc genGetTypeInfo(p: BProc, e: PNode, d: var TLoc) =
cgsym(p.module, "TNimType")
let t = e[1].typ
# ordinary static type information
putIntoDest(p, d, e, genTypeInfoV1(p.module, t, e.info))
proc genGetTypeInfoV2(p: BProc, e: PNode, d: var TLoc) =
let t = e[1].typ
if isFinal(t) or e[0].sym.name.s != "getDynamicTypeInfo":
# ordinary static type information
putIntoDest(p, d, e, genTypeInfoV2(p.module, t, e.info))
else:
var a: TLoc = initLocExpr(p, e[1])
var nilCheck = ""
# use the dynamic type stored at offset 0:
var rt: Snippet = ""
rdMType(p, a, nilCheck, rt)
putIntoDest(p, d, e, rt)
proc genAccessTypeField(p: BProc; e: PNode; d: var TLoc) =
var a: TLoc = initLocExpr(p, e[1])
var nilCheck = ""
# use the dynamic type stored at offset 0:
var rt: Snippet = ""
rdMType(p, a, nilCheck, rt)
putIntoDest(p, d, e, rt)
template genDollarIt(p: BProc, n: PNode, d: var TLoc, frmt: untyped) =
block:
var a: TLoc = initLocExpr(p, n[1])
let it {.inject.} = rdLoc(a)
a.snippet = frmt
a.flags.excl lfIndirect # this flag should not be propagated here (not just for HCR)
if d.k == locNone: d = getTemp(p, n.typ)
genAssignment(p, d, a, {})
gcUsage(p.config, n)
proc genArrayLen(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var a = e[1]
if a.kind == nkHiddenAddr: a = a[0]
var typ = skipTypes(a.typ, abstractVar + tyUserTypeClasses)
case typ.kind
of tyOpenArray, tyVarargs:
# Bug #9279, len(toOpenArray()) has to work:
if a.kind in nkCallKinds and a[0].kind == nkSym and a[0].sym.magic == mSlice:
# magic: pass slice to openArray:
var m = initLocExpr(p, a[1])
var b = initLocExpr(p, a[2])
var c = initLocExpr(p, a[3])
if optBoundsCheck in p.options:
genBoundsCheck(p, m, b, c, skipTypes(m.t, abstractVarRange))
if op == mHigh:
putIntoDest(p, d, e, cOp(Sub, NimInt, rdLoc(c), rdLoc(b)))
else:
putIntoDest(p, d, e, cOp(Add, NimInt, cOp(Sub, NimInt, rdLoc(c), rdLoc(b)), cIntValue(1)))
else:
if not reifiedOpenArray(a):
if op == mHigh: unaryExpr(p, e, d, cOp(Sub, NimInt, ra & "Len_0", cIntValue(1)))
else: unaryExpr(p, e, d, ra & "Len_0")
else:
let isDeref = a.kind in {nkHiddenDeref, nkDerefExpr}
template lenA: untyped =
if isDeref:
derefField(ra, "Field1")
else:
dotField(ra, "Field1")
if op == mHigh:
unaryExpr(p, e, d, cOp(Sub, NimInt, lenA, cIntValue(1)))
else:
unaryExpr(p, e, d, lenA)
of tyCstring:
if op == mHigh:
unaryExpr(p, e, d, cOp(Sub, NimInt, cgCall(p, "nimCStrLen", ra), cIntValue(1)))
else:
unaryExpr(p, e, d, cgCall(p, "nimCStrLen", ra))
of tyString:
var a: TLoc = initLocExpr(p, e[1])
var x = lenExpr(p, a)
if op == mHigh: x = cOp(Sub, NimInt, x, cIntValue(1))
putIntoDest(p, d, e, x)
of tySequence:
# we go through a temporary here because people write bullshit code.
var tmp: TLoc = getIntTemp(p)
var a = initLocExpr(p, e[1])
var x = lenExpr(p, a)
if op == mHigh: x = cOp(Sub, NimInt, x, cIntValue(1))
p.s(cpsStmts).addAssignment(tmp.snippet, x)
putIntoDest(p, d, e, tmp.snippet)
of tyArray:
# YYY: length(sideeffect) is optimized away incorrectly?
if op == mHigh: putIntoDest(p, d, e, cIntValue(lastOrd(p.config, typ)))
else: putIntoDest(p, d, e, cIntValue(lengthOrd(p.config, typ)))
else: internalError(p.config, e.info, "genArrayLen()")
proc isTrivialTypesToSnippet(t: PType): Snippet =
if containsGarbageCollectedRef(t) or
hasDestructor(t):
result = NimFalse
else:
result = NimTrue
proc genSetLengthSeq(p: BProc, e: PNode, d: var TLoc, noinit = false) =
if optSeqDestructors in p.config.globalOptions:
e[1] = makeAddr(e[1], p.module.idgen)
genCall(p, e, d)
return
assert(d.k == locNone)
var x = e[1]
if x.kind in {nkAddr, nkHiddenAddr}: x = x[0]
var a = initLocExpr(p, x)
var b = initLocExpr(p, e[2])
let t = skipTypes(e[1].typ, {tyVar})
var call = initLoc(locCall, e, OnHeap)
let ra = rdLoc(a)
let rb = rdLoc(b)
let rt = getTypeDesc(p.module, t)
let rti = genTypeInfoV1(p.module, t.skipTypes(abstractInst), e.info)
var pExpr: Snippet
if not p.module.compileToCpp:
pExpr = cIfExpr(ra, cAddr(derefField(ra, "Sup")), NimNil)
else:
pExpr = ra
let name = if noinit: "setLengthSeqUninit" else: "setLengthSeqV2"
call.snippet = cCast(rt, cgCall(p, name, pExpr, rti, rb,
isTrivialTypesToSnippet(t.skipTypes(abstractInst)[0])))
genAssignment(p, a, call, {})
gcUsage(p.config, e)
proc genSetLengthStr(p: BProc, e: PNode, d: var TLoc) =
if optSeqDestructors in p.config.globalOptions:
binaryStmtAddr(p, e, d, "setLengthStrV2")
else:
if d.k != locNone: internalError(p.config, e.info, "genSetLengthStr")
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
var call = initLoc(locCall, e, OnHeap)
call.snippet = cgCall(p, "setLengthStr", rdLoc(a), rdLoc(b))
genAssignment(p, a, call, {})
gcUsage(p.config, e)
proc genSwap(p: BProc, e: PNode, d: var TLoc) =
# swap(a, b) -->
# temp = a
# a = b
# b = temp
cowBracket(p, e[1])
cowBracket(p, e[2])
var tmp: TLoc = getTemp(p, skipTypes(e[1].typ, abstractVar))
var a = initLocExpr(p, e[1]) # eval a
var b = initLocExpr(p, e[2]) # eval b
genAssignment(p, tmp, a, {})
genAssignment(p, a, b, {})
genAssignment(p, b, tmp, {})
proc rdSetElemLoc(conf: ConfigRef; a: TLoc, typ: PType; result: var Snippet) =
# read a location of an set element; it may need a subtraction operation
# before the set operation
result = rdCharLoc(a)
let setType = typ.skipTypes(abstractPtrs)
assert(setType.kind == tySet)
if firstOrd(conf, setType) != 0:
result = cOp(Sub, NimUint, result, cIntValue(firstOrd(conf, setType)))
proc fewCmps(conf: ConfigRef; s: PNode): bool =
# this function estimates whether it is better to emit code
# for constructing the set or generating a bunch of comparisons directly
if s.kind != nkCurly: return false
if (getSize(conf, s.typ) <= conf.target.intSize) and (nfAllConst in s.flags):
result = false # it is better to emit the set generation code
elif elemType(s.typ).kind in {tyInt, tyInt16..tyInt64}:
result = true # better not emit the set if int is basetype!
else:
result = s.len <= 8 # 8 seems to be a good value
template binaryExprIn(p: BProc, e: PNode, a, b, d: var TLoc, frmt: untyped) =
var elem {.inject.}: Snippet = ""
rdSetElemLoc(p.config, b, a.t, elem)
let ra {.inject.} = rdLoc(a)
putIntoDest(p, d, e, frmt)
proc genInExprAux(p: BProc, e: PNode, a, b, d: var TLoc) =
let s = int(getSize(p.config, skipTypes(e[1].typ, abstractVar)))
case s
of 1, 2, 4, 8:
let mask = s * 8 - 1
let rt = cUintType(s * 8)
binaryExprIn(p, e, a, b, d,
# ((a & ((NU8) 1 << ((NU) elem & 7U))) != 0)
# ((a & ((NU16) 1 << ((NU) elem & 15U))) != 0)
# ((a & ((NU32) 1 << ((NU) elem & 31U))) != 0)
# ((a & ((NU64) 1 << ((NU) elem & 63U))) != 0)
cOp(NotEqual,
cOp(BitAnd, rt, ra,
cOp(Shl, rt, cCast(rt, cIntValue(1)),
cOp(BitAnd, NimUint, cCast(NimUint, elem), cUintValue(mask.uint)))),
cIntValue(0)))
else:
# ((a[(NU)(elem)>>3] &(1U<<((NU)(elem)&7U)))!=0)
binaryExprIn(p, e, a, b, d,
cOp(NotEqual,
cOp(BitAnd, NimUint8,
subscript(ra, cOp(Shr, NimUint, cCast(NimUint, elem), cIntValue(3))),
cOp(Shl, NimUint8,
cUintValue(1),
cOp(BitAnd, NimUint,
cCast(NimUint, elem),
cUintValue(7)))),
cIntValue(0)))
template binaryStmtInExcl(p: BProc, e: PNode, d: var TLoc, frmt: untyped) =
assert(d.k == locNone)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
var elem {.inject.}: Snippet = ""
rdSetElemLoc(p.config, b, a.t, elem)
let ra {.inject.} = rdLoc(a)
p.s(cpsStmts).add(frmt)
proc genInOp(p: BProc, e: PNode, d: var TLoc) =
var a, b, x, y: TLoc
if (e[1].kind == nkCurly) and fewCmps(p.config, e[1]):
# a set constructor but not a constant set:
# do not emit the set, but generate a bunch of comparisons; and if we do
# so, we skip the unnecessary range check: This is a semantical extension
# that code now relies on. :-/ XXX
let ea = if e[2].kind in {nkChckRange, nkChckRange64}:
e[2][0]
else:
e[2]
a = initLocExpr(p, ea)
b = initLoc(locExpr, e, OnUnknown)
if e[1].len > 0:
var val: Snippet = ""
for i in 0..<e[1].len:
let it = e[1][i]
var currentExpr: Snippet
if it.kind == nkRange:
x = initLocExpr(p, it[0])
y = initLocExpr(p, it[1])
let rca = rdCharLoc(a)
let rcx = rdCharLoc(x)
let rcy = rdCharLoc(y)
currentExpr = cOp(And,
cOp(GreaterEqual, rca, rcx),
cOp(LessEqual, rca, rcy))
else:
x = initLocExpr(p, it)
let rca = rdCharLoc(a)
let rcx = rdCharLoc(x)
currentExpr = cOp(Equal, rca, rcx)
if val.len == 0:
val = currentExpr
else:
val = cOp(Or, val, currentExpr)
b.snippet = val
else:
# handle the case of an empty set
b.snippet = cIntValue(0)
putIntoDest(p, d, e, b.snippet)
else:
assert(e[1].typ != nil)
assert(e[2].typ != nil)
a = initLocExpr(p, e[1])
b = initLocExpr(p, e[2])
genInExprAux(p, e, a, b, d)
proc genSetOp(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
var a, b: TLoc
var i: TLoc
var setType = skipTypes(e[1].typ, abstractVar)
var size = int(getSize(p.config, setType))
case size
of 1, 2, 4, 8:
let bits = size * 8
let rt = cUintType(bits)
case op
of mIncl:
let mask = bits - 1
binaryStmtInExcl(p, e, d,
cInPlaceOp(BitOr, rt, ra,
cOp(Shl, rt, cCast(rt, cIntValue(1)),
cOp(BitAnd, NimUint, elem, cIntValue(mask)))))
of mExcl:
let mask = bits - 1
binaryStmtInExcl(p, e, d,
cInPlaceOp(BitAnd, rt, ra, cOp(BitNot, rt,
cOp(Shl, rt, cCast(rt, cIntValue(1)),
cOp(BitAnd, NimUint, elem, cIntValue(mask))))))
of mCard:
let name = if size <= 4: "countBits32" else: "countBits64"
unaryExprChar(p, e, d, cgCall(p, name, ra))
of mLtSet:
binaryExprChar(p, e, d, cOp(And,
cOp(Equal, cOp(BitAnd, rt, ra, cOp(BitNot, rt, rb)), cIntValue(0)),
cOp(NotEqual, ra, rb)))
of mLeSet:
binaryExprChar(p, e, d,
cOp(Equal, cOp(BitAnd, rt, ra, cOp(BitNot, rt, rb)), cIntValue(0)))
of mEqSet: binaryExpr(p, e, d, cOp(Equal, ra, rb))
of mMulSet: binaryExpr(p, e, d, cOp(BitAnd, rt, ra, rb))
of mPlusSet: binaryExpr(p, e, d, cOp(BitOr, rt, ra, rb))
of mMinusSet: binaryExpr(p, e, d, cOp(BitAnd, rt, ra, cOp(BitNot, rt, rb)))
of mXorSet: binaryExpr(p, e, d, cOp(BitXor, rt, ra, rb))
of mInSet:
genInOp(p, e, d)
else: internalError(p.config, e.info, "genSetOp()")
else:
case op
of mIncl:
binaryStmtInExcl(p, e, d, cInPlaceOp(BitOr, NimUint8,
subscript(ra, cOp(Shr, NimUint, cCast(NimUint, elem), cIntValue(3))),
cOp(Shl, NimUint8, cUintValue(1), cOp(BitAnd, NimUint, elem, cUintValue(7)))))
of mExcl:
binaryStmtInExcl(p, e, d, cInPlaceOp(BitAnd, NimUint8,
subscript(ra, cOp(Shr, NimUint, cCast(NimUint, elem), cIntValue(3))),
cOp(BitNot, NimUint8,
cOp(Shl, NimUint8, cUintValue(1), cOp(BitAnd, NimUint, elem, cUintValue(7))))))
of mCard:
var a: TLoc = initLocExpr(p, e[1])
let rca = rdCharLoc(a)
putIntoDest(p, d, e, cgCall(p, "cardSet", rca, cIntValue(size)))
of mLtSet, mLeSet:
i = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyInt)) # our counter
a = initLocExpr(p, e[1])
b = initLocExpr(p, e[2])
if d.k == locNone: d = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyBool))
discard "for ($1 = 0; $1 < $2; $1++) { $n" &
" $3 = (($4[$1] & ~ $5[$1]) == 0);$n" &
" if (!$3) break;}$n"
let ri = rdLoc(i)
let rd = rdLoc(d)
let ra = rdLoc(a)
let rb = rdLoc(b)
p.s(cpsStmts).addForRangeExclusive(ri, cIntValue(0), cIntValue(size)):
p.s(cpsStmts).addAssignment(rd, cOp(Equal,
cOp(BitAnd, NimUint8,
subscript(ra, ri),
cOp(BitNot, NimUint8, subscript(rb, ri))),
cIntValue(0)))
p.s(cpsStmts).addSingleIfStmt(cOp(Not, rd)):
p.s(cpsStmts).addBreak()
if op == mLtSet:
discard "if ($3) $3 = (#nimCmpMem($4, $5, $2) != 0);$n"
p.s(cpsStmts).addSingleIfStmt(rd):
p.s(cpsStmts).addAssignment(rd, cOp(NotEqual,
cgCall(p, "nimCmpMem", ra, rb, cIntValue(size)),
cIntValue(0)))
of mEqSet:
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let rca = a.rdCharLoc
let rcb = b.rdCharLoc
putIntoDest(p, d, e, cOp(Equal,
cgCall(p, "nimCmpMem", rca, rcb, cIntValue(size)),
cIntValue(0)))
of mMulSet, mPlusSet, mMinusSet, mXorSet:
# we inline the simple for loop for better code generation:
i = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyInt)) # our counter
a = initLocExpr(p, e[1])
b = initLocExpr(p, e[2])
if d.k == locNone: d = getTemp(p, setType)
let ri = rdLoc(i)
let rd = rdLoc(d)
let ra = rdLoc(a)
let rb = rdLoc(b)
p.s(cpsStmts).addForRangeExclusive(ri, cIntValue(0), cIntValue(size)):
p.s(cpsStmts).addAssignmentWithValue(subscript(rd, ri)):
let x = subscript(ra, ri)
let y = subscript(rb, ri)
let lookup =
case op
of mMulSet: cOp(BitAnd, NimUint8, x, y)
of mPlusSet: cOp(BitOr, NimUint8, x, y)
of mMinusSet: cOp(BitAnd, NimUint8, x, cOp(BitNot, NimUint8, y))
of mXorSet: cOp(BitXor, NimUint8, x, y)
else: "" # unreachable
p.s(cpsStmts).add(lookup)
of mInSet: genInOp(p, e, d)
else: internalError(p.config, e.info, "genSetOp")
proc genOrd(p: BProc, e: PNode, d: var TLoc) =
unaryExprChar(p, e, d, ra)
proc genSomeCast(p: BProc, e: PNode, d: var TLoc) =
const
ValueTypes = {tyTuple, tyObject, tyArray, tyOpenArray, tyVarargs, tyUncheckedArray}
# we use whatever C gives us. Except if we have a value-type, we need to go
# through its address:
var a: TLoc = initLocExpr(p, e[1])
let etyp = skipTypes(e.typ, abstractRange+{tyOwned})
let srcTyp = skipTypes(e[1].typ, abstractRange)
if etyp.kind in ValueTypes and lfIndirect notin a.flags:
let destTyp = getTypeDesc(p.module, e.typ)
let val = addrLoc(p.config, a)
# (* (destType*) val)
putIntoDest(p, d, e,
cDeref(
cCast(
ptrType(destTyp),
wrapPar(val))),
a.storage)
elif etyp.kind == tyProc and etyp.callConv == ccClosure and srcTyp.callConv != ccClosure:
let destTyp = getClosureType(p.module, etyp, clHalfWithEnv)
let val = rdCharLoc(a)
# (destTyp) val
putIntoDest(p, d, e, cCast(destTyp, wrapPar(val)), a.storage)
else:
# C++ does not like direct casts from pointer to shorter integral types
if srcTyp.kind in {tyPtr, tyPointer} and etyp.kind in IntegralTypes:
let destTyp = getTypeDesc(p.module, e.typ)
let val = rdCharLoc(a)
# (destTyp) (ptrdiff_t) val
putIntoDest(p, d, e, cCast(destTyp, cCast("ptrdiff_t", wrapPar(val))), a.storage)
elif optSeqDestructors in p.config.globalOptions and etyp.kind in {tySequence, tyString}:
let destTyp = getTypeDesc(p.module, e.typ)
let val = rdCharLoc(a)
# (* (destType*) (&val))
putIntoDest(p, d, e, cDeref(cCast(ptrType(destTyp), wrapPar(cAddr(val)))), a.storage)
elif etyp.kind == tyBool and srcTyp.kind in IntegralTypes:
putIntoDest(p, d, e, cOp(NotEqual, rdCharLoc(a), cIntValue(0)), a.storage)
elif etyp.kind == tyProc and srcTyp.kind == tyProc and sameBackendType(etyp, srcTyp):
expr(p, e[1], d)
else:
if etyp.kind == tyPtr:
# generates the definition of structs for casts like cast[ptr object](addr x)[]
let internalType = etyp.skipTypes({tyPtr})
if internalType.kind == tyObject:
discard getTypeDesc(p.module, internalType)
let destTyp = getTypeDesc(p.module, e.typ)
let val = rdCharLoc(a)
putIntoDest(p, d, e, cCast(destTyp, wrapPar(val)), a.storage)
proc genCast(p: BProc, e: PNode, d: var TLoc) =
const ValueTypes = {tyFloat..tyFloat128, tyTuple, tyObject, tyArray}
let
destt = skipTypes(e.typ, abstractRange)
srct = skipTypes(e[1].typ, abstractRange)
if destt.kind in ValueTypes or srct.kind in ValueTypes:
# 'cast' and some float type involved? --> use a union.
inc(p.labels)
var lbl = p.labels.rope
var tmp: TLoc = default(TLoc)
tmp.snippet = dotField("LOC" & lbl, "source")
let destsize = getSize(p.config, destt)
let srcsize = getSize(p.config, srct)
let srcTyp = getTypeDesc(p.module, e[1].typ)
let destTyp = getTypeDesc(p.module, e.typ)
if destsize > srcsize:
p.s(cpsLocals).addVarWithType(kind = Local, name = "LOC" & lbl):
p.s(cpsLocals).addUnionType():
p.s(cpsLocals).addField(name = "dest", typ = destTyp)
p.s(cpsLocals).addField(name = "source", typ = srcTyp)
p.s(cpsLocals).addCallStmt(cgsymValue(p.module, "nimZeroMem"),
cAddr("LOC" & lbl),
cSizeof("LOC" & lbl))
else:
p.s(cpsLocals).addVarWithType(kind = Local, name = "LOC" & lbl):
p.s(cpsLocals).addUnionType():
p.s(cpsLocals).addField(name = "source", typ = srcTyp)
p.s(cpsLocals).addField(name = "dest", typ = destTyp)
tmp.k = locExpr
tmp.lode = lodeTyp srct
tmp.storage = OnStack
tmp.flags = {}
expr(p, e[1], tmp)
putIntoDest(p, d, e, dotField("LOC" & lbl, "dest"), tmp.storage)
else:
# I prefer the shorter cast version for pointer types -> generate less
# C code; plus it's the right thing to do for closures:
genSomeCast(p, e, d)
proc genRangeChck(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc = initLocExpr(p, n[0])
var dest = skipTypes(n.typ, abstractVar)
if optRangeCheck notin p.options or (dest.kind in {tyUInt..tyUInt64} and
checkUnsignedConversions notin p.config.legacyFeatures):
discard "no need to generate a check because it was disabled"
else:
let n0t = n[0].typ
# emit range check:
if n0t.kind in {tyUInt, tyUInt64}:
var first = newBuilder("")
genLiteral(p, n[1], dest, first)
var last = newBuilder("")
genLiteral(p, n[2], dest, last)
let rca = rdCharLoc(a)
let rt = getTypeDesc(p.module, n0t)
p.s(cpsStmts).addSingleIfStmt(cOp(GreaterThan, rca, cCast(rt, extract(last)))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseRangeErrorNoArgs"))
raiseInstr(p, p.s(cpsStmts))
else:
let raiser =
case skipTypes(n.typ, abstractVarRange).kind
of tyUInt..tyUInt64, tyChar: "raiseRangeErrorU"
of tyFloat..tyFloat128: "raiseRangeErrorF"
else: "raiseRangeErrorI"
cgsym(p.module, raiser)
var first = newBuilder("")
genLiteral(p, n[1], dest, first)
var last = newBuilder("")
genLiteral(p, n[2], dest, last)
let rca = rdCharLoc(a)
let boundRca =
if n0t.skipTypes(abstractVarRange).kind in {tyUInt, tyUInt32, tyUInt64}:
cCast(NimInt64, rca)
else:
rca
let firstVal = extract(first)
let lastVal = extract(last)
p.s(cpsStmts).addSingleIfStmt(cOp(Or,
cOp(LessThan, boundRca, firstVal),
cOp(GreaterThan, boundRca, lastVal))):
p.s(cpsStmts).addCallStmt(raiser, rca, firstVal, lastVal)
raiseInstr(p, p.s(cpsStmts))
if sameBackendTypeIgnoreRange(dest, n[0].typ):
# don't cast so an address can be taken for `var` conversions
let val = rdCharLoc(a)
putIntoDest(p, d, n, wrapPar(val), a.storage)
else:
let destType = getTypeDesc(p.module, dest)
let val = rdCharLoc(a)
putIntoDest(p, d, n, cCast(destType, wrapPar(val)), a.storage)
proc genConv(p: BProc, e: PNode, d: var TLoc) =
if ignoreConv(e):
expr(p, e[1], d)
else:
genSomeCast(p, e, d)
proc convStrToCStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc = initLocExpr(p, n[0])
putIntoDest(p, d, n,
cgCall(p, "nimToCStringConv", rdLoc(a)),
# "($1 ? $1->data : (NCSTRING)\"\")" % [a.rdLoc],
a.storage)
proc convCStrToStr(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc = initLocExpr(p, n[0])
if p.module.compileToCpp:
# fixes for const qualifier; bug #12703; bug #19588
putIntoDest(p, d, n,
cgCall(p, "cstrToNimstr", cCast(NimCstring, rdLoc(a))),
a.storage)
else:
putIntoDest(p, d, n,
cgCall(p, "cstrToNimstr", rdLoc(a)),
a.storage)
gcUsage(p.config, n)
proc genStrEquals(p: BProc, e: PNode, d: var TLoc) =
var x: TLoc
var a = e[1]
var b = e[2]
if a.kind in {nkStrLit..nkTripleStrLit} and a.strVal == "":
x = initLocExpr(p, e[2])
let lx = lenExpr(p, x)
putIntoDest(p, d, e, cOp(Equal, lx, cIntValue(0)))
elif b.kind in {nkStrLit..nkTripleStrLit} and b.strVal == "":
x = initLocExpr(p, e[1])
let lx = lenExpr(p, x)
putIntoDest(p, d, e, cOp(Equal, lx, cIntValue(0)))
else:
binaryExpr(p, e, d, cgCall(p, "eqStrings", ra, rb))
proc binaryFloatArith(p: BProc, e: PNode, d: var TLoc, m: TMagic) =
if {optNaNCheck, optInfCheck} * p.options != {}:
const opr: array[mAddF64..mDivF64, TypedBinaryOp] = [Add, Sub, Mul, Div]
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ra = rdLoc(a)
let rb = rdLoc(b)
let rt = getSimpleTypeDesc(p.module, e[1].typ)
putIntoDest(p, d, e, cOp(opr[m], rt, cCast(rt, ra), cCast(rt, rb)))
if optNaNCheck in p.options:
let rd = rdLoc(d)
p.s(cpsStmts).addSingleIfStmt(cOp(NotEqual, rd, rd)):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseFloatInvalidOp"))
raiseInstr(p, p.s(cpsStmts))
if optInfCheck in p.options:
let rd = rdLoc(d)
p.s(cpsStmts).addSingleIfStmt(cOp(And,
cOp(NotEqual, rd, cFloatValue(0.0)),
cOp(Equal, cOp(Mul, rt, rd, cFloatValue(0.5)), rd))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseFloatOverflow"), rd)
raiseInstr(p, p.s(cpsStmts))
else:
binaryArith(p, e, d, m)
proc genWasMoved(p: BProc; n: PNode) =
var a: TLoc
let n1 = n[1].skipAddr
if p.withinBlockLeaveActions > 0 and notYetAlive(n1):
discard
else:
a = initLocExpr(p, n1, {lfEnforceDeref})
resetLoc(p, a)
#linefmt(p, cpsStmts, "#nimZeroMem((void*)$1, sizeof($2));$n",
# [addrLoc(p.config, a), getTypeDesc(p.module, a.t)])
proc genMove(p: BProc; n: PNode; d: var TLoc) =
var a: TLoc = initLocExpr(p, n[1].skipAddr, {lfEnforceDeref})
if n.len == 4:
# generated by liftdestructors:
var src: TLoc = initLocExpr(p, n[2])
let destVal = rdLoc(a)
let srcVal = rdLoc(src)
p.s(cpsStmts).addSingleIfStmt(
cOp(NotEqual,
dotField(destVal, "p"),
dotField(srcVal, "p"))):
genStmts(p, n[3])
p.s(cpsStmts).addFieldAssignment(destVal, "len", dotField(srcVal, "len"))
p.s(cpsStmts).addFieldAssignment(destVal, "p", dotField(srcVal, "p"))
else:
if d.k == locNone: d = getTemp(p, n.typ)
if p.config.selectedGC in {gcArc, gcAtomicArc, gcOrc}:
genAssignment(p, d, a, {})
var op = getAttachedOp(p.module.g.graph, n.typ, attachedWasMoved)
if op == nil:
resetLoc(p, a)
else:
var b = initLocExpr(p, newSymNode(op))
case skipTypes(a.t, abstractVar+{tyStatic}).kind
of tyOpenArray, tyVarargs: # todo fixme generated `wasMoved` hooks for
# openarrays, but it probably shouldn't?
let ra = rdLoc(a)
var s: string
if reifiedOpenArray(a.lode):
if a.t.kind in {tyVar, tyLent}:
s = derefField(ra, "Field0") & cArgumentSeparator & derefField(ra, "Field1")
else:
s = dotField(ra, "Field0") & cArgumentSeparator & dotField(ra, "Field1")
else:
s = ra & cArgumentSeparator & ra & "Len_0"
p.s(cpsStmts).addCallStmt(rdLoc(b), s)
else:
let val = if p.module.compileToCpp: rdLoc(a) else: byRefLoc(p, a)
p.s(cpsStmts).addCallStmt(rdLoc(b), val)
else:
genAssignment(p, d, a, {})
resetLoc(p, a)
proc genDestroy(p: BProc; n: PNode) =
if optSeqDestructors in p.config.globalOptions:
let arg = n[1].skipAddr
let t = arg.typ.skipTypes(abstractInst)
case t.kind
of tyString:
var a: TLoc = initLocExpr(p, arg)
let ra = rdLoc(a)
let rp = dotField(ra, "p")
p.s(cpsStmts).addSingleIfStmt(
cOp(And, rp,
cOp(Not, cOp(BitAnd, NimInt,
derefField(rp, "cap"),
NimStrlitFlag)))):
let fn = if optThreads in p.config.globalOptions: "deallocShared" else: "dealloc"
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, fn), rp)
of tySequence:
var a: TLoc = initLocExpr(p, arg)
let ra = rdLoc(a)
let rp = dotField(ra, "p")
let rt = getTypeDesc(p.module, t.elementType)
p.s(cpsStmts).addSingleIfStmt(
cOp(And, rp,
cOp(Not, cOp(BitAnd, NimInt,
derefField(rp, "cap"),
NimStrlitFlag)))):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "alignedDealloc"),
rp,
cAlignof(rt))
else: discard "nothing to do"
else:
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(p.module.g.graph, t, attachedDestructor)
if op != nil and getBody(p.module.g.graph, op).len != 0:
internalError(p.config, n.info, "destructor turned out to be not trivial")
discard "ignore calls to the default destructor"
proc genDispose(p: BProc; n: PNode) =
when false:
let elemType = n[1].typ.skipTypes(abstractVar).elementType
var a: TLoc = initLocExpr(p, n[1].skipAddr)
if isFinal(elemType):
if elemType.destructor != nil:
var destroyCall = newNodeI(nkCall, n.info)
genStmts(p, destroyCall)
lineFmt(p, cpsStmts, "#nimRawDispose($1, NIM_ALIGNOF($2))", [rdLoc(a), getTypeDesc(p.module, elemType)])
else:
# ``nimRawDisposeVirtual`` calls the ``finalizer`` which is the same as the
# destructor, but it uses the runtime type. Afterwards the memory is freed:
lineCg(p, cpsStmts, ["#nimDestroyAndDispose($#)", rdLoc(a)])
proc genSlice(p: BProc; e: PNode; d: var TLoc) =
let (x, y) = genOpenArraySlice(p, e, e.typ, e.typ.elementType,
prepareForMutation = e[1].kind == nkHiddenDeref and
e[1].typ.skipTypes(abstractInst).kind == tyString and
p.config.selectedGC in {gcArc, gcAtomicArc, gcOrc})
if d.k == locNone: d = getTemp(p, e.typ)
let dest = rdLoc(d)
p.s(cpsStmts).addFieldAssignment(dest, "Field0", x)
p.s(cpsStmts).addFieldAssignment(dest, "Field1", y)
when false:
localError(p.config, e.info, "invalid context for 'toOpenArray'; " &
"'toOpenArray' is only valid within a call expression")
proc genEnumToStr(p: BProc, e: PNode, d: var TLoc) =
let t = e[1].typ.skipTypes(abstractInst+{tyRange})
let toStrProc = getToStringProc(p.module.g.graph, t)
# XXX need to modify this logic for IC.
var n = copyTree(e)
n[0] = newSymNode(toStrProc)
expr(p, n, d)
proc genMagicExpr(p: BProc, e: PNode, d: var TLoc, op: TMagic) =
case op
of mOr, mAnd: genAndOr(p, e, d, op)
of mNot..mUnaryMinusF64: unaryArith(p, e, d, op)
of mUnaryMinusI..mAbsI: unaryArithOverflow(p, e, d, op)
of mAddF64..mDivF64: binaryFloatArith(p, e, d, op)
of mShrI..mXor: binaryArith(p, e, d, op)
of mEqProc: genEqProc(p, e, d)
of mAddI..mPred: binaryArithOverflow(p, e, d, op)
of mRepr: genRepr(p, e, d)
of mGetTypeInfo: genGetTypeInfo(p, e, d)
of mGetTypeInfoV2: genGetTypeInfoV2(p, e, d)
of mSwap: genSwap(p, e, d)
of mInc, mDec:
const opr: array[mInc..mDec, TypedBinaryOp] = [Add, Sub]
const fun64: array[mInc..mDec, string] = ["nimAddInt64", "nimSubInt64"]
const fun: array[mInc..mDec, string] = ["nimAddInt","nimSubInt"]
let underlying = skipTypes(e[1].typ, {tyGenericInst, tyAlias, tySink, tyVar, tyLent, tyRange, tyDistinct})
if optOverflowCheck notin p.options or underlying.kind in {tyUInt..tyUInt64}:
binaryStmt(p, e, d, opr[op])
else:
assert(e[1].typ != nil)
assert(e[2].typ != nil)
var a = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
let ranged = skipTypes(e[1].typ, {tyGenericInst, tyAlias, tySink, tyVar, tyLent, tyDistinct})
let res = binaryArithOverflowRaw(p, ranged, a, b,
if underlying.kind == tyInt64: fun64[op] else: fun[op])
let destTyp = getTypeDesc(p.module, ranged)
putIntoDest(p, a, e[1], cCast(destTyp, wrapPar(res)))
of mConStrStr: genStrConcat(p, e, d)
of mAppendStrCh:
if optSeqDestructors in p.config.globalOptions:
binaryStmtAddr(p, e, d, "nimAddCharV1")
else:
var call = initLoc(locCall, e, OnHeap)
var dest = initLocExpr(p, e[1])
var b = initLocExpr(p, e[2])
call.snippet = cgCall(p, "addChar", rdLoc(dest), rdLoc(b))
genAssignment(p, dest, call, {})
of mAppendStrStr: genStrAppend(p, e, d)
of mAppendSeqElem:
if optSeqDestructors in p.config.globalOptions:
e[1] = makeAddr(e[1], p.module.idgen)
genCall(p, e, d)
else:
genSeqElemAppend(p, e, d)
of mEqStr: genStrEquals(p, e, d)
of mLeStr:
binaryExpr(p, e, d, cOp(LessEqual,
cgCall(p, "cmpStrings", ra, rb),
cIntValue(0)))
of mLtStr:
binaryExpr(p, e, d, cOp(LessThan,
cgCall(p, "cmpStrings", ra, rb),
cIntValue(0)))
of mIsNil: genIsNil(p, e, d)
of mBoolToStr:
genDollarIt(p, e, d, cgCall(p, "nimBoolToStr", it))
of mCharToStr:
genDollarIt(p, e, d, cgCall(p, "nimCharToStr", it))
of mCStrToStr:
if p.module.compileToCpp:
# fixes for const qualifier; bug #12703; bug #19588
genDollarIt(p, e, d, cgCall(p, "cstrToNimstr", cCast(NimCstring, it)))
else:
genDollarIt(p, e, d, cgCall(p, "cstrToNimstr", it))
of mStrToStr, mUnown: expr(p, e[1], d)
of generatedMagics: genCall(p, e, d)
of mEnumToStr:
if optTinyRtti in p.config.globalOptions:
genEnumToStr(p, e, d)
else:
genRepr(p, e, d)
of mOf: genOf(p, e, d)
of mNew: genNew(p, e)
of mNewFinalize:
if optTinyRtti in p.config.globalOptions:
var a: TLoc = initLocExpr(p, e[1])
rawGenNew(p, a, "", needsInit = true)
gcUsage(p.config, e)
else:
genNewFinalize(p, e)
of mNewSeq:
if optSeqDestructors in p.config.globalOptions:
e[1] = makeAddr(e[1], p.module.idgen)
genCall(p, e, d)
else:
genNewSeq(p, e)
of mNewSeqOfCap: genNewSeqOfCap(p, e, d)
of mSizeOf:
let t = e[1].typ.skipTypes({tyTypeDesc})
putIntoDest(p, d, e, cCast(NimInt, cSizeof(getTypeDesc(p.module, t, dkVar))))
of mAlignOf:
let t = e[1].typ.skipTypes({tyTypeDesc})
putIntoDest(p, d, e, cCast(NimInt, cAlignof(getTypeDesc(p.module, t, dkVar))))
of mOffsetOf:
var dotExpr: PNode
if e[1].kind == nkDotExpr:
dotExpr = e[1]
elif e[1].kind == nkCheckedFieldExpr:
dotExpr = e[1][0]
else:
dotExpr = nil
internalError(p.config, e.info, "unknown ast")
let t = dotExpr[0].typ.skipTypes({tyTypeDesc})
let tname = getTypeDesc(p.module, t, dkVar)
let member =
if t.kind == tyTuple:
"Field" & rope(dotExpr[1].sym.position)
else: dotExpr[1].sym.loc.snippet
putIntoDest(p,d,e, cCast(NimInt, cOffsetof(tname, member)))
of mChr: genSomeCast(p, e, d)
of mOrd: genOrd(p, e, d)
of mLengthArray, mHigh, mLengthStr, mLengthSeq, mLengthOpenArray:
genArrayLen(p, e, d, op)
of mGCref:
# only a magic for the old GCs
var a: TLoc = initLocExpr(p, e[1])
let ra = rdLoc(a)
p.s(cpsStmts).addSingleIfStmt(ra):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimGCref"), ra)
of mGCunref:
# only a magic for the old GCs
var a: TLoc = initLocExpr(p, e[1])
let ra = rdLoc(a)
p.s(cpsStmts).addSingleIfStmt(ra):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimGCunref"), ra)
of mSetLengthStr: genSetLengthStr(p, e, d)
of mSetLengthSeq: genSetLengthSeq(p, e, d)
of mSetLengthSeqUninit: genSetLengthSeq(p, e, d, noinit = true)
of mIncl, mExcl, mCard, mLtSet, mLeSet, mEqSet, mMulSet, mPlusSet, mMinusSet,
mInSet, mXorSet:
genSetOp(p, e, d, op)
of mNewString, mNewStringOfCap, mExit, mParseBiggestFloat:
var opr = e[0].sym
# Why would anyone want to set nodecl to one of these hardcoded magics?
# - not sure, and it wouldn't work if the symbol behind the magic isn't
# somehow forward-declared from some other usage, but it is *possible*
if lfNoDecl notin opr.loc.flags:
let prc = magicsys.getCompilerProc(p.module.g.graph, $opr.loc.snippet)
assert prc != nil, $opr.loc.snippet
# HACK:
# Explicitly add this proc as declared here so the cgsym call doesn't
# add a forward declaration - without this we could end up with the same
# 2 forward declarations. That happens because the magic symbol and the original
# one that shall be used have different ids (even though a call to one is
# actually a call to the other) so checking into m.declaredProtos with the 2 different ids doesn't work.
# Why would 2 identical forward declarations be a problem?
# - in the case of hot code-reloading we generate function pointers instead
# of forward declarations and in C++ it is an error to redefine a global
let wasDeclared = containsOrIncl(p.module.declaredProtos, prc.id)
# Make the function behind the magic get actually generated - this will
# not lead to a forward declaration! The genCall will lead to one.
cgsym(p.module, $opr.loc.snippet)
# make sure we have pointer-initialising code for hot code reloading
if not wasDeclared and p.hcrOn:
let name = mangleDynLibProc(prc)
let rt = getTypeDesc(p.module, prc.loc.t)
p.module.s[cfsDynLibInit].add('\t')
p.module.s[cfsDynLibInit].addAssignmentWithValue(name):
p.module.s[cfsDynLibInit].addCast(rt):
p.module.s[cfsDynLibInit].addCall("hcrGetProc",
getModuleDllPath(p.module, prc),
'"' & name & '"')
genCall(p, e, d)
of mDefault, mZeroDefault: genDefault(p, e, d)
of mEcho: genEcho(p, e[1].skipConv)
of mArrToSeq: genArrToSeq(p, e, d)
of mNLen..mNError, mSlurp..mQuoteAst:
localError(p.config, e.info, strutils.`%`(errXMustBeCompileTime, e[0].sym.name.s))
of mSpawn:
when defined(leanCompiler):
p.config.quitOrRaise "compiler built without support for the 'spawn' statement"
else:
let n = spawn.wrapProcForSpawn(p.module.g.graph, p.module.idgen, p.module.module, e, e.typ, nil, nil)
expr(p, n, d)
of mParallel:
when defined(leanCompiler):
p.config.quitOrRaise "compiler built without support for the 'parallel' statement"
else:
let n = semparallel.liftParallel(p.module.g.graph, p.module.idgen, p.module.module, e)
expr(p, n, d)
of mDeepCopy:
if p.config.selectedGC in {gcArc, gcAtomicArc, gcOrc} and optEnableDeepCopy notin p.config.globalOptions:
localError(p.config, e.info,
"for --mm:arc|atomicArc|orc 'deepcopy' support has to be enabled with --deepcopy:on")
let x = if e[1].kind in {nkAddr, nkHiddenAddr}: e[1][0] else: e[1]
var a = initLocExpr(p, x)
var b = initLocExpr(p, e[2])
genDeepCopy(p, a, b)
of mDotDot, mEqCString: genCall(p, e, d)
of mWasMoved: genWasMoved(p, e)
of mMove: genMove(p, e, d)
of mDestroy: genDestroy(p, e)
of mAccessEnv: unaryExpr(p, e, d, dotField(ra, "ClE_0"))
of mAccessTypeField: genAccessTypeField(p, e, d)
of mSlice: genSlice(p, e, d)
of mTrace: discard "no code to generate"
of mEnsureMove:
expr(p, e[1], d)
of mDup:
expr(p, e[1], d)
else:
when defined(debugMagics):
echo p.prc.name.s, " ", p.prc.id, " ", p.prc.flags, " ", p.prc.ast[genericParamsPos].kind
internalError(p.config, e.info, "genMagicExpr: " & $op)
proc genSetConstr(p: BProc, e: PNode, d: var TLoc) =
# example: { a..b, c, d, e, f..g }
# we have to emit an expression of the form:
# nimZeroMem(tmp, sizeof(tmp)); inclRange(tmp, a, b); incl(tmp, c);
# incl(tmp, d); incl(tmp, e); inclRange(tmp, f, g);
var
a, b: TLoc
var idx: TLoc
if nfAllConst in e.flags:
var elem = newBuilder("")
genSetNode(p, e, elem)
putIntoDest(p, d, e, extract(elem))
else:
if d.k == locNone: d = getTemp(p, e.typ)
let size = getSize(p.config, e.typ)
if size > 8:
# big set:
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "nimZeroMem"),
rdLoc(d),
cSizeof(getTypeDesc(p.module, e.typ)))
for it in e.sons:
if it.kind == nkRange:
idx = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyInt)) # our counter
a = initLocExpr(p, it[0])
b = initLocExpr(p, it[1])
var aa: Snippet = ""
rdSetElemLoc(p.config, a, e.typ, aa)
var bb: Snippet = ""
rdSetElemLoc(p.config, b, e.typ, bb)
let ri = rdLoc(idx)
let rd = rdLoc(d)
p.s(cpsStmts).addForRangeInclusive(ri, aa, bb):
p.s(cpsStmts).addInPlaceOp(BitOr, NimUint8,
subscript(rd, cOp(Shr, NimUint, cCast(NimUint, ri), cIntValue(3))),
cOp(Shl, NimUint8, cUintValue(1),
cOp(BitAnd, NimUint, cCast(NimUint, ri), cUintValue(7))))
else:
a = initLocExpr(p, it)
var aa: Snippet = ""
rdSetElemLoc(p.config, a, e.typ, aa)
let rd = rdLoc(d)
p.s(cpsStmts).addInPlaceOp(BitOr, NimUint8,
subscript(rd, cOp(Shr, NimUint, cCast(NimUint, aa), cIntValue(3))),
cOp(Shl, NimUint8, cUintValue(1),
cOp(BitAnd, NimUint, cCast(NimUint, aa), cUintValue(7))))
else:
# small set
var ts = cUintType(size * 8)
p.s(cpsStmts).addAssignment(rdLoc(d), cIntValue(0))
for it in e.sons:
if it.kind == nkRange:
idx = getTemp(p, getSysType(p.module.g.graph, unknownLineInfo, tyInt)) # our counter
a = initLocExpr(p, it[0])
b = initLocExpr(p, it[1])
var aa: Snippet = ""
rdSetElemLoc(p.config, a, e.typ, aa)
var bb: Snippet = ""
rdSetElemLoc(p.config, b, e.typ, bb)
let ri = rdLoc(idx)
let rd = rdLoc(d)
p.s(cpsStmts).addForRangeInclusive(ri, aa, bb):
p.s(cpsStmts).addInPlaceOp(BitOr, ts, rd,
cOp(Shl, ts, cCast(ts, cIntValue(1)),
cOp(Mod, ts, ri, cOp(Mul, ts, cIntValue(size), cIntValue(8)))))
else:
a = initLocExpr(p, it)
var aa: Snippet = ""
rdSetElemLoc(p.config, a, e.typ, aa)
let rd = rdLoc(d)
p.s(cpsStmts).addInPlaceOp(BitOr, ts, rd,
cOp(Shl, ts, cCast(ts, cIntValue(1)),
cOp(Mod, ts, aa, cOp(Mul, ts, cIntValue(size), cIntValue(8)))))
proc genTupleConstr(p: BProc, n: PNode, d: var TLoc) =
var rec: TLoc
if not handleConstExpr(p, n, d):
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
var tmp: TLoc = default(TLoc)
# bug #16331
let doesAlias = lhsDoesAlias(d.lode, n)
let dest = if doesAlias: addr(tmp) else: addr(d)
if doesAlias:
tmp = getTemp(p, n.typ)
elif d.k == locNone:
d = getTemp(p, n.typ)
for i in 0..<n.len:
var it = n[i]
if it.kind == nkExprColonExpr: it = it[1]
rec = initLoc(locExpr, it, dest[].storage)
rec.snippet = dotField(rdLoc(dest[]), "Field" & rope(i))
rec.flags.incl(lfEnforceDeref)
expr(p, it, rec)
if doesAlias:
if d.k == locNone:
d = tmp
else:
genAssignment(p, d, tmp, {})
proc isConstClosure(n: PNode): bool {.inline.} =
result = n[0].kind == nkSym and isRoutine(n[0].sym) and
n[1].kind == nkNilLit
proc genClosure(p: BProc, n: PNode, d: var TLoc) =
assert n.kind in {nkPar, nkTupleConstr, nkClosure}
if isConstClosure(n):
inc(p.module.labels)
var tmp = "CNSTCLOSURE" & rope(p.module.labels)
let td = getTypeDesc(p.module, n.typ)
var data = newBuilder("")
data.addVarWithInitializer(kind = Const, name = tmp, typ = td):
genBracedInit(p, n, isConst = true, n.typ, data)
p.module.s[cfsData].add(extract(data))
putIntoDest(p, d, n, tmp, OnStatic)
else:
var tmp: TLoc
var a = initLocExpr(p, n[0])
var b = initLocExpr(p, n[1])
if n[0].skipConv.kind == nkClosure:
internalError(p.config, n.info, "closure to closure created")
# tasyncawait.nim breaks with this optimization:
when false:
if d.k != locNone:
let dest = d.rdLoc
p.s(cpsStmts).addFieldAssignment(dest, "ClP_0", a.rdLoc)
p.s(cpsStmts).addFieldAssignment(dest, "ClE_0", b.rdLoc)
else:
tmp = getTemp(p, n.typ)
let dest = tmp.rdLoc
p.s(cpsStmts).addFieldAssignment(dest, "ClP_0", a.rdLoc)
p.s(cpsStmts).addFieldAssignment(dest, "ClE_0", b.rdLoc)
putLocIntoDest(p, d, tmp)
proc genArrayConstr(p: BProc, n: PNode, d: var TLoc) =
var arr: TLoc
if not handleConstExpr(p, n, d):
if d.k == locNone: d = getTemp(p, n.typ)
for i in 0..<n.len:
arr = initLoc(locExpr, lodeTyp elemType(skipTypes(n.typ, abstractInst)), d.storage)
let lit = cIntLiteral(i)
arr.snippet = subscript(rdLoc(d), lit)
expr(p, n[i], arr)
proc genComplexConst(p: BProc, sym: PSym, d: var TLoc) =
requestConstImpl(p, sym)
assert((sym.loc.snippet != "") and (sym.loc.t != nil))
putLocIntoDest(p, d, sym.loc)
template genStmtListExprImpl(exprOrStmt) {.dirty.} =
#let hasNimFrame = magicsys.getCompilerProc("nimFrame") != nil
let hasNimFrame = p.prc != nil and
sfSystemModule notin p.module.module.flags and
optStackTrace in p.prc.options
var frameName: Rope = ""
for i in 0..<n.len - 1:
let it = n[i]
if it.kind == nkComesFrom:
if hasNimFrame and frameName == "":
inc p.labels
frameName = "FR" & rope(p.labels) & "_"
let theMacro = it[0].sym
add p.s(cpsStmts), initFrameNoDebug(p, frameName,
makeCString theMacro.name.s,
quotedFilename(p.config, theMacro.info), it.info.line.int)
else:
genStmts(p, it)
if n.len > 0: exprOrStmt
if frameName != "":
p.s(cpsStmts).add deinitFrameNoDebug(p, frameName)
proc genStmtListExpr(p: BProc, n: PNode, d: var TLoc) =
genStmtListExprImpl:
expr(p, n[^1], d)
proc genStmtList(p: BProc, n: PNode) =
genStmtListExprImpl:
genStmts(p, n[^1])
from parampatterns import isLValue
proc upConv(p: BProc, n: PNode, d: var TLoc) =
var a: TLoc = initLocExpr(p, n[0])
let dest = skipTypes(n.typ, abstractPtrs)
if optObjCheck in p.options and not isObjLackingTypeField(dest):
var nilCheck = ""
var r: Snippet = ""
rdMType(p, a, nilCheck, r)
if optTinyRtti in p.config.globalOptions:
let checkFor = $getObjDepth(dest)
let token = $genDisplayElem(MD5Digest(hashType(dest, p.config)))
let objCheck = cOp(Not, cgCall(p, "isObjDisplayCheck", r, checkFor, token))
let check = if nilCheck != "": cOp(And, nilCheck, objCheck) else: objCheck
p.s(cpsStmts).addSingleIfStmt(check):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseObjectConversionError"))
raiseInstr(p, p.s(cpsStmts))
else:
let checkFor = genTypeInfoV1(p.module, dest, n.info)
let objCheck = cOp(Not, cgCall(p, "isObj", r, checkFor))
let check = if nilCheck != "": cOp(And, nilCheck, objCheck) else: objCheck
p.s(cpsStmts).addSingleIfStmt(check):
p.s(cpsStmts).addCallStmt(cgsymValue(p.module, "raiseObjectConversionError"))
raiseInstr(p, p.s(cpsStmts))
if n[0].typ.kind != tyObject:
let destTyp = getTypeDesc(p.module, n.typ)
let val = rdLoc(a)
if n.isLValue:
# (*((destType) (&(val))))"
putIntoDest(p, d, n,
cDeref(
cCast(ptrType(destTyp),
wrapPar(cAddr(wrapPar(val))))),
a.storage)
else:
# ((destType) (val))"
putIntoDest(p, d, n, cCast(destTyp, wrapPar(val)), a.storage)
else:
let destTyp = getTypeDesc(p.module, dest)
let val = addrLoc(p.config, a)
# (* (destType*) val)
putIntoDest(p, d, n,
cDeref(
cCast(ptrType(destTyp),
wrapPar(val))),
a.storage)
proc downConv(p: BProc, n: PNode, d: var TLoc) =
var arg = n[0]
while arg.kind == nkObjDownConv: arg = arg[0]
let dest = skipTypes(n.typ, abstractPtrs)
let src = skipTypes(arg.typ, abstractPtrs)
discard getTypeDesc(p.module, src)
let isRef = skipTypes(arg.typ, abstractInstOwned).kind in {tyRef, tyPtr, tyVar, tyLent}
if isRef and d.k == locNone and n.typ.skipTypes(abstractInstOwned).kind in {tyRef, tyPtr} and n.isLValue:
# it can happen that we end up generating '&&x->Sup' here, so we pack
# the '&x->Sup' into a temporary and then those address is taken
# (see bug #837). However sometimes using a temporary is not correct:
# init(TFigure(my)) # where it is passed to a 'var TFigure'. We test
# this by ensuring the destination is also a pointer:
var a: TLoc = initLocExpr(p, arg)
let destType = getTypeDesc(p.module, n.typ)
let val = rdLoc(a)
# (* ((destType*) (&(val))))
putIntoDest(p, d, n,
cDeref(
cCast(ptrType(destType),
wrapPar(cAddr(wrapPar(val))))),
a.storage)
elif p.module.compileToCpp:
# C++ implicitly downcasts for us
expr(p, arg, d)
else:
var a: TLoc = initLocExpr(p, arg)
var r = rdLoc(a)
if isRef:
r = derefField(r, "Sup")
else:
r = dotField(r, "Sup")
for i in 2..abs(inheritanceDiff(dest, src)):
r = dotField(r, "Sup")
if isRef:
r = cAddr(r)
putIntoDest(p, d, n, r, a.storage)
proc exprComplexConst(p: BProc, n: PNode, d: var TLoc) =
let t = n.typ
discard getTypeDesc(p.module, t) # so that any fields are initialized
let id = nodeTableTestOrSet(p.module.dataCache, n, p.module.labels)
let tmp = p.module.tmpBase & rope(id)
if id == p.module.labels:
# expression not found in the cache:
inc(p.module.labels)
let td = getTypeDesc(p.module, t, dkConst)
var data = newBuilder("")
data.addVarWithInitializer(
kind = Const, name = tmp, typ = td):
genBracedInit(p, n, isConst = true, t, data)
p.module.s[cfsData].add(extract(data))
if d.k == locNone:
fillLoc(d, locData, n, tmp, OnStatic)
else:
putDataIntoDest(p, d, n, tmp)
# This fixes bug #4551, but we really need better dataflow
# analysis to make this 100% safe.
if t.kind notin {tySequence, tyString}:
d.storage = OnStatic
proc genConstSetup(p: BProc; sym: PSym): bool =
let m = p.module
useHeader(m, sym)
if sym.loc.k == locNone:
fillBackendName(p.module, sym)
backendEnsureMutable sym
fillLoc(sym.locImpl, locData, sym.astdef, OnStatic)
if m.hcrOn: incl(sym, lfIndirect)
result = lfNoDecl notin sym.loc.flags
proc genConstHeader(m, q: BModule; p: BProc, sym: PSym) =
if sym.loc.snippet == "":
if not genConstSetup(p, sym): return
assert(sym.loc.snippet != "", $sym.name.s & $sym.itemId)
if m.hcrOn:
m.s[cfsVars].addVar(kind = Global, name = sym.loc.snippet,
typ = ptrType(getTypeDesc(m, sym.loc.t, dkVar)))
m.initProc.procSec(cpsLocals).add('\t')
m.initProc.procSec(cpsLocals).addAssignmentWithValue(sym.loc.snippet):
m.initProc.procSec(cpsLocals).addCast(ptrType(getTypeDesc(m, sym.loc.t, dkVar))):
var getGlobalCall: CallBuilder
m.initProc.procSec(cpsLocals).addCall("hcrGetGlobal",
getModuleDllPath(q, sym),
'"' & sym.loc.snippet & '"')
else:
var headerDecl = newBuilder("")
headerDecl.addDeclWithVisibility(Extern):
headerDecl.addVar(kind = Local, name = sym.loc.snippet,
typ = constType(getTypeDesc(m, sym.loc.t, dkVar)))
m.s[cfsData].add(extract(headerDecl))
if sfExportc in sym.flags and p.module.g.generatedHeader != nil:
p.module.g.generatedHeader.s[cfsData].add(extract(headerDecl))
proc genConstDefinition(q: BModule; p: BProc; sym: PSym) =
# add a suffix for hcr - will later init the global pointer with this data
let actualConstName = if q.hcrOn: sym.loc.snippet & "_const" else: sym.loc.snippet
let td = constType(getTypeDesc(q, sym.typ))
var data = newBuilder("")
data.addDeclWithVisibility(Private):
data.addVarWithInitializer(Local, actualConstName, typ = td):
genBracedInit(q.initProc, sym.astdef, isConst = true, sym.typ, data)
q.s[cfsData].add(extract(data))
if q.hcrOn:
# generate the global pointer with the real name
q.s[cfsVars].addVar(kind = Global, name = sym.loc.snippet,
typ = ptrType(getTypeDesc(q, sym.loc.t, dkVar)))
# register it (but ignore the boolean result of hcrRegisterGlobal)
q.initProc.procSec(cpsLocals).add('\t')
q.initProc.procSec(cpsLocals).addStmt():
var registerCall: CallBuilder
q.initProc.procSec(cpsLocals).addCall(registerCall, "hcrRegisterGlobal"):
q.initProc.procSec(cpsLocals).addArgument(registerCall):
q.initProc.procSec(cpsLocals).add(getModuleDllPath(q, sym))
q.initProc.procSec(cpsLocals).addArgument(registerCall):
q.initProc.procSec(cpsLocals).add('"' & sym.loc.snippet & '"')
q.initProc.procSec(cpsLocals).addArgument(registerCall):
q.initProc.procSec(cpsLocals).addSizeof(rdLoc(sym.loc))
q.initProc.procSec(cpsLocals).addArgument(registerCall):
q.initProc.procSec(cpsLocals).add(CNil)
q.initProc.procSec(cpsLocals).addArgument(registerCall):
q.initProc.procSec(cpsLocals).addCast(ptrType(CPointer)):
q.initProc.procSec(cpsLocals).add(cAddr(sym.loc.snippet))
# always copy over the contents of the actual constant with the _const
# suffix ==> this means that the constant is reloadable & updatable!
q.initProc.procSec(cpsLocals).add('\t')
q.initProc.procSec(cpsLocals).addStmt():
var copyCall: CallBuilder
q.initProc.procSec(cpsLocals).addCall(copyCall, cgsymValue(q, "nimCopyMem")):
q.initProc.procSec(cpsLocals).addArgument(copyCall):
q.initProc.procSec(cpsLocals).add(cCast(CPointer, sym.loc.snippet))
q.initProc.procSec(cpsLocals).addArgument(copyCall):
q.initProc.procSec(cpsLocals).add(cCast(CConstPointer, cAddr(actualConstName)))
q.initProc.procSec(cpsLocals).addArgument(copyCall):
q.initProc.procSec(cpsLocals).addSizeof(rdLoc(sym.loc))
proc genConstStmt(p: BProc, n: PNode) =
# This code is only used in the new DCE implementation.
assert delayedCodegen(p.module)
let m = p.module
for it in n:
if it[0].kind == nkSym:
let sym = it[0].sym
if not isSimpleConst(sym.typ) and sym.itemId.item in m.alive and genConstSetup(p, sym):
genConstDefinition(m, p, sym)
proc expr(p: BProc, n: PNode, d: var TLoc) =
when defined(nimCompilerStacktraceHints):
setFrameMsg p.config$n.info & " " & $n.kind
p.currLineInfo = n.info
case n.kind
of nkSym:
var sym = n.sym
case sym.kind
of skMethod:
if delayedCodegen(p.module) or {sfDispatcher, sfForward} * sym.flags != {}:
# we cannot produce code for the dispatcher yet:
fillProcLoc(p.module, n)
genProcPrototype(p.module, sym)
else:
genProc(p.module, sym)
putLocIntoDest(p, d, sym.loc)
of skProc, skConverter, skIterator, skFunc:
#if sym.kind == skIterator:
# echo renderTree(sym.getBody, {renderIds})
if sfCompileTime in sym.flags:
localError(p.config, n.info, "request to generate code for .compileTime proc: " &
sym.name.s)
if delayedCodegen(p.module) and sym.typ.callConv != ccInline:
fillProcLoc(p.module, n)
genProcPrototype(p.module, sym)
else:
genProc(p.module, sym)
# For cross-module inline procs with optCompress, ensure prototype is emitted
if sym.typ.callConv == ccInline and optCompress in p.config.globalOptions and
sym.itemId.module != p.module.module.position:
genProcPrototype(p.module, sym)
if sym.loc.snippet == "" or sym.loc.lode == nil:
internalError(p.config, n.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of skConst:
if isSimpleConst(sym.typ):
var lit = newBuilder("")
genLiteral(p, sym.astdef, sym.typ, lit)
putIntoDest(p, d, n, extract(lit), OnStatic)
elif optCompress in p.config.globalOptions:
# With delayed codegen, we need to ensure the definition is generated
# not just the extern header declaration
requestConstImpl(p, sym)
assert((sym.loc.snippet != "") and (sym.loc.t != nil))
putLocIntoDest(p, d, sym.loc)
elif delayedCodegen(p.module):
genConstHeader(p.module, p.module, p, sym)
assert((sym.loc.snippet != "") and (sym.loc.t != nil))
putLocIntoDest(p, d, sym.loc)
else:
genComplexConst(p, sym, d)
of skEnumField:
# we never reach this case - as of the time of this comment,
# skEnumField is folded to an int in semfold.nim, but this code
# remains for robustness
putIntoDest(p, d, n, cIntValue(sym.position))
of skVar, skForVar, skResult, skLet:
if {sfGlobal, sfThread} * sym.flags != {}:
genVarPrototype(p.module, n)
if sfCompileTime in sym.flags:
genSingleVar(p, sym, n, astdef(sym))
if sym.loc.snippet == "" or sym.loc.t == nil:
#echo "FAILED FOR PRCO ", p.prc.name.s
#echo renderTree(p.prc.ast, {renderIds})
internalError p.config, n.info, "expr: var not init " & sym.name.s & "_" & $sym.id
if sfThread in sym.flags:
accessThreadLocalVar(p, sym)
if emulatedThreadVars(p.config):
putIntoDest(p, d, sym.loc.lode, derefField("NimTV_", sym.loc.snippet))
else:
putLocIntoDest(p, d, sym.loc)
else:
putLocIntoDest(p, d, sym.loc)
of skTemp:
when false:
# this is more harmful than helpful.
if sym.loc.snippet == "":
# we now support undeclared 'skTemp' variables for easier
# transformations in other parts of the compiler:
assignLocalVar(p, n)
if sym.loc.snippet == "" or sym.loc.t == nil:
#echo "FAILED FOR PRCO ", p.prc.name.s
#echo renderTree(p.prc.ast, {renderIds})
internalError(p.config, n.info, "expr: temp not init " & sym.name.s & "_" & $sym.id)
putLocIntoDest(p, d, sym.loc)
of skParam:
if sym.loc.snippet == "" or sym.loc.t == nil:
# echo "FAILED FOR PRCO ", p.prc.name.s
# debug p.prc.typ.n
# echo renderTree(p.prc.ast, {renderIds})
internalError(p.config, n.info, "expr: param not init " & sym.name.s & "_" & $sym.id)
putLocIntoDest(p, d, sym.loc)
else: internalError(p.config, n.info, "expr(" & $sym.kind & "); unknown symbol")
of nkNilLit:
if not isEmptyType(n.typ):
var lit = newBuilder("")
genLiteral(p, n, lit)
putIntoDest(p, d, n, extract(lit))
of nkStrLit..nkTripleStrLit:
var lit = newBuilder("")
genLiteral(p, n, lit)
putDataIntoDest(p, d, n, extract(lit))
of nkIntLit..nkUInt64Lit, nkFloatLit..nkFloat128Lit, nkCharLit:
var lit = newBuilder("")
genLiteral(p, n, lit)
putIntoDest(p, d, n, extract(lit))
of nkCall, nkHiddenCallConv, nkInfix, nkPrefix, nkPostfix, nkCommand,
nkCallStrLit:
genLineDir(p, n) # may be redundant, it is generated in fixupCall as well
let op = n[0]
if n.typ.isNil:
# discard the value:
var a: TLoc = default(TLoc)
if op.kind == nkSym and op.sym.magic != mNone:
genMagicExpr(p, n, a, op.sym.magic)
else:
genCall(p, n, a)
else:
# load it into 'd':
if op.kind == nkSym and op.sym.magic != mNone:
genMagicExpr(p, n, d, op.sym.magic)
else:
genCall(p, n, d)
of nkCurly:
if isDeepConstExpr(n) and n.len != 0:
var lit = newBuilder("")
genSetNode(p, n, lit)
putIntoDest(p, d, n, extract(lit))
else:
genSetConstr(p, n, d)
of nkBracket:
if isDeepConstExpr(n) and n.len != 0:
exprComplexConst(p, n, d)
elif skipTypes(n.typ, abstractVarRange).kind == tySequence:
genSeqConstr(p, n, d)
else:
genArrayConstr(p, n, d)
of nkPar, nkTupleConstr:
if n.typ != nil and n.typ.kind == tyProc and n.len == 2:
genClosure(p, n, d)
elif isDeepConstExpr(n) and n.len != 0:
exprComplexConst(p, n, d)
else:
genTupleConstr(p, n, d)
of nkObjConstr: genObjConstr(p, n, d)
of nkCast: genCast(p, n, d)
of nkHiddenStdConv, nkHiddenSubConv, nkConv: genConv(p, n, d)
of nkAddr, nkHiddenAddr: genAddr(p, n, d)
of nkBracketExpr: genBracketExpr(p, n, d)
of nkDerefExpr, nkHiddenDeref: genDeref(p, n, d)
of nkDotExpr: genRecordField(p, n, d)
of nkCheckedFieldExpr: genCheckedRecordField(p, n, d)
of nkBlockExpr, nkBlockStmt: genBlock(p, n, d)
of nkStmtListExpr: genStmtListExpr(p, n, d)
of nkStmtList: genStmtList(p, n)
of nkIfExpr, nkIfStmt: genIf(p, n, d)
of nkWhen:
# This should be a "when nimvm" node.
expr(p, n[1][0], d)
of nkObjDownConv: downConv(p, n, d)
of nkObjUpConv: upConv(p, n, d)
of nkChckRangeF, nkChckRange64, nkChckRange: genRangeChck(p, n, d)
of nkStringToCString: convStrToCStr(p, n, d)
of nkCStringToString: convCStrToStr(p, n, d)
of nkLambdaKinds:
var sym = n[namePos].sym
genProc(p.module, sym)
if sym.loc.snippet == "" or sym.loc.lode == nil:
internalError(p.config, n.info, "expr: proc not init " & sym.name.s)
putLocIntoDest(p, d, sym.loc)
of nkClosure: genClosure(p, n, d)
of nkEmpty: discard
of nkWhileStmt: genWhileStmt(p, n)
of nkVarSection, nkLetSection: genVarStmt(p, n)
of nkConstSection:
if delayedCodegen(p.module):
genConstStmt(p, n)
else: # enforce addressable consts for exportc
let m = p.module
for it in n:
let symNode = skipPragmaExpr(it[0])
if symNode.kind == nkSym and sfExportc in symNode.sym.flags:
requestConstImpl(p, symNode.sym)
# else: consts generated lazily on use
of nkForStmt: internalError(p.config, n.info, "for statement not eliminated")
of nkCaseStmt: genCase(p, n, d)
of nkReturnStmt: genReturnStmt(p, n)
of nkBreakStmt: genBreakStmt(p, n)
of nkAsgn:
cow(p, n[1])
if nfPreventCg notin n.flags:
genAsgn(p, n, fastAsgn=false)
of nkFastAsgn, nkSinkAsgn:
cow(p, n[1])
if nfPreventCg notin n.flags:
# transf is overly aggressive with 'nkFastAsgn', so we work around here.
# See tests/run/tcnstseq3 for an example that would fail otherwise.
genAsgn(p, n, fastAsgn=p.prc != nil)
of nkDiscardStmt:
let ex = n[0]
if ex.kind != nkEmpty:
genLineDir(p, n)
var a: TLoc = initLocExprSingleUse(p, ex)
p.s(cpsStmts).addDiscard(a.snippet)
of nkAsmStmt: genAsmStmt(p, n)
of nkTryStmt, nkHiddenTryStmt:
case p.config.exc
of excGoto:
genTryGoto(p, n, d)
of excCpp:
genTryCpp(p, n, d)
else:
genTrySetjmp(p, n, d)
of nkRaiseStmt: genRaiseStmt(p, n)
of nkTypeSection:
# we have to emit the type information for object types here to support
# separate compilation:
genTypeSection(p.module, n)
of nkCommentStmt, nkIteratorDef, nkIncludeStmt,
nkImportStmt, nkImportExceptStmt, nkExportStmt, nkExportExceptStmt,
nkFromStmt, nkTemplateDef, nkMacroDef, nkStaticStmt:
discard
of nkPragma: genPragma(p, n)
of nkPragmaBlock:
var inUncheckedAssignSection = 0
let pragmaList = n[0]
for pi in pragmaList:
if whichPragma(pi) == wCast:
case whichPragma(pi[1])
of wUncheckedAssign:
inUncheckedAssignSection = 1
else:
discard
inc p.inUncheckedAssignSection, inUncheckedAssignSection
expr(p, n.lastSon, d)
dec p.inUncheckedAssignSection, inUncheckedAssignSection
of nkProcDef, nkFuncDef, nkMethodDef, nkConverterDef:
if n[genericParamsPos].kind == nkEmpty:
var prc = n[namePos].sym
if optCompress in p.config.globalOptions:
if prc.magic in generatedMagics:
genProc(p.module, prc)
elif delayedCodegen(p.module):
if p.module.alive.contains(prc.itemId.item) and
prc.magic in generatedMagics:
genProc(p.module, prc)
elif prc.skipGenericOwner.kind == skModule and sfCompileTime notin prc.flags:
if ({sfExportc, sfCompilerProc} * prc.flags == {sfExportc}) or
(sfExportc in prc.flags and lfExportLib in prc.loc.flags) or
(prc.kind == skMethod):
# due to a bug/limitation in the lambda lifting, unused inner procs
# are not transformed correctly. We work around this issue (#411) here
# by ensuring it's no inner proc (owner is a module).
# Generate proc even if empty body, bugfix #11651.
genProc(p.module, prc)
of nkParForStmt: genParForStmt(p, n)
of nkState: genState(p, n)
of nkGotoState:
# simply never set it back to 0 here from here on...
inc p.splitDecls
genGotoState(p, n)
of nkBreakState: genBreakState(p, n, d)
of nkMixinStmt, nkBindStmt, nkReplayAction: discard
else: internalError(p.config, n.info, "expr(" & $n.kind & "); unknown node kind")
proc getDefaultValue(p: BProc; typ: PType; info: TLineInfo; result: var Builder) =
var t = skipTypes(typ, abstractRange+{tyOwned}-{tyTypeDesc})
case t.kind
of tyBool: result.add NimFalse
of tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64: result.addIntValue(0)
of tyFloat..tyFloat128: result.addFloatValue(0.0)
of tyCstring, tyVar, tyLent, tyPointer, tyPtr, tyUntyped,
tyTyped, tyTypeDesc, tyStatic, tyRef, tyNil:
result.add NimNil
of tyString, tySequence:
if optSeqDestructors in p.config.globalOptions:
var seqInit: StructInitializer
result.addStructInitializer(seqInit, kind = siOrderedStruct):
result.addField(seqInit, name = "len"):
result.addIntValue(0)
result.addField(seqInit, name = "p"):
result.add(NimNil)
else:
result.add NimNil
of tyProc:
if t.callConv != ccClosure:
result.add NimNil
else:
var closureInit: StructInitializer
result.addStructInitializer(closureInit, kind = siOrderedStruct):
result.addField(closureInit, name = "ClP_0"):
result.add(NimNil)
result.addField(closureInit, name = "ClE_0"):
result.add(NimNil)
of tyObject:
var objInit: StructInitializer
result.addStructInitializer(objInit, kind = siOrderedStruct):
getNullValueAuxT(p, t, t, t.n, nil, result, objInit, true, info)
of tyTuple:
var tupleInit: StructInitializer
result.addStructInitializer(tupleInit, kind = siOrderedStruct):
if p.vccAndC and t.isEmptyTupleType:
result.addField(tupleInit, name = "dummy"):
result.addIntValue(0)
for i, a in t.ikids:
result.addField(tupleInit, name = "Field" & $i):
getDefaultValue(p, a, info, result)
of tyArray:
var arrInit: StructInitializer
result.addStructInitializer(arrInit, kind = siArray):
for i in 0..<toInt(lengthOrd(p.config, t.indexType)):
result.addField(arrInit, name = ""):
getDefaultValue(p, t.elementType, info, result)
#result = rope"{}"
of tyOpenArray, tyVarargs:
var openArrInit: StructInitializer
result.addStructInitializer(openArrInit, kind = siOrderedStruct):
result.addField(openArrInit, name = "Field0"):
result.add(NimNil)
result.addField(openArrInit, name = "Field1"):
result.addIntValue(0)
of tySet:
if mapSetType(p.config, t) == ctArray:
var setInit: StructInitializer
result.addStructInitializer(setInit, kind = siArray):
discard
else: result.addIntValue(0)
else:
globalError(p.config, info, "cannot create null element for: " & $t.kind)
proc isEmptyCaseObjectBranch(n: PNode): bool =
for it in n:
if it.kind == nkSym and not isEmptyType(it.sym.typ): return false
return true
proc getNullValueAux(p: BProc; t: PType; obj, constOrNil: PNode,
result: var Builder; init: var StructInitializer;
isConst: bool, info: TLineInfo) =
case obj.kind
of nkRecList:
let isUnion = tfUnion in t.flags
for it in obj.sons:
getNullValueAux(p, t, it, constOrNil, result, init, isConst, info)
if isUnion:
# generate only 1 field for default value of union
return
of nkRecCase:
getNullValueAux(p, t, obj[0], constOrNil, result, init, isConst, info)
var branch = Zero
if constOrNil != nil:
## find kind value, default is zero if not specified
for i in 1..<constOrNil.len:
if constOrNil[i].kind == nkExprColonExpr:
if constOrNil[i][0].sym.name.id == obj[0].sym.name.id:
branch = getOrdValue(constOrNil[i][1])
break
elif i == obj[0].sym.position:
branch = getOrdValue(constOrNil[i])
break
let selectedBranch = caseObjDefaultBranch(obj, branch)
let b = lastSon(obj[selectedBranch])
# designated initilization is the only way to init non first element of unions
# branches are allowed to have no members (b.len == 0), in this case they don't need initializer
var fieldName: string = ""
if b.kind == nkRecList and not isEmptyCaseObjectBranch(b):
fieldName = "_" & mangleRecFieldName(p.module, obj[0].sym) & "_" & $selectedBranch
result.addField(init, name = "<anonymous union>"):
# XXX figure out name for the union, see use of `addAnonUnion`
var branchInit: StructInitializer
result.addStructInitializer(branchInit, kind = siNamedStruct):
result.addField(branchInit, name = fieldName):
var branchObjInit: StructInitializer
result.addStructInitializer(branchObjInit, kind = siOrderedStruct):
getNullValueAux(p, t, b, constOrNil, result, branchObjInit, isConst, info)
elif b.kind == nkSym:
fieldName = mangleRecFieldName(p.module, b.sym)
result.addField(init, name = "<anonymous union>"):
# XXX figure out name for the union, see use of `addAnonUnion`
var branchInit: StructInitializer
result.addStructInitializer(branchInit, kind = siNamedStruct):
result.addField(branchInit, name = fieldName):
# we need to generate the default value of the single sym,
# to do this create a dummy wrapper initializer and recurse
var branchFieldInit: StructInitializer
result.addStructInitializer(branchFieldInit, kind = siWrapper):
getNullValueAux(p, t, b, constOrNil, result, branchFieldInit, isConst, info)
else:
# no fields, don't initialize
return
of nkSym:
let field = obj.sym
let sname = mangleRecFieldName(p.module, field)
result.addField(init, name = sname):
block fieldInit:
if constOrNil != nil:
for i in 1..<constOrNil.len:
if constOrNil[i].kind == nkExprColonExpr:
assert constOrNil[i][0].kind == nkSym, "illformed object constr; the field is not a sym"
if constOrNil[i][0].sym.name.id == field.name.id:
genBracedInit(p, constOrNil[i][1], isConst, field.typ, result)
break fieldInit
elif i == field.position:
genBracedInit(p, constOrNil[i], isConst, field.typ, result)
break fieldInit
# not found, produce default value:
getDefaultValue(p, field.typ, info, result)
else:
localError(p.config, info, "cannot create null element for: " & $obj)
proc getNullValueAuxT(p: BProc; orig, t: PType; obj, constOrNil: PNode,
result: var Builder; init: var StructInitializer;
isConst: bool, info: TLineInfo) =
var base = t.baseClass
when false:
let oldRes = result
let oldcount = count
if base != nil:
base = skipTypes(base, skipPtrs)
result.addField(init, name = "Sup"):
var baseInit: StructInitializer
result.addStructInitializer(baseInit, kind = siOrderedStruct):
getNullValueAuxT(p, orig, base, base.n, constOrNil, result, baseInit, isConst, info)
elif not isObjLackingTypeField(t):
result.addField(init, name = "m_type"):
if optTinyRtti in p.config.globalOptions:
result.add genTypeInfoV2(p.module, orig, obj.info)
else:
result.add genTypeInfoV1(p.module, orig, obj.info)
getNullValueAux(p, t, obj, constOrNil, result, init, isConst, info)
when false: # referring to Sup field, hopefully not a problem
# do not emit '{}' as that is not valid C:
if oldcount == count: result = oldRes
proc genConstObjConstr(p: BProc; n: PNode; isConst: bool; result: var Builder) =
let t = n.typ.skipTypes(abstractInstOwned)
#if not isObjLackingTypeField(t) and not p.module.compileToCpp:
# result.addf("{$1}", [genTypeInfo(p.module, t)])
# inc count
var objInit: StructInitializer
result.addStructInitializer(objInit, kind = siOrderedStruct):
if t.kind == tyObject:
getNullValueAuxT(p, t, t, t.n, n, result, objInit, isConst, n.info)
proc genConstSimpleList(p: BProc, n: PNode; isConst: bool; result: var Builder) =
var arrInit: StructInitializer
result.addStructInitializer(arrInit, kind = siArray):
if p.vccAndC and n.len == 0 and n.typ.kind == tyArray:
result.addField(arrInit, name = ""):
getDefaultValue(p, n.typ.elementType, n.info, result)
for i in 0..<n.len:
let it = n[i]
var ind, val: PNode
if it.kind == nkExprColonExpr:
ind = it[0]
val = it[1]
else:
ind = it
val = it
result.addField(arrInit, name = ""):
genBracedInit(p, val, isConst, ind.typ, result)
proc genConstTuple(p: BProc, n: PNode; isConst: bool; tup: PType; result: var Builder) =
var tupleInit: StructInitializer
result.addStructInitializer(tupleInit, kind = siOrderedStruct):
if p.vccAndC and n.len == 0:
result.addField(tupleInit, name = "dummy"):
result.addIntValue(0)
for i in 0..<n.len:
var it = n[i]
if it.kind == nkExprColonExpr:
it = it[1]
result.addField(tupleInit, name = "Field" & $i):
genBracedInit(p, it, isConst, tup[i], result)
proc genConstSeq(p: BProc, n: PNode, t: PType; isConst: bool; result: var Builder) =
let base = t.skipTypes(abstractInst)[0]
let tmpName = getTempName(p.module)
# genBracedInit can modify cfsStrData, we need an intermediate builder:
var def = newBuilder("")
def.addVarWithTypeAndInitializer(
if isConst: Const else: Global,
name = tmpName):
def.addSimpleStruct(p.module, name = "", baseType = ""):
def.addField(name = "sup", typ = cgsymValue(p.module, "TGenericSeq"))
def.addArrayField(name = "data", elementType = getTypeDesc(p.module, base), len = n.len)
do:
var structInit: StructInitializer
def.addStructInitializer(structInit, kind = siOrderedStruct):
def.addField(structInit, name = "sup"):
var supInit: StructInitializer
def.addStructInitializer(supInit, kind = siOrderedStruct):
def.addField(supInit, name = "len"):
def.addIntValue(n.len)
def.addField(supInit, name = "reserved"):
def.add(cOp(BitOr, NimInt, cIntValue(n.len), NimStrlitFlag))
if n.len > 0:
def.addField(structInit, name = "data"):
var arrInit: StructInitializer
def.addStructInitializer(arrInit, kind = siArray):
for i in 0..<n.len:
def.addField(arrInit, name = ""):
genBracedInit(p, n[i], isConst, base, def)
p.module.s[cfsStrData].add extract(def)
result.add cCast(typ = getTypeDesc(p.module, t), value = cAddr(tmpName))
proc genConstSeqV2(p: BProc, n: PNode, t: PType; isConst: bool; result: var Builder) =
let base = t.skipTypes(abstractInst)[0]
let payload = getTempName(p.module)
# genBracedInit can modify cfsStrData, we need an intermediate builder:
var def = newBuilder("")
def.addVarWithTypeAndInitializer(
if isConst: AlwaysConst else: Global,
name = payload):
def.addSimpleStruct(p.module, name = "", baseType = ""):
def.addField(name = "cap", typ = NimInt)
def.addArrayField(name = "data", elementType = getTypeDesc(p.module, base), len = n.len)
do:
var structInit: StructInitializer
def.addStructInitializer(structInit, kind = siOrderedStruct):
def.addField(structInit, name = "cap"):
def.add(cOp(BitOr, NimInt, cIntValue(n.len), NimStrlitFlag))
if n.len > 0:
def.addField(structInit, name = "data"):
var arrInit: StructInitializer
def.addStructInitializer(arrInit, kind = siArray):
for i in 0..<n.len:
def.addField(arrInit, name = ""):
genBracedInit(p, n[i], isConst, base, def)
p.module.s[cfsStrData].add extract(def)
var resultInit: StructInitializer
result.addStructInitializer(resultInit, kind = siOrderedStruct):
result.addField(resultInit, name = "len"):
result.addIntValue(n.len)
result.addField(resultInit, name = "p"):
result.add cCast(typ = ptrType(getSeqPayloadType(p.module, t)), value = cAddr(payload))
proc genBracedInit(p: BProc, n: PNode; isConst: bool; optionalType: PType; result: var Builder) =
case n.kind
of nkHiddenStdConv, nkHiddenSubConv:
genBracedInit(p, n[1], isConst, n.typ, result)
else:
var ty = tyNone
var typ: PType = nil
if optionalType == nil:
if n.kind in nkStrKinds:
ty = tyString
else:
internalError(p.config, n.info, "node has no type")
else:
typ = skipTypes(optionalType, abstractInstOwned + {tyStatic})
ty = typ.kind
case ty
of tySet:
let cs = toBitSet(p.config, n)
genRawSetData(cs, int(getSize(p.config, n.typ)), result)
of tySequence:
if optSeqDestructors in p.config.globalOptions:
genConstSeqV2(p, n, typ, isConst, result)
else:
genConstSeq(p, n, typ, isConst, result)
of tyProc:
if typ.callConv == ccClosure and n.safeLen > 1 and n[1].kind == nkNilLit:
# n.kind could be: nkClosure, nkTupleConstr and maybe others; `n.safeLen`
# guards against the case of `nkSym`, refs bug #14340.
# Conversion: nimcall -> closure.
# this hack fixes issue that nkNilLit is expanded to {NIM_NIL,NIM_NIL}
# this behaviour is needed since closure_var = nil must be
# expanded to {NIM_NIL,NIM_NIL}
# in VM closures are initialized with nkPar(nkNilLit, nkNilLit)
# leading to duplicate code like this:
# "{NIM_NIL,NIM_NIL}, {NIM_NIL,NIM_NIL}"
var closureInit: StructInitializer
result.addStructInitializer(closureInit, kind = siOrderedStruct):
result.addField(closureInit, name = "ClP_0"):
if n[0].kind == nkNilLit:
result.add(NimNil)
else:
var d: TLoc = initLocExpr(p, n[0])
result.add(cCast(typ = getClosureType(p.module, typ, clHalfWithEnv), value = rdLoc(d)))
result.addField(closureInit, name = "ClE_0"):
result.add(NimNil)
else:
var d: TLoc = initLocExpr(p, n)
result.add rdLoc(d)
of tyArray, tyVarargs:
genConstSimpleList(p, n, isConst, result)
of tyTuple:
genConstTuple(p, n, isConst, typ, result)
of tyOpenArray:
if n.kind != nkBracket:
internalError(p.config, n.info, "const openArray expression is not an array construction")
let payload = getTempName(p.module)
let ctype = getTypeDesc(p.module, typ.elementType)
let arrLen = n.len
# genConstSimpleList can modify cfsStrData, we need an intermediate builder:
var data = newBuilder("")
data.addArrayVarWithInitializer(
kind = if isConst: AlwaysConst else: Global,
name = payload, elementType = ctype, len = arrLen):
genConstSimpleList(p, n, isConst, data)
p.module.s[cfsStrData].add(extract(data))
var openArrInit: StructInitializer
result.addStructInitializer(openArrInit, kind = siOrderedStruct):
result.addField(openArrInit, name = "Field0"):
result.add(cCast(typ = ptrType(ctype), value = cAddr(payload)))
result.addField(openArrInit, name = "Field1"):
result.addIntValue(arrLen)
of tyObject:
genConstObjConstr(p, n, isConst, result)
of tyString, tyCstring:
if optSeqDestructors in p.config.globalOptions and n.kind != nkNilLit and ty == tyString:
genStringLiteralV2Const(p.module, n, isConst, result)
else:
var d: TLoc = initLocExpr(p, n)
result.add rdLoc(d)
else:
var d: TLoc = initLocExpr(p, n)
result.add rdLoc(d)