Files
Nim/compiler/semmagic.nim
metagn 0a058a6b8f better errors for standalone explicit generic instantiations (#24276)
refs #8064, refs #24010

Error messages for standalone explicit generic instantiations are
revamped. Failing standalone explicit generic instantiations now only
error after overloading has finished and resolved to the default `[]`
magic (this means `[]` can now be overloaded for procs but this isn't
necessarily intentional, in #24010 it was documented that it isn't
possible). The error messages for failed instantiations are also no
longer a simple `cannot instantiate: foo` message, instead they now give
the same type mismatch error message as overloads with mismatching
explicit generic parameters.

This is now possible due to the changes in #24010 that delegate all
explicit generic proc instantiations to overload resolution. Old code
that worked around this is now removed. `maybeInstantiateGeneric` could
maybe also be removed in favor of just `explicitGenericSym`, the `result
== n` case is due to `explicitGenericInstError` which is only for niche
cases.

Also, to cause "ambiguous identifier" error messages when the explicit
instantiation is a symchoice and the expression context doesn't allow
symchoices, we semcheck the sym/symchoice created by
`explicitGenericSym` with the given expression flags.

#8064 isn't entirely fixed because the error message is still misleading
for the original case which does `values[1]`, as a consequence of
#12664.
2024-10-18 19:06:42 +02:00

721 lines
28 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This include file implements the semantic checking for magics.
# included from sem.nim
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags; expectedType: PType = nil): PNode
proc addDefaultFieldForNew(c: PContext, n: PNode): PNode =
result = n
let typ = result[1].typ # new(x)
if typ.skipTypes({tyGenericInst, tyAlias, tySink}).kind == tyRef and typ.skipTypes({tyGenericInst, tyAlias, tySink})[0].kind == tyObject:
var asgnExpr = newTree(nkObjConstr, newNodeIT(nkType, result[1].info, typ))
asgnExpr.typ() = typ
var t = typ.skipTypes({tyGenericInst, tyAlias, tySink})[0]
while true:
asgnExpr.sons.add defaultFieldsForTheUninitialized(c, t.n, false)
let base = t.baseClass
if base == nil:
break
t = skipTypes(base, skipPtrs)
if asgnExpr.sons.len > 1:
result = newTree(nkAsgn, result[1], asgnExpr)
proc semAddr(c: PContext; n: PNode): PNode =
result = newNodeI(nkAddr, n.info)
let x = semExprWithType(c, n)
if x.kind == nkSym:
x.sym.flags.incl(sfAddrTaken)
if isAssignable(c, x) notin {arLValue, arLocalLValue, arAddressableConst, arLentValue}:
localError(c.config, n.info, errExprHasNoAddress)
result.add x
result.typ() = makePtrType(c, x.typ)
proc semTypeOf(c: PContext; n: PNode): PNode =
var m = BiggestInt 1 # typeOfIter
if n.len == 3:
let mode = semConstExpr(c, n[2])
if mode.kind != nkIntLit:
localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
else:
m = mode.intVal
result = newNodeI(nkTypeOfExpr, n.info)
inc c.inTypeofContext
defer: dec c.inTypeofContext # compiles can raise an exception
let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
result.add typExpr
if typExpr.typ.kind == tyFromExpr:
typExpr.typ.flags.incl tfNonConstExpr
result.typ() = makeTypeDesc(c, typExpr.typ)
type
SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags, afterOverloading = false): PNode
proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode =
result = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: result.add(n[i])
result = semSubscript(c, result, flags, afterOverloading = true)
if result.isNil:
let x = copyTree(n)
x[0] = newIdentNode(getIdent(c.cache, "[]"), n.info)
if c.inGenericContext > 0:
for i in 0..<n.len:
let a = n[i]
if a.typ != nil and a.typ.kind in {tyGenericParam, tyFromExpr}:
# expression is compiled early in a generic body
result = semGenericStmt(c, x)
result.typ() = makeTypeFromExpr(c, copyTree(result))
result.typ.flags.incl tfNonConstExpr
return
let s = # extract sym from first arg
if n.len > 1:
if n[1].kind == nkSym: n[1].sym
elif n[1].kind in nkSymChoices + {nkOpenSym} and n[1].len != 0:
n[1][0].sym
else: nil
else: nil
if s != nil and s.kind in routineKinds:
# this is a failed generic instantiation
# semSubscript should already error but this is better for cascading errors
result = explicitGenericInstError(c, n)
else:
bracketNotFoundError(c, x, flags)
result = errorNode(c, n)
proc semArrPut(c: PContext; n: PNode; flags: TExprFlags): PNode =
# rewrite `[]=`(a, i, x) back to ``a[i] = x``.
let b = newNodeI(nkBracketExpr, n.info)
b.add(n[1].skipHiddenAddr)
for i in 2..<n.len-1: b.add(n[i])
result = newNodeI(nkAsgn, n.info, 2)
result[0] = b
result[1] = n.lastSon
result = semAsgn(c, result, noOverloadedSubscript)
proc semAsgnOpr(c: PContext; n: PNode; k: TNodeKind): PNode =
result = newNodeI(k, n.info, 2)
result[0] = n[1]
result[1] = n[2]
result = semAsgn(c, result, noOverloadedAsgn)
proc semIsPartOf(c: PContext, n: PNode, flags: TExprFlags): PNode =
var r = isPartOf(n[1], n[2])
result = newIntNodeT(toInt128(ord(r)), n, c.idgen, c.graph)
proc expectIntLit(c: PContext, n: PNode): int =
let x = c.semConstExpr(c, n)
case x.kind
of nkIntLit..nkInt64Lit: result = int(x.intVal)
else:
result = 0
localError(c.config, n.info, errIntLiteralExpected)
proc semInstantiationInfo(c: PContext, n: PNode): PNode =
result = newNodeIT(nkTupleConstr, n.info, n.typ)
let idx = expectIntLit(c, n[1])
let useFullPaths = expectIntLit(c, n[2])
let info = getInfoContext(c.config, idx)
var filename = newNodeIT(nkStrLit, n.info, getSysType(c.graph, n.info, tyString))
filename.strVal = if useFullPaths != 0: toFullPath(c.config, info) else: toFilename(c.config, info)
var line = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
line.intVal = toLinenumber(info)
var column = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
column.intVal = toColumn(info)
# filename: string, line: int, column: int
result.add(newTree(nkExprColonExpr, n.typ.n[0], filename))
result.add(newTree(nkExprColonExpr, n.typ.n[1], line))
result.add(newTree(nkExprColonExpr, n.typ.n[2], column))
proc toNode(t: PType, i: TLineInfo): PNode =
result = newNodeIT(nkType, i, t)
const
# these are types that use the bracket syntax for instantiation
# they can be subjected to the type traits `genericHead` and
# `Uninstantiated`
tyUserDefinedGenerics* = {tyGenericInst, tyGenericInvocation,
tyUserTypeClassInst}
tyMagicGenerics* = {tySet, tySequence, tyArray, tyOpenArray}
tyGenericLike* = tyUserDefinedGenerics +
tyMagicGenerics +
{tyCompositeTypeClass}
proc uninstantiate(t: PType): PType =
result = case t.kind
of tyMagicGenerics: t
of tyUserDefinedGenerics: t.base
of tyCompositeTypeClass: uninstantiate t.firstGenericParam
else: t
proc getTypeDescNode(c: PContext; typ: PType, sym: PSym, info: TLineInfo): PNode =
var resType = newType(tyTypeDesc, c.idgen, sym)
rawAddSon(resType, typ)
result = toNode(resType, info)
proc buildBinaryPredicate(kind: TTypeKind; c: PContext; context: PSym; a, b: sink PType): PType =
result = newType(kind, c.idgen, context)
result.rawAddSon a
result.rawAddSon b
proc buildNotPredicate(c: PContext; context: PSym; a: sink PType): PType =
result = newType(tyNot, c.idgen, context, a)
proc evalTypeTrait(c: PContext; traitCall: PNode, operand: PType, context: PSym): PNode =
const skippedTypes = {tyTypeDesc, tyAlias, tySink}
let trait = traitCall[0]
internalAssert c.config, trait.kind == nkSym
var operand = operand.skipTypes(skippedTypes)
template operand2: PType =
traitCall[2].typ.skipTypes({tyTypeDesc})
if operand.kind == tyGenericParam or (traitCall.len > 2 and operand2.kind == tyGenericParam):
return traitCall ## too early to evaluate
let s = trait.sym.name.s
case s
of "or", "|":
return buildBinaryPredicate(tyOr, c, context, operand, operand2).toNode(traitCall.info)
of "and":
return buildBinaryPredicate(tyAnd, c, context, operand, operand2).toNode(traitCall.info)
of "not":
return buildNotPredicate(c, context, operand).toNode(traitCall.info)
of "typeToString":
var prefer = preferTypeName
if traitCall.len >= 2:
let preferStr = traitCall[2].strVal
prefer = parseEnum[TPreferedDesc](preferStr)
result = newStrNode(nkStrLit, operand.typeToString(prefer))
result.typ() = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "name", "$":
result = newStrNode(nkStrLit, operand.typeToString(preferTypeName))
result.typ() = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "arity":
result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc))
result.typ() = newType(tyInt, c.idgen, context)
result.info = traitCall.info
of "genericHead":
var arg = operand
case arg.kind
of tyGenericInst:
result = getTypeDescNode(c, arg.base, operand.owner, traitCall.info)
# of tySequence: # this doesn't work
# var resType = newType(tySequence, operand.owner)
# result = toNode(resType, traitCall.info) # doesn't work yet
else:
localError(c.config, traitCall.info, "expected generic type, got: type $2 of kind $1" % [arg.kind.toHumanStr, typeToString(operand)])
result = newType(tyError, c.idgen, context).toNode(traitCall.info)
of "stripGenericParams":
result = uninstantiate(operand).toNode(traitCall.info)
of "supportsCopyMem":
let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
let complexObj = containsGarbageCollectedRef(t) or
hasDestructor(t)
result = newIntNodeT(toInt128(ord(not complexObj)), traitCall, c.idgen, c.graph)
of "hasDefaultValue":
result = newIntNodeT(toInt128(ord(not operand.requiresInit)), traitCall, c.idgen, c.graph)
of "isNamedTuple":
var operand = operand.skipTypes({tyGenericInst})
let cond = operand.kind == tyTuple and operand.n != nil
result = newIntNodeT(toInt128(ord(cond)), traitCall, c.idgen, c.graph)
of "tupleLen":
var operand = operand.skipTypes({tyGenericInst})
assert operand.kind == tyTuple, $operand.kind
result = newIntNodeT(toInt128(operand.len), traitCall, c.idgen, c.graph)
of "distinctBase":
var arg = operand.skipTypes({tyGenericInst})
let rec = semConstExpr(c, traitCall[2]).intVal != 0
while arg.kind == tyDistinct:
arg = arg.base.skipTypes(skippedTypes + {tyGenericInst})
if not rec: break
result = getTypeDescNode(c, arg, operand.owner, traitCall.info)
of "rangeBase":
# return the base type of a range type
var arg = operand.skipTypes({tyGenericInst})
if arg.kind == tyRange:
arg = arg.base
result = getTypeDescNode(c, arg, operand.owner, traitCall.info)
of "isCyclic":
var operand = operand.skipTypes({tyGenericInst})
let isCyclic = canFormAcycle(c.graph, operand)
result = newIntNodeT(toInt128(ord(isCyclic)), traitCall, c.idgen, c.graph)
else:
localError(c.config, traitCall.info, "unknown trait: " & s)
result = newNodeI(nkEmpty, traitCall.info)
proc semTypeTraits(c: PContext, n: PNode): PNode =
checkMinSonsLen(n, 2, c.config)
let t = n[1].typ
internalAssert c.config, t != nil and t.skipTypes({tyAlias}).kind == tyTypeDesc
if t.len > 0:
# This is either a type known to sem or a typedesc
# param to a regular proc (again, known at instantiation)
result = evalTypeTrait(c, n, t, getCurrOwner(c))
else:
# a typedesc variable, pass unmodified to evals
result = n
proc semOrd(c: PContext, n: PNode): PNode =
result = n
let parType = n[1].typ
if isOrdinalType(parType, allowEnumWithHoles=true):
discard
else:
localError(c.config, n.info, errOrdinalTypeExpected % typeToString(parType, preferDesc))
result.typ() = errorType(c)
proc semBindSym(c: PContext, n: PNode): PNode =
result = copyNode(n)
result.add(n[0])
let sl = semConstExpr(c, n[1])
if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}:
return localErrorNode(c, n, n[1].info, errStringLiteralExpected)
let isMixin = semConstExpr(c, n[2])
if isMixin.kind != nkIntLit or isMixin.intVal < 0 or
isMixin.intVal > high(TSymChoiceRule).int:
return localErrorNode(c, n, n[2].info, errConstExprExpected)
let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info)
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal))
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
return sc
result.add(sc)
else:
errorUndeclaredIdentifier(c, n[1].info, sl.strVal)
proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode =
if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}:
return localErrorNode(c, n, info.info, errStringOrIdentNodeExpected)
if isMixin < 0 or isMixin > high(TSymChoiceRule).int:
return localErrorNode(c, n, info.info, errConstExprExpected)
let id = if n.kind == nkIdent: n
else: newIdentNode(getIdent(c.cache, n.strVal), info.info)
let tmpScope = c.currentScope
c.currentScope = scope
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
result = symChoice(c, id, s, TSymChoiceRule(isMixin))
else:
result = nil
errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s
else: n.strVal)
c.currentScope = tmpScope
proc semDynamicBindSym(c: PContext, n: PNode): PNode =
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
return semBindSym(c, n)
if c.graph.vm.isNil:
setupGlobalCtx(c.module, c.graph, c.idgen)
let
vm = PCtx c.graph.vm
# cache the current scope to
# prevent it lost into oblivion
scope = c.currentScope
# cannot use this
# vm.config.features.incl dynamicBindSym
proc bindSymWrapper(a: VmArgs) =
# capture PContext and currentScope
# param description:
# 0. ident, a string literal / computed string / or ident node
# 1. bindSym rule
# 2. info node
a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2))
let
# although we use VM callback here, it is not
# executed like 'normal' VM callback
idx = vm.registerCallback("bindSymImpl", bindSymWrapper)
# dummy node to carry idx information to VM
idxNode = newIntTypeNode(idx, c.graph.getSysType(TLineInfo(), tyInt))
result = copyNode(n)
for x in n: result.add x
result.add n # info node
result.add idxNode
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semOf(c: PContext, n: PNode): PNode =
if n.len == 3:
n[1] = semExprWithType(c, n[1])
n[2] = semExprWithType(c, n[2], {efDetermineType})
#restoreOldStyleType(n[1])
#restoreOldStyleType(n[2])
let a = skipTypes(n[1].typ, abstractPtrs)
let b = skipTypes(n[2].typ, abstractPtrs)
let x = skipTypes(n[1].typ, abstractPtrs-{tyTypeDesc})
let y = skipTypes(n[2].typ, abstractPtrs-{tyTypeDesc})
if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
localError(c.config, n.info, "'of' takes object types")
elif b.kind != tyObject or a.kind != tyObject:
localError(c.config, n.info, "'of' takes object types")
else:
let diff = inheritanceDiff(a, b)
# | returns: 0 iff `a` == `b`
# | returns: -x iff `a` is the x'th direct superclass of `b`
# | returns: +x iff `a` is the x'th direct subclass of `b`
# | returns: `maxint` iff `a` and `b` are not compatible at all
if diff <= 0:
# optimize to true:
message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n))
result = newIntNode(nkIntLit, 1)
result.info = n.info
result.typ() = getSysType(c.graph, n.info, tyBool)
return result
elif diff == high(int):
if commonSuperclass(a, b) == nil:
localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a))
else:
message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n))
result = newIntNode(nkIntLit, 0)
result.info = n.info
result.typ() = getSysType(c.graph, n.info, tyBool)
else:
localError(c.config, n.info, "'of' takes 2 arguments")
n.typ() = getSysType(c.graph, n.info, tyBool)
result = n
proc semUnown(c: PContext; n: PNode): PNode =
proc unownedType(c: PContext; t: PType): PType =
case t.kind
of tyTuple:
var elems = newSeq[PType](t.len)
var someChange = false
for i in 0..<t.len:
elems[i] = unownedType(c, t[i])
if elems[i] != t[i]: someChange = true
if someChange:
result = newType(tyTuple, c.idgen, t.owner)
# we have to use 'rawAddSon' here so that type flags are
# properly computed:
for e in elems: result.rawAddSon(e)
else:
result = t
of tyOwned: result = t.elementType
of tySequence, tyOpenArray, tyArray, tyVarargs, tyVar, tyLent,
tyGenericInst, tyAlias:
let b = unownedType(c, t[^1])
if b != t[^1]:
result = copyType(t, c.idgen, t.owner)
copyTypeProps(c.graph, c.idgen.module, result, t)
result[^1] = b
result.flags.excl tfHasOwned
else:
result = t
else:
result = t
result = copyTree(n[1])
result.typ() = unownedType(c, result.typ)
# little hack for injectdestructors.nim (see bug #11350):
#result[0].typ() = nil
proc turnFinalizerIntoDestructor(c: PContext; orig: PSym; info: TLineInfo): PSym =
# We need to do 2 things: Replace n.typ which is a 'ref T' by a 'var T' type.
# Replace nkDerefExpr by nkHiddenDeref
# nkDeref is for 'ref T': x[].field
# nkHiddenDeref is for 'var T': x<hidden deref [] here>.field
proc transform(c: PContext; n: PNode; old, fresh: PType; oldParam, newParam: PSym): PNode =
result = shallowCopy(n)
if sameTypeOrNil(n.typ, old):
result.typ() = fresh
if n.kind == nkSym and n.sym == oldParam:
result.sym = newParam
for i in 0 ..< safeLen(n):
result[i] = transform(c, n[i], old, fresh, oldParam, newParam)
#if n.kind == nkDerefExpr and sameType(n[0].typ, old):
# result =
result = copySym(orig, c.idgen)
result.info = info
result.flags.incl sfFromGeneric
setOwner(result, orig)
let origParamType = orig.typ.firstParamType
let newParamType = makeVarType(result, origParamType.skipTypes(abstractPtrs), c.idgen)
let oldParam = orig.typ.n[1].sym
let newParam = newSym(skParam, oldParam.name, c.idgen, result, result.info)
newParam.typ = newParamType
# proc body:
result.ast = transform(c, orig.ast, origParamType, newParamType, oldParam, newParam)
# proc signature:
result.typ = newProcType(result.info, c.idgen, result)
result.typ.addParam newParam
proc semQuantifier(c: PContext; n: PNode): PNode =
checkSonsLen(n, 2, c.config)
openScope(c)
result = newNodeIT(n.kind, n.info, n.typ)
result.add n[0]
let args = n[1]
assert args.kind == nkArgList
for i in 0..args.len-2:
let it = args[i]
var valid = false
if it.kind == nkInfix:
let op = considerQuotedIdent(c, it[0])
if op.id == ord(wIn):
let v = newSymS(skForVar, it[1], c)
styleCheckDef(c, v)
onDef(it[1].info, v)
let domain = semExprWithType(c, it[2], {efWantIterator})
v.typ = domain.typ
valid = true
addDecl(c, v)
result.add newTree(nkInfix, it[0], newSymNode(v), domain)
if not valid:
localError(c.config, n.info, "<quantifier> 'in' <range> expected")
result.add forceBool(c, semExprWithType(c, args[^1]))
closeScope(c)
proc semOld(c: PContext; n: PNode): PNode =
if n[1].kind == nkHiddenDeref:
n[1] = n[1][0]
if n[1].kind != nkSym or n[1].sym.kind != skParam:
localError(c.config, n[1].info, "'old' takes a parameter name")
elif n[1].sym.owner != getCurrOwner(c):
localError(c.config, n[1].info, n[1].sym.name.s & " does not belong to " & getCurrOwner(c).name.s)
result = n
proc semNewFinalize(c: PContext; n: PNode): PNode =
# Make sure the finalizer procedure refers to a procedure
if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
elif optTinyRtti in c.config.globalOptions:
let nfin = skipConvCastAndClosure(n[^1])
let fin = case nfin.kind
of nkSym: nfin.sym
of nkLambda, nkDo: nfin[namePos].sym
else:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
nil
if fin != nil:
if fin.kind notin {skProc, skFunc}:
# calling convention is checked in codegen
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
# check if we converted this finalizer into a destructor already:
let t = whereToBindTypeHook(c, fin.typ.firstParamType.skipTypes(abstractInst+{tyRef}))
if t != nil and getAttachedOp(c.graph, t, attachedDestructor) != nil and
getAttachedOp(c.graph, t, attachedDestructor).owner == fin:
discard "already turned this one into a finalizer"
else:
if fin.instantiatedFrom != nil and fin.instantiatedFrom != fin.owner: #undo move
setOwner(fin, fin.instantiatedFrom)
let wrapperSym = newSym(skProc, getIdent(c.graph.cache, fin.name.s & "FinalizerWrapper"), c.idgen, fin.owner, fin.info)
let selfSymNode = newSymNode(copySym(fin.ast[paramsPos][1][0].sym, c.idgen))
selfSymNode.typ() = fin.typ.firstParamType
wrapperSym.flags.incl sfUsed
let wrapper = c.semExpr(c, newProcNode(nkProcDef, fin.info, body = newTree(nkCall, newSymNode(fin), selfSymNode),
params = nkFormalParams.newTree(c.graph.emptyNode,
newTree(nkIdentDefs, selfSymNode, newNodeIT(nkType,
fin.ast[paramsPos][1][1].info, fin.typ.firstParamType), c.graph.emptyNode)
),
name = newSymNode(wrapperSym), pattern = fin.ast[patternPos],
genericParams = fin.ast[genericParamsPos], pragmas = fin.ast[pragmasPos], exceptions = fin.ast[miscPos]), {})
var transFormedSym = turnFinalizerIntoDestructor(c, wrapperSym, wrapper.info)
setOwner(transFormedSym, fin)
if c.config.backend == backendCpp or sfCompileToCpp in c.module.flags:
let origParamType = transFormedSym.ast[bodyPos][1].typ
let selfSymbolType = makePtrType(c, origParamType.skipTypes(abstractPtrs))
let selfPtr = newNodeI(nkHiddenAddr, transFormedSym.ast[bodyPos][1].info)
selfPtr.add transFormedSym.ast[bodyPos][1]
selfPtr.typ() = selfSymbolType
transFormedSym.ast[bodyPos][1] = c.semExpr(c, selfPtr)
# TODO: suppress var destructor warnings; if newFinalizer is not
# TODO: deprecated, try to implement plain T destructor
bindTypeHook(c, transFormedSym, n, attachedDestructor, suppressVarDestructorWarning = true)
result = addDefaultFieldForNew(c, n)
proc semPrivateAccess(c: PContext, n: PNode): PNode =
let t = n[1].typ.elementType.toObjectFromRefPtrGeneric
if t.kind == tyObject:
assert t.sym != nil
c.currentScope.allowPrivateAccess.add t.sym
result = newNodeIT(nkEmpty, n.info, getSysType(c.graph, n.info, tyVoid))
proc checkDefault(c: PContext, n: PNode): PNode =
result = n
c.config.internalAssert result[1].typ.kind == tyTypeDesc
let constructed = result[1].typ.base
if constructed.requiresInit:
message(c.config, n.info, warnUnsafeDefault, typeToString(constructed))
proc magicsAfterOverloadResolution(c: PContext, n: PNode,
flags: TExprFlags; expectedType: PType = nil): PNode =
## This is the preferred code point to implement magics.
## ``c`` the current module, a symbol table to a very good approximation
## ``n`` the ast like it would be passed to a real macro
## ``flags`` Some flags for more contextual information on how the
## "macro" is calld.
case n[0].sym.magic
of mAddr:
checkSonsLen(n, 2, c.config)
result = semAddr(c, n[1])
of mTypeOf:
result = semTypeOf(c, n)
of mSizeOf:
result = foldSizeOf(c.config, n, n)
of mAlignOf:
result = foldAlignOf(c.config, n, n)
of mOffsetOf:
result = foldOffsetOf(c.config, n, n)
of mArrGet:
result = semArrGet(c, n, flags)
of mArrPut:
result = semArrPut(c, n, flags)
of mAsgn:
if n[0].sym.name.s == "=":
result = semAsgnOpr(c, n, nkAsgn)
elif n[0].sym.name.s == "=sink":
result = semAsgnOpr(c, n, nkSinkAsgn)
else:
result = semShallowCopy(c, n, flags)
of mIsPartOf: result = semIsPartOf(c, n, flags)
of mTypeTrait: result = semTypeTraits(c, n)
of mAstToStr:
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ() = getSysType(c.graph, n.info, tyString)
of mInstantiationInfo: result = semInstantiationInfo(c, n)
of mOrd: result = semOrd(c, n)
of mOf: result = semOf(c, n)
of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic)
of mShallowCopy: result = semShallowCopy(c, n, flags)
of mNBindSym:
if dynamicBindSym notin c.features:
result = semBindSym(c, n)
else:
result = semDynamicBindSym(c, n)
of mProcCall:
result = n
result.typ() = n[1].typ
of mDotDot:
result = n
of mPlugin:
let plugin = getPlugin(c.cache, n[0].sym)
if plugin.isNil:
localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s)
result = n
else:
result = plugin(c, n)
of mNew:
if n[0].sym.name.s == "unsafeNew": # special case for unsafeNew
result = n
else:
result = addDefaultFieldForNew(c, n)
of mNewFinalize:
result = semNewFinalize(c, n)
of mDestroy:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDestructor)
if op != nil:
result[0] = newSymNode(op)
if op.typ != nil and op.typ.len == 2 and op.typ.firstParamType.kind != tyVar:
if n[1].kind == nkSym and n[1].sym.kind == skParam and
n[1].typ.kind == tyVar:
result[1] = genDeref(n[1])
else:
result[1] = skipAddr(n[1])
of mTrace:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedTrace)
if op != nil:
result[0] = newSymNode(op)
of mDup:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDup)
if op != nil:
result[0] = newSymNode(op)
if op.typ.len == 3:
let boolLit = newIntLit(c.graph, n.info, 1)
boolLit.typ() = getSysType(c.graph, n.info, tyBool)
result.add boolLit
of mWasMoved:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedWasMoved)
if op != nil:
result[0] = newSymNode(op)
let addrExp = newNodeIT(nkHiddenAddr, result[1].info, makePtrType(c, t))
addrExp.add result[1]
result[1] = addrExp
of mUnown:
result = semUnown(c, n)
of mExists, mForall:
result = semQuantifier(c, n)
of mOld:
result = semOld(c, n)
of mSetLengthSeq:
result = n
let seqType = result[1].typ.skipTypes({tyPtr, tyRef, # in case we had auto-dereferencing
tyVar, tyGenericInst, tyOwned, tySink,
tyAlias, tyUserTypeClassInst})
if seqType.kind == tySequence and seqType.base.requiresInit:
message(c.config, n.info, warnUnsafeSetLen, typeToString(seqType.base))
of mDefault:
result = checkDefault(c, n)
let typ = result[^1].typ.skipTypes({tyTypeDesc})
let defaultExpr = defaultNodeField(c, result[^1], typ, false)
if defaultExpr != nil:
result = defaultExpr
of mZeroDefault:
result = checkDefault(c, n)
of mIsolate:
if not checkIsolate(n[1]):
localError(c.config, n.info, "expression cannot be isolated: " & $n[1])
result = n
of mPrivateAccess:
result = semPrivateAccess(c, n)
of mArrToSeq:
result = n
if result.typ != nil and expectedType != nil and result.typ.kind == tySequence and
expectedType.kind == tySequence and result.typ.elementType.kind == tyEmpty:
result.typ() = expectedType # type inference for empty sequence # bug #21377
of mEnsureMove:
result = n
if n[1].kind in {nkStmtListExpr, nkBlockExpr,
nkIfExpr, nkCaseStmt, nkTryStmt}:
localError(c.config, n.info, "Nested expressions cannot be moved: '" & $n[1] & "'")
else:
result = n