mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
267 lines
7.9 KiB
Nim
267 lines
7.9 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2016 Yuriy Glukhov
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
|
|
|
|
## The `heapqueue` module implements a
|
|
## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
|
|
## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
|
|
## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
|
|
## for all indices `k` (counting elements from 0). The interesting property of a heap is that
|
|
## `a[0]` is always its smallest element.
|
|
##
|
|
## Basic usage
|
|
## -----------
|
|
##
|
|
runnableExamples:
|
|
var heap = [8, 2].toHeapQueue
|
|
heap.push(5)
|
|
# the first element is the lowest element
|
|
assert heap[0] == 2
|
|
# remove and return the lowest element
|
|
assert heap.pop() == 2
|
|
# the lowest element remaining is 5
|
|
assert heap[0] == 5
|
|
|
|
## Usage with custom objects
|
|
## -------------------------
|
|
## To use a `HeapQueue` with a custom object, the `<` operator must be
|
|
## implemented.
|
|
|
|
runnableExamples:
|
|
type Job = object
|
|
priority: int
|
|
|
|
proc `<`(a, b: Job): bool = a.priority < b.priority
|
|
|
|
var jobs = initHeapQueue[Job]()
|
|
jobs.push(Job(priority: 1))
|
|
jobs.push(Job(priority: 2))
|
|
|
|
assert jobs[0].priority == 1
|
|
|
|
|
|
import std/private/since
|
|
|
|
when defined(nimPreviewSlimSystem):
|
|
import std/assertions
|
|
|
|
type HeapQueue*[T] = object
|
|
## A heap queue, commonly known as a priority queue.
|
|
data: seq[T]
|
|
|
|
proc initHeapQueue*[T](): HeapQueue[T] =
|
|
## Creates a new empty heap.
|
|
##
|
|
## Heaps are initialized by default, so it is not necessary to call
|
|
## this function explicitly.
|
|
##
|
|
## **See also:**
|
|
## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
|
|
result = default(HeapQueue[T])
|
|
|
|
proc len*[T](heap: HeapQueue[T]): int {.inline.} =
|
|
## Returns the number of elements of `heap`.
|
|
runnableExamples:
|
|
let heap = [9, 5, 8].toHeapQueue
|
|
assert heap.len == 3
|
|
|
|
heap.data.len
|
|
|
|
proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
|
|
## Accesses the i-th element of `heap`.
|
|
heap.data[i]
|
|
|
|
iterator items*[T](heap: HeapQueue[T]): lent T {.inline, since: (2, 1, 1).} =
|
|
## Iterates over each item of `heap`.
|
|
let L = len(heap)
|
|
for i in 0 .. high(heap.data):
|
|
yield heap.data[i]
|
|
assert(len(heap) == L, "the length of the HeapQueue changed while iterating over it")
|
|
|
|
proc heapCmp[T](x, y: T): bool {.inline.} = x < y
|
|
|
|
proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
|
|
## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
|
|
## is the index of a leaf with a possibly out-of-order value. Restores the
|
|
## heap invariant.
|
|
var pos = p
|
|
let newitem = heap[pos]
|
|
# Follow the path to the root, moving parents down until finding a place
|
|
# newitem fits.
|
|
while pos > startpos:
|
|
let parentpos = (pos - 1) shr 1
|
|
let parent = heap[parentpos]
|
|
if heapCmp(newitem, parent):
|
|
heap.data[pos] = parent
|
|
pos = parentpos
|
|
else:
|
|
break
|
|
heap.data[pos] = newitem
|
|
|
|
proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
|
|
# This is faster when the element should be close to the bottom.
|
|
let endpos = len(heap)
|
|
var pos = p
|
|
let startpos = pos
|
|
let newitem = heap[pos]
|
|
# Bubble up the smaller child until hitting a leaf.
|
|
var childpos = 2 * pos + 1 # leftmost child position
|
|
while childpos < endpos:
|
|
# Set childpos to index of smaller child.
|
|
let rightpos = childpos + 1
|
|
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
|
|
childpos = rightpos
|
|
# Move the smaller child up.
|
|
heap.data[pos] = heap[childpos]
|
|
pos = childpos
|
|
childpos = 2 * pos + 1
|
|
# The leaf at pos is empty now. Put newitem there, and bubble it up
|
|
# to its final resting place (by sifting its parents down).
|
|
heap.data[pos] = newitem
|
|
siftup(heap, startpos, pos)
|
|
|
|
proc siftdown[T](heap: var HeapQueue[T], p: int) =
|
|
let endpos = len(heap)
|
|
var pos = p
|
|
let newitem = heap[pos]
|
|
var childpos = 2 * pos + 1
|
|
while childpos < endpos:
|
|
let rightpos = childpos + 1
|
|
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
|
|
childpos = rightpos
|
|
if not heapCmp(heap[childpos], newitem):
|
|
break
|
|
heap.data[pos] = heap[childpos]
|
|
pos = childpos
|
|
childpos = 2 * pos + 1
|
|
heap.data[pos] = newitem
|
|
|
|
proc push*[T](heap: var HeapQueue[T], item: sink T) =
|
|
## Pushes `item` onto `heap`, maintaining the heap invariant.
|
|
heap.data.add(item)
|
|
siftup(heap, 0, len(heap) - 1)
|
|
|
|
proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
|
|
## Creates a new HeapQueue that contains the elements of `x`.
|
|
##
|
|
## **See also:**
|
|
## * `initHeapQueue proc <#initHeapQueue>`_
|
|
runnableExamples:
|
|
var heap = [9, 5, 8].toHeapQueue
|
|
assert heap.pop() == 5
|
|
assert heap[0] == 8
|
|
|
|
# see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
|
|
result.data = @x
|
|
for i in countdown(x.len div 2 - 1, 0):
|
|
siftdown(result, i)
|
|
|
|
proc pop*[T](heap: var HeapQueue[T]): T =
|
|
## Pops and returns the smallest item from `heap`,
|
|
## maintaining the heap invariant.
|
|
runnableExamples:
|
|
var heap = [9, 5, 8].toHeapQueue
|
|
assert heap.pop() == 5
|
|
|
|
let lastelt = heap.data.pop()
|
|
if heap.len > 0:
|
|
result = heap[0]
|
|
heap.data[0] = lastelt
|
|
siftdownToBottom(heap, 0)
|
|
else:
|
|
result = lastelt
|
|
|
|
proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
|
|
## Linear scan to find the index of the item `x` or -1 if not found.
|
|
runnableExamples:
|
|
let heap = [9, 5, 8].toHeapQueue
|
|
assert heap.find(5) == 0
|
|
assert heap.find(9) == 1
|
|
assert heap.find(777) == -1
|
|
|
|
result = -1
|
|
for i in 0 ..< heap.len:
|
|
if heap[i] == x: return i
|
|
|
|
proc contains*[T](heap: HeapQueue[T], x: T): bool {.since: (2, 1, 1).} =
|
|
## Returns true if `x` is in `heap` or false if not found. This is a shortcut
|
|
## for `find(heap, x) >= 0`.
|
|
result = find(heap, x) >= 0
|
|
|
|
proc del*[T](heap: var HeapQueue[T], index: Natural) =
|
|
## Removes the element at `index` from `heap`, maintaining the heap invariant.
|
|
runnableExamples:
|
|
var heap = [9, 5, 8].toHeapQueue
|
|
heap.del(1)
|
|
assert heap[0] == 5
|
|
assert heap[1] == 8
|
|
|
|
swap(heap.data[^1], heap.data[index])
|
|
let newLen = heap.len - 1
|
|
heap.data.setLen(newLen)
|
|
if index < newLen:
|
|
siftdownToBottom(heap, index)
|
|
|
|
proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
|
|
## Pops and returns the current smallest value, and add the new item.
|
|
## This is more efficient than `pop()` followed by `push()`, and can be
|
|
## more appropriate when using a fixed-size heap. Note that the value
|
|
## returned may be larger than `item`! That constrains reasonable uses of
|
|
## this routine unless written as part of a conditional replacement.
|
|
##
|
|
## **See also:**
|
|
## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
|
|
runnableExamples:
|
|
var heap = [5, 12].toHeapQueue
|
|
assert heap.replace(6) == 5
|
|
assert heap.len == 2
|
|
assert heap[0] == 6
|
|
assert heap.replace(4) == 6
|
|
|
|
result = heap[0]
|
|
heap.data[0] = item
|
|
siftdown(heap, 0)
|
|
|
|
proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
|
|
## Fast version of a `push()` followed by a `pop()`.
|
|
##
|
|
## **See also:**
|
|
## * `replace proc <#replace,HeapQueue[T],sinkT>`_
|
|
runnableExamples:
|
|
var heap = [5, 12].toHeapQueue
|
|
assert heap.pushpop(6) == 5
|
|
assert heap.len == 2
|
|
assert heap[0] == 6
|
|
assert heap.pushpop(4) == 4
|
|
|
|
result = item
|
|
if heap.len > 0 and heapCmp(heap.data[0], result):
|
|
swap(result, heap.data[0])
|
|
siftdown(heap, 0)
|
|
|
|
proc clear*[T](heap: var HeapQueue[T]) =
|
|
## Removes all elements from `heap`, making it empty.
|
|
runnableExamples:
|
|
var heap = [9, 5, 8].toHeapQueue
|
|
heap.clear()
|
|
assert heap.len == 0
|
|
|
|
heap.data.setLen(0)
|
|
|
|
proc `$`*[T](heap: HeapQueue[T]): string =
|
|
## Turns a heap into its string representation.
|
|
runnableExamples:
|
|
let heap = [1, 2].toHeapQueue
|
|
assert $heap == "[1, 2]"
|
|
|
|
result = "["
|
|
for x in heap.data:
|
|
if result.len > 1: result.add(", ")
|
|
result.addQuoted(x)
|
|
result.add("]")
|