mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 01:14:41 +00:00
fixes #22798 Per https://stackoverflow.com/questions/33675638/gcc-link-the-math-library-by-default-in-c-on-mac-os-x and https://stackoverflow.com/questions/30694042/c-std-library-dont-appear-to-be-linked-in-object-file > There's no separate math library on OSX. While a lot of systems ship functions in the standard C math.h header in a separate math library, OSX does not do that, it's part of the libSystem library, which is always linked in. required by https://github.com/nim-lang/Nim/pull/23290
183 lines
9.3 KiB
Nim
183 lines
9.3 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## Floating-point environment. Handling of floating-point rounding and
|
|
## exceptions (overflow, division by zero, etc.).
|
|
## The types, vars and procs are bindings for the C standard library
|
|
## [<fenv.h>](https://en.cppreference.com/w/c/numeric/fenv) header.
|
|
|
|
when defined(posix) and not defined(genode) and not defined(macosx):
|
|
{.passl: "-lm".}
|
|
|
|
var
|
|
FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
|
|
## division by zero
|
|
FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
|
|
## inexact result
|
|
FE_INVALID* {.importc, header: "<fenv.h>".}: cint
|
|
## invalid operation
|
|
FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
|
|
## result not representable due to overflow
|
|
FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
|
|
## result not representable due to underflow
|
|
FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
|
|
## bitwise OR of all supported exceptions
|
|
FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
|
|
## round toward -Inf
|
|
FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
|
|
## round to nearest
|
|
FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
|
|
## round toward 0
|
|
FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
|
|
## round toward +Inf
|
|
FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
|
|
## macro of type pointer to `fenv_t` to be used as the argument
|
|
## to functions taking an argument of type `fenv_t`; in this
|
|
## case the default environment will be used
|
|
|
|
type
|
|
Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
|
|
object ## Represents the entire floating-point environment. The
|
|
## floating-point environment refers collectively to any
|
|
## floating-point status flags and control modes supported
|
|
## by the implementation.
|
|
Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
|
|
object ## Represents the floating-point status flags collectively,
|
|
## including any status the implementation associates with the
|
|
## flags. A floating-point status flag is a system variable
|
|
## whose value is set (but never cleared) when a floating-point
|
|
## exception is raised, which occurs as a side effect of
|
|
## exceptional floating-point arithmetic to provide auxiliary
|
|
## information. A floating-point control mode is a system variable
|
|
## whose value may be set by the user to affect the subsequent
|
|
## behavior of floating-point arithmetic.
|
|
|
|
proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
|
|
## Clear the supported exceptions represented by `excepts`.
|
|
|
|
proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
|
|
importc, header: "<fenv.h>".}
|
|
## Store implementation-defined representation of the exception flags
|
|
## indicated by `excepts` in the object pointed to by `flagp`.
|
|
|
|
proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
|
|
## Raise the supported exceptions represented by `excepts`.
|
|
|
|
proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
|
|
importc, header: "<fenv.h>".}
|
|
## Set complete status for exceptions indicated by `excepts` according to
|
|
## the representation in the object pointed to by `flagp`.
|
|
|
|
proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
|
|
## Determine which of subset of the exceptions specified by `excepts` are
|
|
## currently set.
|
|
|
|
proc fegetround*(): cint {.importc, header: "<fenv.h>".}
|
|
## Get current rounding direction.
|
|
|
|
proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
|
|
## Establish the rounding direction represented by `roundingDirection`.
|
|
|
|
proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
|
|
## Store the current floating-point environment in the object pointed
|
|
## to by `envp`.
|
|
|
|
proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
|
|
## Save the current environment in the object pointed to by `envp`, clear
|
|
## exception flags and install a non-stop mode (if available) for all
|
|
## exceptions.
|
|
|
|
proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
|
|
## Establish the floating-point environment represented by the object
|
|
## pointed to by `envp`.
|
|
|
|
proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
|
|
## Save current exceptions in temporary storage, install environment
|
|
## represented by object pointed to by `envp` and raise exceptions
|
|
## according to saved exceptions.
|
|
|
|
const
|
|
FLT_RADIX = 2 ## the radix of the exponent representation
|
|
|
|
FLT_MANT_DIG = 24 ## the number of base FLT_RADIX digits in the mantissa part of a float
|
|
FLT_DIG = 6 ## the number of digits of precision of a float
|
|
FLT_MIN_EXP = -125 ## the minimum value of base FLT_RADIX in the exponent part of a float
|
|
FLT_MAX_EXP = 128 ## the maximum value of base FLT_RADIX in the exponent part of a float
|
|
FLT_MIN_10_EXP = -37 ## the minimum value in base 10 of the exponent part of a float
|
|
FLT_MAX_10_EXP = 38 ## the maximum value in base 10 of the exponent part of a float
|
|
FLT_MIN = 1.17549435e-38'f32 ## the minimum value of a float
|
|
FLT_MAX = 3.40282347e+38'f32 ## the maximum value of a float
|
|
FLT_EPSILON = 1.19209290e-07'f32 ## the difference between 1 and the least value greater than 1 of a float
|
|
|
|
DBL_MANT_DIG = 53 ## the number of base FLT_RADIX digits in the mantissa part of a double
|
|
DBL_DIG = 15 ## the number of digits of precision of a double
|
|
DBL_MIN_EXP = -1021 ## the minimum value of base FLT_RADIX in the exponent part of a double
|
|
DBL_MAX_EXP = 1024 ## the maximum value of base FLT_RADIX in the exponent part of a double
|
|
DBL_MIN_10_EXP = -307 ## the minimum value in base 10 of the exponent part of a double
|
|
DBL_MAX_10_EXP = 308 ## the maximum value in base 10 of the exponent part of a double
|
|
DBL_MIN = 2.2250738585072014E-308 ## the minimal value of a double
|
|
DBL_MAX = 1.7976931348623157E+308 ## the minimal value of a double
|
|
DBL_EPSILON = 2.2204460492503131E-16 ## the difference between 1 and the least value greater than 1 of a double
|
|
|
|
template fpRadix*: int = FLT_RADIX
|
|
## The (integer) value of the radix used to represent any floating
|
|
## point type on the architecture used to build the program.
|
|
|
|
template mantissaDigits*(T: typedesc[float32]): int = FLT_MANT_DIG
|
|
## Number of digits (in base `floatingPointRadix`) in the mantissa
|
|
## of 32-bit floating-point numbers.
|
|
template digits*(T: typedesc[float32]): int = FLT_DIG
|
|
## Number of decimal digits that can be represented in a
|
|
## 32-bit floating-point type without losing precision.
|
|
template minExponent*(T: typedesc[float32]): int = FLT_MIN_EXP
|
|
## Minimum (negative) exponent for 32-bit floating-point numbers.
|
|
template maxExponent*(T: typedesc[float32]): int = FLT_MAX_EXP
|
|
## Maximum (positive) exponent for 32-bit floating-point numbers.
|
|
template min10Exponent*(T: typedesc[float32]): int = FLT_MIN_10_EXP
|
|
## Minimum (negative) exponent in base 10 for 32-bit floating-point
|
|
## numbers.
|
|
template max10Exponent*(T: typedesc[float32]): int = FLT_MAX_10_EXP
|
|
## Maximum (positive) exponent in base 10 for 32-bit floating-point
|
|
## numbers.
|
|
template minimumPositiveValue*(T: typedesc[float32]): float32 = FLT_MIN
|
|
## The smallest positive (nonzero) number that can be represented in a
|
|
## 32-bit floating-point type.
|
|
template maximumPositiveValue*(T: typedesc[float32]): float32 = FLT_MAX
|
|
## The largest positive number that can be represented in a 32-bit
|
|
## floating-point type.
|
|
template epsilon*(T: typedesc[float32]): float32 = FLT_EPSILON
|
|
## The difference between 1.0 and the smallest number greater than
|
|
## 1.0 that can be represented in a 32-bit floating-point type.
|
|
|
|
template mantissaDigits*(T: typedesc[float64]): int = DBL_MANT_DIG
|
|
## Number of digits (in base `floatingPointRadix`) in the mantissa
|
|
## of 64-bit floating-point numbers.
|
|
template digits*(T: typedesc[float64]): int = DBL_DIG
|
|
## Number of decimal digits that can be represented in a
|
|
## 64-bit floating-point type without losing precision.
|
|
template minExponent*(T: typedesc[float64]): int = DBL_MIN_EXP
|
|
## Minimum (negative) exponent for 64-bit floating-point numbers.
|
|
template maxExponent*(T: typedesc[float64]): int = DBL_MAX_EXP
|
|
## Maximum (positive) exponent for 64-bit floating-point numbers.
|
|
template min10Exponent*(T: typedesc[float64]): int = DBL_MIN_10_EXP
|
|
## Minimum (negative) exponent in base 10 for 64-bit floating-point
|
|
## numbers.
|
|
template max10Exponent*(T: typedesc[float64]): int = DBL_MAX_10_EXP
|
|
## Maximum (positive) exponent in base 10 for 64-bit floating-point
|
|
## numbers.
|
|
template minimumPositiveValue*(T: typedesc[float64]): float64 = DBL_MIN
|
|
## The smallest positive (nonzero) number that can be represented in a
|
|
## 64-bit floating-point type.
|
|
template maximumPositiveValue*(T: typedesc[float64]): float64 = DBL_MAX
|
|
## The largest positive number that can be represented in a 64-bit
|
|
## floating-point type.
|
|
template epsilon*(T: typedesc[float64]): float64 = DBL_EPSILON
|
|
## The difference between 1.0 and the smallest number greater than
|
|
## 1.0 that can be represented in a 64-bit floating-point type.
|