mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 01:14:41 +00:00
why ? - We already have an emit that does the same thing - The name asm itself is a bit confusing, you might think it's an alias for asm.js or something else. - The asm keyword is used differently on different compiler targets (it makes it inexpressive). - Does anyone (other than some compiler libraries) use asm instead of emit ? If yes, it's a bit strange to use asm somewhere and emit somewhere. By making the asm keyword for js target deprecated, there would be even less use of the asm keyword for js target, reducing the amount of confusion. - New users might accidentally use a non-universal approach via the asm keyword instead of emit, and then when they learn about asm, try to figure out what the differences are. see https://forum.nim-lang.org/t/10821 --------- Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
338 lines
12 KiB
Nim
338 lines
12 KiB
Nim
# comparison operators:
|
|
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.} =
|
|
## Checks whether values within the *same enum* have the same underlying value.
|
|
runnableExamples:
|
|
type
|
|
Enum1 = enum
|
|
field1 = 3, field2
|
|
Enum2 = enum
|
|
place1, place2 = 3
|
|
var
|
|
e1 = field1
|
|
e2 = place2.ord.Enum1
|
|
assert e1 == e2
|
|
assert not compiles(e1 == place2) # raises error
|
|
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} =
|
|
## Checks for equality between two `pointer` variables.
|
|
runnableExamples:
|
|
var # this is a wildly dangerous example
|
|
a = cast[pointer](0)
|
|
b = cast[pointer](nil)
|
|
assert a == b # true due to the special meaning of `nil`/0 as a pointer
|
|
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
|
|
## Checks for equality between two `string` variables.
|
|
|
|
proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
|
|
## Checks for equality between two `char` variables.
|
|
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
|
|
## Checks for equality between two `bool` variables.
|
|
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} =
|
|
## Checks for equality between two variables of type `set`.
|
|
runnableExamples:
|
|
assert {1, 2, 2, 3} == {1, 2, 3} # duplication in sets is ignored
|
|
|
|
proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
|
|
## Checks that two `ref` variables refer to the same item.
|
|
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
|
|
## Checks that two `ptr` variables refer to the same item.
|
|
proc `==`*[T: proc | iterator](x, y: T): bool {.magic: "EqProc", noSideEffect.}
|
|
## Checks that two `proc` variables refer to the same procedure.
|
|
|
|
proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
|
|
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.} =
|
|
## Compares two strings and returns true if `x` is lexicographically
|
|
## before `y` (uppercase letters come before lowercase letters).
|
|
runnableExamples:
|
|
let
|
|
a = "abc"
|
|
b = "abd"
|
|
c = "ZZZ"
|
|
assert a <= b
|
|
assert a <= a
|
|
assert not (a <= c)
|
|
|
|
proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.} =
|
|
## Compares two chars and returns true if `x` is lexicographically
|
|
## before `y` (uppercase letters come before lowercase letters).
|
|
runnableExamples:
|
|
let
|
|
a = 'a'
|
|
b = 'b'
|
|
c = 'Z'
|
|
assert a <= b
|
|
assert a <= a
|
|
assert not (a <= c)
|
|
|
|
proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} =
|
|
## Returns true if `x` is a subset of `y`.
|
|
##
|
|
## A subset `x` has all of its members in `y` and `y` doesn't necessarily
|
|
## have more members than `x`. That is, `x` can be equal to `y`.
|
|
runnableExamples:
|
|
let
|
|
a = {3, 5}
|
|
b = {1, 3, 5, 7}
|
|
c = {2}
|
|
assert a <= b
|
|
assert a <= a
|
|
assert not (a <= c)
|
|
|
|
proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
|
|
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
|
|
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
|
|
|
|
proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
|
|
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.} =
|
|
## Compares two strings and returns true if `x` is lexicographically
|
|
## before `y` (uppercase letters come before lowercase letters).
|
|
runnableExamples:
|
|
let
|
|
a = "abc"
|
|
b = "abd"
|
|
c = "ZZZ"
|
|
assert a < b
|
|
assert not (a < a)
|
|
assert not (a < c)
|
|
|
|
proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.} =
|
|
## Compares two chars and returns true if `x` is lexicographically
|
|
## before `y` (uppercase letters come before lowercase letters).
|
|
runnableExamples:
|
|
let
|
|
a = 'a'
|
|
b = 'b'
|
|
c = 'Z'
|
|
assert a < b
|
|
assert not (a < a)
|
|
assert not (a < c)
|
|
|
|
proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} =
|
|
## Returns true if `x` is a strict or proper subset of `y`.
|
|
##
|
|
## A strict or proper subset `x` has all of its members in `y` but `y` has
|
|
## more elements than `y`.
|
|
runnableExamples:
|
|
let
|
|
a = {3, 5}
|
|
b = {1, 3, 5, 7}
|
|
c = {2}
|
|
assert a < b
|
|
assert not (a < a)
|
|
assert not (a < c)
|
|
|
|
proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
|
|
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
|
|
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
|
|
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
|
|
|
|
when not defined(nimHasCallsitePragma):
|
|
{.pragma: callsite.}
|
|
|
|
template `!=`*(x, y: untyped): untyped {.callsite.} =
|
|
## Unequals operator. This is a shorthand for `not (x == y)`.
|
|
not (x == y)
|
|
|
|
template `>=`*(x, y: untyped): untyped {.callsite.} =
|
|
## "is greater or equals" operator. This is the same as `y <= x`.
|
|
y <= x
|
|
|
|
template `>`*(x, y: untyped): untyped {.callsite.} =
|
|
## "is greater" operator. This is the same as `y < x`.
|
|
y < x
|
|
|
|
|
|
proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
|
|
## Compares two integers for equality.
|
|
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
|
|
|
|
proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
|
|
## Returns true if `x` is less than or equal to `y`.
|
|
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
|
|
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
|
|
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
|
|
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
|
|
|
|
proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
|
|
## Returns true if `x` is less than `y`.
|
|
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
|
|
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
|
|
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
|
|
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
|
|
|
|
proc `<=`*(x, y: uint): bool {.magic: "LeU", noSideEffect.}
|
|
## Returns true if `x <= y`.
|
|
proc `<=`*(x, y: uint8): bool {.magic: "LeU", noSideEffect.}
|
|
proc `<=`*(x, y: uint16): bool {.magic: "LeU", noSideEffect.}
|
|
proc `<=`*(x, y: uint32): bool {.magic: "LeU", noSideEffect.}
|
|
proc `<=`*(x, y: uint64): bool {.magic: "LeU", noSideEffect.}
|
|
|
|
proc `<`*(x, y: uint): bool {.magic: "LtU", noSideEffect.}
|
|
## Returns true if `x < y`.
|
|
proc `<`*(x, y: uint8): bool {.magic: "LtU", noSideEffect.}
|
|
proc `<`*(x, y: uint16): bool {.magic: "LtU", noSideEffect.}
|
|
proc `<`*(x, y: uint32): bool {.magic: "LtU", noSideEffect.}
|
|
proc `<`*(x, y: uint64): bool {.magic: "LtU", noSideEffect.}
|
|
|
|
proc `<=%`*(x, y: int): bool {.inline.} =
|
|
## Treats `x` and `y` as unsigned and compares them.
|
|
## Returns true if `unsigned(x) <= unsigned(y)`.
|
|
cast[uint](x) <= cast[uint](y)
|
|
proc `<=%`*(x, y: int8): bool {.inline.} = cast[uint8](x) <= cast[uint8](y)
|
|
proc `<=%`*(x, y: int16): bool {.inline.} = cast[uint16](x) <= cast[uint16](y)
|
|
proc `<=%`*(x, y: int32): bool {.inline.} = cast[uint32](x) <= cast[uint32](y)
|
|
proc `<=%`*(x, y: int64): bool {.inline.} = cast[uint64](x) <= cast[uint64](y)
|
|
|
|
proc `<%`*(x, y: int): bool {.inline.} =
|
|
## Treats `x` and `y` as unsigned and compares them.
|
|
## Returns true if `unsigned(x) < unsigned(y)`.
|
|
cast[uint](x) < cast[uint](y)
|
|
proc `<%`*(x, y: int8): bool {.inline.} = cast[uint8](x) < cast[uint8](y)
|
|
proc `<%`*(x, y: int16): bool {.inline.} = cast[uint16](x) < cast[uint16](y)
|
|
proc `<%`*(x, y: int32): bool {.inline.} = cast[uint32](x) < cast[uint32](y)
|
|
proc `<%`*(x, y: int64): bool {.inline.} = cast[uint64](x) < cast[uint64](y)
|
|
|
|
template `>=%`*(x, y: untyped): untyped = y <=% x
|
|
## Treats `x` and `y` as unsigned and compares them.
|
|
## Returns true if `unsigned(x) >= unsigned(y)`.
|
|
|
|
template `>%`*(x, y: untyped): untyped = y <% x
|
|
## Treats `x` and `y` as unsigned and compares them.
|
|
## Returns true if `unsigned(x) > unsigned(y)`.
|
|
|
|
proc `==`*(x, y: uint): bool {.magic: "EqI", noSideEffect.}
|
|
## Compares two unsigned integers for equality.
|
|
proc `==`*(x, y: uint8): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: uint16): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: uint32): bool {.magic: "EqI", noSideEffect.}
|
|
proc `==`*(x, y: uint64): bool {.magic: "EqI", noSideEffect.}
|
|
|
|
proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
|
|
proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
|
|
|
|
proc `<`*(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
|
|
proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
|
|
|
|
proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
|
|
proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
|
|
|
|
{.push stackTrace: off.}
|
|
|
|
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
|
|
if x <= y: x else: y
|
|
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
|
|
if x <= y: x else: y
|
|
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
|
|
if x <= y: x else: y
|
|
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
|
|
if x <= y: x else: y
|
|
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
|
|
## The minimum value of two integers.
|
|
if x <= y: x else: y
|
|
proc min*(x, y: float32): float32 {.noSideEffect, inline.} =
|
|
if x <= y or y != y: x else: y
|
|
proc min*(x, y: float64): float64 {.noSideEffect, inline.} =
|
|
if x <= y or y != y: x else: y
|
|
proc min*[T: not SomeFloat](x, y: T): T {.inline.} =
|
|
## Generic minimum operator of 2 values based on `<=`.
|
|
if x <= y: x else: y
|
|
|
|
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
|
|
if y <= x: x else: y
|
|
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
|
|
if y <= x: x else: y
|
|
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
|
|
if y <= x: x else: y
|
|
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
|
|
if y <= x: x else: y
|
|
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
|
|
## The maximum value of two integers.
|
|
if y <= x: x else: y
|
|
proc max*(x, y: float32): float32 {.noSideEffect, inline.} =
|
|
if y <= x or y != y: x else: y
|
|
proc max*(x, y: float64): float64 {.noSideEffect, inline.} =
|
|
if y <= x or y != y: x else: y
|
|
proc max*[T: not SomeFloat](x, y: T): T {.inline.} =
|
|
## Generic maximum operator of 2 values based on `<=`.
|
|
if y <= x: x else: y
|
|
|
|
|
|
proc min*[T](x: openArray[T]): T =
|
|
## The minimum value of `x`. `T` needs to have a `<` operator.
|
|
result = x[0]
|
|
for i in 1..high(x):
|
|
if x[i] < result: result = x[i]
|
|
|
|
proc max*[T](x: openArray[T]): T =
|
|
## The maximum value of `x`. `T` needs to have a `<` operator.
|
|
result = x[0]
|
|
for i in 1..high(x):
|
|
if result < x[i]: result = x[i]
|
|
|
|
{.pop.} # stackTrace: off
|
|
|
|
|
|
proc clamp*[T](x, a, b: T): T =
|
|
## Limits the value `x` within the interval \[a, b].
|
|
## This proc is equivalent to but faster than `max(a, min(b, x))`.
|
|
##
|
|
## .. warning:: `a <= b` is assumed and will not be checked (currently).
|
|
##
|
|
## **See also:**
|
|
## `math.clamp` for a version that takes a `Slice[T]` instead.
|
|
runnableExamples:
|
|
assert (1.4).clamp(0.0, 1.0) == 1.0
|
|
assert (0.5).clamp(0.0, 1.0) == 0.5
|
|
assert 4.clamp(1, 3) == max(1, min(3, 4))
|
|
if x < a: return a
|
|
if x > b: return b
|
|
return x
|
|
|
|
|
|
proc `==`*[I, T](x, y: array[I, T]): bool =
|
|
for f in low(x)..high(x):
|
|
if x[f] != y[f]:
|
|
return
|
|
result = true
|
|
|
|
proc `==`*[T](x, y: openArray[T]): bool =
|
|
if x.len != y.len:
|
|
return false
|
|
for f in low(x)..high(x):
|
|
if x[f] != y[f]:
|
|
return false
|
|
result = true
|
|
|
|
|
|
proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
|
|
## Generic equals operator for sequences: relies on a equals operator for
|
|
## the element type `T`.
|
|
when nimvm:
|
|
if x.len == 0 and y.len == 0:
|
|
return true
|
|
else:
|
|
when not defined(js):
|
|
proc seqToPtr[T](x: seq[T]): pointer {.inline, noSideEffect.} =
|
|
when defined(nimSeqsV2):
|
|
result = cast[NimSeqV2[T]](x).p
|
|
else:
|
|
result = cast[pointer](x)
|
|
|
|
if seqToPtr(x) == seqToPtr(y):
|
|
return true
|
|
else:
|
|
var sameObject = false
|
|
{.emit: """`sameObject` = `x` === `y`""".}
|
|
if sameObject: return true
|
|
|
|
if x.len != y.len:
|
|
return false
|
|
|
|
for i in 0..x.len-1:
|
|
if x[i] != y[i]:
|
|
return false
|
|
|
|
return true
|