mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-31 10:22:15 +00:00
1140 lines
36 KiB
Nim
1140 lines
36 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2011 Alexander Mitchell-Robinson
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## :Author: Alexander Mitchell-Robinson (Amrykid)
|
|
##
|
|
## This module implements operations for the built-in `seq`:idx: type which
|
|
## were inspired by functional programming languages.
|
|
##
|
|
## For functional style programming you may want to pass `anonymous procs
|
|
## <manual.html#procedures-anonymous-procs>`_ to procs like ``filter`` to
|
|
## reduce typing. Anonymous procs can use `the special do notation
|
|
## <manual.html#procedures-do-notation>`_
|
|
## which is more convenient in certain situations.
|
|
|
|
include "system/inclrtl"
|
|
|
|
import macros
|
|
|
|
when not defined(nimhygiene):
|
|
{.pragma: dirty.}
|
|
|
|
|
|
macro evalOnceAs(expAlias, exp: untyped, letAssigneable: static[bool]): untyped =
|
|
## Injects ``expAlias`` in caller scope, to avoid bugs involving multiple
|
|
## substitution in macro arguments such as
|
|
## https://github.com/nim-lang/Nim/issues/7187
|
|
## ``evalOnceAs(myAlias, myExp)`` will behave as ``let myAlias = myExp``
|
|
## except when ``letAssigneable`` is false (eg to handle openArray) where
|
|
## it just forwards ``exp`` unchanged
|
|
expectKind(expAlias, nnkIdent)
|
|
var val = exp
|
|
|
|
result = newStmtList()
|
|
# If `exp` is not a symbol we evaluate it once here and then use the temporary
|
|
# symbol as alias
|
|
if exp.kind != nnkSym and letAssigneable:
|
|
val = genSym()
|
|
result.add(newLetStmt(val, exp))
|
|
|
|
result.add(
|
|
newProc(name = genSym(nskTemplate, $expAlias), params = [getType(untyped)],
|
|
body = val, procType = nnkTemplateDef))
|
|
|
|
proc concat*[T](seqs: varargs[seq[T]]): seq[T] =
|
|
## Takes several sequences' items and returns them inside a new sequence.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## s1 = @[1, 2, 3]
|
|
## s2 = @[4, 5]
|
|
## s3 = @[6, 7]
|
|
## total = concat(s1, s2, s3)
|
|
## assert total == @[1, 2, 3, 4, 5, 6, 7]
|
|
var L = 0
|
|
for seqitm in items(seqs): inc(L, len(seqitm))
|
|
newSeq(result, L)
|
|
var i = 0
|
|
for s in items(seqs):
|
|
for itm in items(s):
|
|
result[i] = itm
|
|
inc(i)
|
|
|
|
proc count*[T](s: openArray[T], x: T): int =
|
|
## Returns the number of occurrences of the item `x` in the container `s`.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## s = @[1, 2, 2, 3, 2, 4, 2]
|
|
## c = count(s, 2)
|
|
## assert c == 4
|
|
for itm in items(s):
|
|
if itm == x:
|
|
inc result
|
|
|
|
proc cycle*[T](s: openArray[T], n: Natural): seq[T] =
|
|
## Returns a new sequence with the items of the container `s` repeated
|
|
## `n` times.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
##
|
|
## let
|
|
## s = @[1, 2, 3]
|
|
## total = s.cycle(3)
|
|
## assert total == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
result = newSeq[T](n * s.len)
|
|
var o = 0
|
|
for x in 0 ..< n:
|
|
for e in s:
|
|
result[o] = e
|
|
inc o
|
|
|
|
proc repeat*[T](x: T, n: Natural): seq[T] =
|
|
## Returns a new sequence with the item `x` repeated `n` times.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
##
|
|
## let
|
|
## total = repeat(5, 3)
|
|
## assert total == @[5, 5, 5]
|
|
result = newSeq[T](n)
|
|
for i in 0 ..< n:
|
|
result[i] = x
|
|
|
|
proc deduplicate*[T](s: openArray[T]): seq[T] =
|
|
## Returns a new sequence without duplicates.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
## dup2 = @["a", "a", "c", "d", "d"]
|
|
## unique1 = deduplicate(dup1)
|
|
## unique2 = deduplicate(dup2)
|
|
## assert unique1 == @[1, 3, 4, 2, 8]
|
|
## assert unique2 == @["a", "c", "d"]
|
|
result = @[]
|
|
for itm in items(s):
|
|
if not result.contains(itm): result.add(itm)
|
|
|
|
proc zip*[S, T](s1: openArray[S], s2: openArray[T]): seq[tuple[a: S, b: T]] =
|
|
## Returns a new sequence with a combination of the two input containers.
|
|
##
|
|
## For convenience you can access the returned tuples through the named
|
|
## fields `a` and `b`. If one container is shorter, the remaining items in
|
|
## the longer container are discarded.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## short = @[1, 2, 3]
|
|
## long = @[6, 5, 4, 3, 2, 1]
|
|
## words = @["one", "two", "three"]
|
|
## zip1 = zip(short, long)
|
|
## zip2 = zip(short, words)
|
|
## assert zip1 == @[(1, 6), (2, 5), (3, 4)]
|
|
## assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
## assert zip1[2].b == 4
|
|
## assert zip2[2].b == "three"
|
|
var m = min(s1.len, s2.len)
|
|
newSeq(result, m)
|
|
for i in 0 ..< m:
|
|
result[i] = (s1[i], s2[i])
|
|
|
|
proc distribute*[T](s: seq[T], num: Positive, spread = true): seq[seq[T]] =
|
|
## Splits and distributes a sequence `s` into `num` sub sequences.
|
|
##
|
|
## Returns a sequence of `num` sequences. For some input values this is the
|
|
## inverse of the `concat <#concat>`_ proc. The proc will assert in debug
|
|
## builds if `s` is nil or `num` is less than one, and will likely crash on
|
|
## release builds. The input sequence `s` can be empty, which will produce
|
|
## `num` empty sequences.
|
|
##
|
|
## If `spread` is false and the length of `s` is not a multiple of `num`, the
|
|
## proc will max out the first sub sequences with ``1 + len(s) div num``
|
|
## entries, leaving the remainder of elements to the last sequence.
|
|
##
|
|
## On the other hand, if `spread` is true, the proc will distribute evenly
|
|
## the remainder of the division across all sequences, which makes the result
|
|
## more suited to multithreading where you are passing equal sized work units
|
|
## to a thread pool and want to maximize core usage.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 2, 3, 4, 5, 6, 7]
|
|
## assert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
## assert numbers.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
|
|
## assert numbers.distribute(6)[0] == @[1, 2]
|
|
## assert numbers.distribute(6)[5] == @[7]
|
|
if num < 2:
|
|
result = @[s]
|
|
return
|
|
|
|
let num = int(num) # XXX probably only needed because of .. bug
|
|
|
|
# Create the result and calculate the stride size and the remainder if any.
|
|
result = newSeq[seq[T]](num)
|
|
var
|
|
stride = s.len div num
|
|
first = 0
|
|
last = 0
|
|
extra = s.len mod num
|
|
|
|
if extra == 0 or spread == false:
|
|
# Use an algorithm which overcounts the stride and minimizes reading limits.
|
|
if extra > 0: inc(stride)
|
|
|
|
for i in 0 ..< num:
|
|
result[i] = newSeq[T]()
|
|
for g in first ..< min(s.len, first + stride):
|
|
result[i].add(s[g])
|
|
first += stride
|
|
|
|
else:
|
|
# Use an undercounting algorithm which *adds* the remainder each iteration.
|
|
for i in 0 ..< num:
|
|
last = first + stride
|
|
if extra > 0:
|
|
extra -= 1
|
|
inc(last)
|
|
|
|
result[i] = newSeq[T]()
|
|
for g in first ..< last:
|
|
result[i].add(s[g])
|
|
first = last
|
|
|
|
proc map*[T, S](s: openArray[T], op: proc (x: T): S {.closure.}):
|
|
seq[S]{.inline.} =
|
|
## Returns a new sequence with the results of `op` applied to every item in
|
|
## the container `s`.
|
|
##
|
|
## Since the input is not modified you can use this version of ``map`` to
|
|
## transform the type of the elements in the input container.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block:: nim
|
|
## let
|
|
## a = @[1, 2, 3, 4]
|
|
## b = map(a, proc(x: int): string = $x)
|
|
## assert b == @["1", "2", "3", "4"]
|
|
newSeq(result, s.len)
|
|
for i in 0 ..< s.len:
|
|
result[i] = op(s[i])
|
|
|
|
proc map*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
|
|
{.deprecated.} =
|
|
## Applies `op` to every item in `s` modifying it directly.
|
|
##
|
|
## Note that this version of ``map`` requires your input and output types to
|
|
## be the same, since they are modified in-place.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block:: nim
|
|
## var a = @["1", "2", "3", "4"]
|
|
## echo repr(a)
|
|
## # --> ["1", "2", "3", "4"]
|
|
## map(a, proc(x: var string) = x &= "42")
|
|
## echo repr(a)
|
|
## # --> ["142", "242", "342", "442"]
|
|
## **Deprecated since version 0.12.0:** Use the ``apply`` proc instead.
|
|
for i in 0 ..< s.len: op(s[i])
|
|
|
|
proc apply*[T](s: var openArray[T], op: proc (x: var T) {.closure.})
|
|
{.inline.} =
|
|
## Applies `op` to every item in `s` modifying it directly.
|
|
##
|
|
## Note that this requires your input and output types to
|
|
## be the same, since they are modified in-place.
|
|
## The parameter function takes a ``var T`` type parameter.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block:: nim
|
|
## var a = @["1", "2", "3", "4"]
|
|
## echo repr(a)
|
|
## # --> ["1", "2", "3", "4"]
|
|
## apply(a, proc(x: var string) = x &= "42")
|
|
## echo repr(a)
|
|
## # --> ["142", "242", "342", "442"]
|
|
##
|
|
for i in 0 ..< s.len: op(s[i])
|
|
|
|
proc apply*[T](s: var openArray[T], op: proc (x: T): T {.closure.})
|
|
{.inline.} =
|
|
## Applies `op` to every item in `s` modifying it directly.
|
|
##
|
|
## Note that this requires your input and output types to
|
|
## be the same, since they are modified in-place.
|
|
## The parameter function takes and returns a ``T`` type variable.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block:: nim
|
|
## var a = @["1", "2", "3", "4"]
|
|
## echo repr(a)
|
|
## # --> ["1", "2", "3", "4"]
|
|
## apply(a, proc(x: string): string = x & "42")
|
|
## echo repr(a)
|
|
## # --> ["142", "242", "342", "442"]
|
|
##
|
|
for i in 0 ..< s.len: s[i] = op(s[i])
|
|
|
|
iterator filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): T =
|
|
## Iterates through a container and yields every item that fulfills the
|
|
## predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## for n in filter(numbers, proc (x: int): bool = x mod 2 == 0):
|
|
## echo($n)
|
|
## # echoes 4, 8, 4 in separate lines
|
|
for i in 0 ..< s.len:
|
|
if pred(s[i]):
|
|
yield s[i]
|
|
|
|
proc filter*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): seq[T]
|
|
{.inline.} =
|
|
## Returns a new sequence with all the items that fulfilled the predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## colors = @["red", "yellow", "black"]
|
|
## f1 = filter(colors, proc(x: string): bool = x.len < 6)
|
|
## f2 = filter(colors) do (x: string) -> bool : x.len > 5
|
|
## assert f1 == @["red", "black"]
|
|
## assert f2 == @["yellow"]
|
|
result = newSeq[T]()
|
|
for i in 0 ..< s.len:
|
|
if pred(s[i]):
|
|
result.add(s[i])
|
|
|
|
proc keepIf*[T](s: var seq[T], pred: proc(x: T): bool {.closure.})
|
|
{.inline.} =
|
|
## Keeps the items in the passed sequence if they fulfilled the predicate.
|
|
## Same as the ``filter`` proc, but modifies the sequence directly.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
|
|
## keepIf(floats, proc(x: float): bool = x > 10)
|
|
## assert floats == @[13.0, 12.5, 10.1]
|
|
var pos = 0
|
|
for i in 0 ..< len(s):
|
|
if pred(s[i]):
|
|
if pos != i:
|
|
shallowCopy(s[pos], s[i])
|
|
inc(pos)
|
|
setLen(s, pos)
|
|
|
|
proc delete*[T](s: var seq[T]; first, last: Natural) =
|
|
## Deletes in `s` the items at position `first` .. `last`. This modifies
|
|
## `s` itself, it does not return a copy.
|
|
##
|
|
## Example:
|
|
##
|
|
##.. code-block::
|
|
## let outcome = @[1,1,1,1,1,1,1,1]
|
|
## var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
## dest.delete(3, 8)
|
|
## assert outcome == dest
|
|
|
|
var i = first
|
|
var j = last+1
|
|
var newLen = len(s)-j+i
|
|
while i < newLen:
|
|
s[i].shallowCopy(s[j])
|
|
inc(i)
|
|
inc(j)
|
|
setLen(s, newLen)
|
|
|
|
proc insert*[T](dest: var seq[T], src: openArray[T], pos=0) =
|
|
## Inserts items from `src` into `dest` at position `pos`. This modifies
|
|
## `dest` itself, it does not return a copy.
|
|
##
|
|
## Example:
|
|
##
|
|
##.. code-block::
|
|
## var dest = @[1,1,1,1,1,1,1,1]
|
|
## let
|
|
## src = @[2,2,2,2,2,2]
|
|
## outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
## dest.insert(src, 3)
|
|
## assert dest == outcome
|
|
|
|
var j = len(dest) - 1
|
|
var i = len(dest) + len(src) - 1
|
|
dest.setLen(i + 1)
|
|
|
|
# Move items after `pos` to the end of the sequence.
|
|
while j >= pos:
|
|
dest[i].shallowCopy(dest[j])
|
|
dec(i)
|
|
dec(j)
|
|
# Insert items from `dest` into `dest` at `pos`
|
|
inc(j)
|
|
for item in src:
|
|
dest[j] = item
|
|
inc(j)
|
|
|
|
|
|
template filterIt*(s, pred: untyped): untyped =
|
|
## Returns a new sequence with all the items that fulfilled the predicate.
|
|
##
|
|
## Unlike the `proc` version, the predicate needs to be an expression using
|
|
## the ``it`` variable for testing, like: ``filterIt("abcxyz", it == 'x')``.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
|
|
## acceptable = filterIt(temperatures, it < 50 and it > -10)
|
|
## notAcceptable = filterIt(temperatures, it > 50 or it < -10)
|
|
## assert acceptable == @[-2.0, 24.5, 44.31]
|
|
## assert notAcceptable == @[-272.15, 99.9, -113.44]
|
|
var result = newSeq[type(s[0])]()
|
|
for it {.inject.} in items(s):
|
|
if pred: result.add(it)
|
|
result
|
|
|
|
template keepItIf*(varSeq: seq, pred: untyped) =
|
|
## Convenience template around the ``keepIf`` proc to reduce typing.
|
|
##
|
|
## Unlike the `proc` version, the predicate needs to be an expression using
|
|
## the ``it`` variable for testing, like: ``keepItIf("abcxyz", it == 'x')``.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var candidates = @["foo", "bar", "baz", "foobar"]
|
|
## keepItIf(candidates, it.len == 3 and it[0] == 'b')
|
|
## assert candidates == @["bar", "baz"]
|
|
var pos = 0
|
|
for i in 0 ..< len(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
if pred:
|
|
if pos != i:
|
|
shallowCopy(varSeq[pos], varSeq[i])
|
|
inc(pos)
|
|
setLen(varSeq, pos)
|
|
|
|
proc all*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
|
|
## Iterates through a container and checks if every item fulfills the
|
|
## predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## assert all(numbers, proc (x: int): bool = return x < 10) == true
|
|
## assert all(numbers, proc (x: int): bool = return x < 9) == false
|
|
for i in s:
|
|
if not pred(i):
|
|
return false
|
|
return true
|
|
|
|
template allIt*(s, pred: untyped): bool =
|
|
## Checks if every item fulfills the predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## assert allIt(numbers, it < 10) == true
|
|
## assert allIt(numbers, it < 9) == false
|
|
var result = true
|
|
for it {.inject.} in items(s):
|
|
if not pred:
|
|
result = false
|
|
break
|
|
result
|
|
|
|
proc any*[T](s: openArray[T], pred: proc(x: T): bool {.closure.}): bool =
|
|
## Iterates through a container and checks if some item fulfills the
|
|
## predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## assert any(numbers, proc (x: int): bool = return x > 8) == true
|
|
## assert any(numbers, proc (x: int): bool = return x > 9) == false
|
|
for i in s:
|
|
if pred(i):
|
|
return true
|
|
return false
|
|
|
|
template anyIt*(s, pred: untyped): bool =
|
|
## Checks if some item fulfills the predicate.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
## assert anyIt(numbers, it > 8) == true
|
|
## assert anyIt(numbers, it > 9) == false
|
|
var result = false
|
|
for it {.inject.} in items(s):
|
|
if pred:
|
|
result = true
|
|
break
|
|
result
|
|
|
|
template toSeq*(iter: untyped): untyped =
|
|
## Transforms any iterator into a sequence.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
## odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
|
|
## if x mod 2 == 1:
|
|
## result = true)
|
|
## assert odd_numbers == @[1, 3, 5, 7, 9]
|
|
|
|
# Note: see also `mapIt` for explanation of some of the implementation
|
|
# subtleties.
|
|
when compiles(iter.len):
|
|
block:
|
|
evalOnceAs(iter2, iter, true)
|
|
var result = newSeq[type(iter)](iter2.len)
|
|
var i = 0
|
|
for x in iter2:
|
|
result[i] = x
|
|
inc i
|
|
result
|
|
else:
|
|
var result: seq[type(iter)] = @[]
|
|
for x in iter:
|
|
result.add(x)
|
|
result
|
|
|
|
template foldl*(sequence, operation: untyped): untyped =
|
|
## Template to fold a sequence from left to right, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying ``operation``.
|
|
##
|
|
## The ``operation`` parameter should be an expression which uses the
|
|
## variables ``a`` and ``b`` for each step of the fold. Since this is a left
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (((1) - 2) -
|
|
## 3).
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numbers = @[5, 9, 11]
|
|
## addition = foldl(numbers, a + b)
|
|
## subtraction = foldl(numbers, a - b)
|
|
## multiplication = foldl(numbers, a * b)
|
|
## words = @["nim", "is", "cool"]
|
|
## concatenation = foldl(words, a & b)
|
|
## assert addition == 25, "Addition is (((5)+9)+11)"
|
|
## assert subtraction == -15, "Subtraction is (((5)-9)-11)"
|
|
## assert multiplication == 495, "Multiplication is (((5)*9)*11)"
|
|
## assert concatenation == "nimiscool"
|
|
let s = sequence
|
|
assert s.len > 0, "Can't fold empty sequences"
|
|
var result: type(s[0])
|
|
result = s[0]
|
|
for i in 1..<s.len:
|
|
let
|
|
a {.inject.} = result
|
|
b {.inject.} = s[i]
|
|
result = operation
|
|
result
|
|
|
|
template foldl*(sequence, operation, first): untyped =
|
|
## Template to fold a sequence from left to right, returning the accumulation.
|
|
##
|
|
## This version of ``foldl`` gets a starting parameter. This makes it possible
|
|
## to accumulate the sequence into a different type than the sequence elements.
|
|
##
|
|
## The ``operation`` parameter should be an expression which uses the variables
|
|
## ``a`` and ``b`` for each step of the fold. The ``first`` parameter is the
|
|
## start value (the first ``a``) and therefor defines the type of the result.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numbers = @[0, 8, 1, 5]
|
|
## digits = foldl(numbers, a & (chr(b + ord('0'))), "")
|
|
## assert digits == "0815"
|
|
var result: type(first)
|
|
result = first
|
|
for x in items(sequence):
|
|
let
|
|
a {.inject.} = result
|
|
b {.inject.} = x
|
|
result = operation
|
|
result
|
|
|
|
template foldr*(sequence, operation: untyped): untyped =
|
|
## Template to fold a sequence from right to left, returning the accumulation.
|
|
##
|
|
## The sequence is required to have at least a single element. Debug versions
|
|
## of your program will assert in this situation but release versions will
|
|
## happily go ahead. If the sequence has a single element it will be returned
|
|
## without applying ``operation``.
|
|
##
|
|
## The ``operation`` parameter should be an expression which uses the
|
|
## variables ``a`` and ``b`` for each step of the fold. Since this is a right
|
|
## fold, for non associative binary operations like subtraction think that
|
|
## the sequence of numbers 1, 2 and 3 will be parenthesized as (1 - (2 -
|
|
## (3))).
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## numbers = @[5, 9, 11]
|
|
## addition = foldr(numbers, a + b)
|
|
## subtraction = foldr(numbers, a - b)
|
|
## multiplication = foldr(numbers, a * b)
|
|
## words = @["nim", "is", "cool"]
|
|
## concatenation = foldr(words, a & b)
|
|
## assert addition == 25, "Addition is (5+(9+(11)))"
|
|
## assert subtraction == 7, "Subtraction is (5-(9-(11)))"
|
|
## assert multiplication == 495, "Multiplication is (5*(9*(11)))"
|
|
## assert concatenation == "nimiscool"
|
|
let s = sequence
|
|
assert s.len > 0, "Can't fold empty sequences"
|
|
var result: type(s[0])
|
|
result = sequence[s.len - 1]
|
|
for i in countdown(s.len - 2, 0):
|
|
let
|
|
a {.inject.} = s[i]
|
|
b {.inject.} = result
|
|
result = operation
|
|
result
|
|
|
|
template mapIt*(s, typ, op: untyped): untyped =
|
|
## Convenience template around the ``map`` proc to reduce typing.
|
|
##
|
|
## The template injects the ``it`` variable which you can use directly in an
|
|
## expression. You also need to pass as `typ` the type of the expression,
|
|
## since the new returned sequence can have a different type than the
|
|
## original.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## nums = @[1, 2, 3, 4]
|
|
## strings = nums.mapIt(string, $(4 * it))
|
|
## assert strings == @["4", "8", "12", "16"]
|
|
## **Deprecated since version 0.12.0:** Use the ``mapIt(seq1, op)``
|
|
## template instead.
|
|
var result: seq[typ] = @[]
|
|
for it {.inject.} in items(s):
|
|
result.add(op)
|
|
result
|
|
|
|
template mapIt*(s: typed, op: untyped): untyped =
|
|
## Convenience template around the ``map`` proc to reduce typing.
|
|
##
|
|
## The template injects the ``it`` variable which you can use directly in an
|
|
## expression.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let
|
|
## nums = @[1, 2, 3, 4]
|
|
## strings = nums.mapIt($(4 * it))
|
|
## assert strings == @["4", "8", "12", "16"]
|
|
type outType = type((
|
|
block:
|
|
var it{.inject.}: type(items(s));
|
|
op))
|
|
when compiles(s.len):
|
|
block: # using a block avoids https://github.com/nim-lang/Nim/issues/8580
|
|
|
|
# BUG: `evalOnceAs(s2, s, false)` would lead to C compile errors
|
|
# (`error: use of undeclared identifier`) instead of Nim compile errors
|
|
evalOnceAs(s2, s, compiles((let _ = s)))
|
|
|
|
var i = 0
|
|
var result = newSeq[outType](s2.len)
|
|
for it {.inject.} in s2:
|
|
result[i] = op
|
|
i += 1
|
|
result
|
|
else:
|
|
var result: seq[outType] = @[]
|
|
for it {.inject.} in s:
|
|
result.add(op)
|
|
result
|
|
|
|
template applyIt*(varSeq, op: untyped) =
|
|
## Convenience template around the mutable ``apply`` proc to reduce typing.
|
|
##
|
|
## The template injects the ``it`` variable which you can use directly in an
|
|
## expression. The expression has to return the same type as the sequence you
|
|
## are mutating.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var nums = @[1, 2, 3, 4]
|
|
## nums.applyIt(it * 3)
|
|
## assert nums[0] + nums[3] == 15
|
|
for i in low(varSeq) .. high(varSeq):
|
|
let it {.inject.} = varSeq[i]
|
|
varSeq[i] = op
|
|
|
|
|
|
template newSeqWith*(len: int, init: untyped): untyped =
|
|
## creates a new sequence, calling `init` to initialize each value.
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## var seq2D = newSeqWith(20, newSeq[bool](10))
|
|
## seq2D[0][0] = true
|
|
## seq2D[1][0] = true
|
|
## seq2D[0][1] = true
|
|
##
|
|
## import random
|
|
## var seqRand = newSeqWith(20, random(10))
|
|
## echo seqRand
|
|
var result = newSeq[type(init)](len)
|
|
for i in 0 ..< len:
|
|
result[i] = init
|
|
result
|
|
|
|
proc mapLitsImpl(constructor: NimNode; op: NimNode; nested: bool;
|
|
filter = nnkLiterals): NimNode =
|
|
if constructor.kind in filter:
|
|
result = newNimNode(nnkCall, lineInfoFrom=constructor)
|
|
result.add op
|
|
result.add constructor
|
|
else:
|
|
result = copyNimNode(constructor)
|
|
for v in constructor:
|
|
if nested or v.kind in filter:
|
|
result.add mapLitsImpl(v, op, nested, filter)
|
|
else:
|
|
result.add v
|
|
|
|
macro mapLiterals*(constructor, op: untyped;
|
|
nested = true): untyped =
|
|
## applies ``op`` to each of the **atomic** literals like ``3``
|
|
## or ``"abc"`` in the specified ``constructor`` AST. This can
|
|
## be used to map every array element to some target type:
|
|
##
|
|
## Example:
|
|
##
|
|
## .. code-block::
|
|
## let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
|
|
## doAssert x is array[4, int]
|
|
##
|
|
## Short notation for:
|
|
##
|
|
## .. code-block::
|
|
## let x = [int(0.1), int(1.2), int(2.3), int(3.4)]
|
|
##
|
|
## If ``nested`` is true, the literals are replaced everywhere
|
|
## in the ``constructor`` AST, otherwise only the first level
|
|
## is considered:
|
|
##
|
|
## .. code-block::
|
|
## mapLiterals((1, ("abc"), 2), float, nested=false)
|
|
##
|
|
## Produces::
|
|
##
|
|
## (float(1), ("abc"), float(2))
|
|
##
|
|
## There are no constraints for the ``constructor`` AST, it
|
|
## works for nested tuples of arrays of sets etc.
|
|
result = mapLitsImpl(constructor, op, nested.boolVal)
|
|
|
|
when isMainModule:
|
|
import strutils
|
|
|
|
# helper for testing double substitution side effects which are handled
|
|
# by `evalOnceAs`
|
|
var counter = 0
|
|
proc identity[T](a:T):auto=
|
|
counter.inc
|
|
a
|
|
|
|
block: # concat test
|
|
let
|
|
s1 = @[1, 2, 3]
|
|
s2 = @[4, 5]
|
|
s3 = @[6, 7]
|
|
total = concat(s1, s2, s3)
|
|
assert total == @[1, 2, 3, 4, 5, 6, 7]
|
|
|
|
block: # count test
|
|
let
|
|
s1 = @[1, 2, 3, 2]
|
|
s2 = @['a', 'b', 'x', 'a']
|
|
a1 = [1, 2, 3, 2]
|
|
a2 = ['a', 'b', 'x', 'a']
|
|
r0 = count(s1, 0)
|
|
r1 = count(s1, 1)
|
|
r2 = count(s1, 2)
|
|
r3 = count(s2, 'y')
|
|
r4 = count(s2, 'x')
|
|
r5 = count(s2, 'a')
|
|
ar0 = count(a1, 0)
|
|
ar1 = count(a1, 1)
|
|
ar2 = count(a1, 2)
|
|
ar3 = count(a2, 'y')
|
|
ar4 = count(a2, 'x')
|
|
ar5 = count(a2, 'a')
|
|
assert r0 == 0
|
|
assert r1 == 1
|
|
assert r2 == 2
|
|
assert r3 == 0
|
|
assert r4 == 1
|
|
assert r5 == 2
|
|
assert ar0 == 0
|
|
assert ar1 == 1
|
|
assert ar2 == 2
|
|
assert ar3 == 0
|
|
assert ar4 == 1
|
|
assert ar5 == 2
|
|
|
|
block: # cycle tests
|
|
let
|
|
a = @[1, 2, 3]
|
|
b: seq[int] = @[]
|
|
c = [1, 2, 3]
|
|
|
|
doAssert a.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
doAssert a.cycle(0) == @[]
|
|
#doAssert a.cycle(-1) == @[] # will not compile!
|
|
doAssert b.cycle(3) == @[]
|
|
doAssert c.cycle(3) == @[1, 2, 3, 1, 2, 3, 1, 2, 3]
|
|
doAssert c.cycle(0) == @[]
|
|
|
|
block: # repeat tests
|
|
assert repeat(10, 5) == @[10, 10, 10, 10, 10]
|
|
assert repeat(@[1,2,3], 2) == @[@[1,2,3], @[1,2,3]]
|
|
assert repeat([1,2,3], 2) == @[[1,2,3], [1,2,3]]
|
|
|
|
block: # deduplicates test
|
|
let
|
|
dup1 = @[1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
dup2 = @["a", "a", "c", "d", "d"]
|
|
dup3 = [1, 1, 3, 4, 2, 2, 8, 1, 4]
|
|
dup4 = ["a", "a", "c", "d", "d"]
|
|
unique1 = deduplicate(dup1)
|
|
unique2 = deduplicate(dup2)
|
|
unique3 = deduplicate(dup3)
|
|
unique4 = deduplicate(dup4)
|
|
assert unique1 == @[1, 3, 4, 2, 8]
|
|
assert unique2 == @["a", "c", "d"]
|
|
assert unique3 == @[1, 3, 4, 2, 8]
|
|
assert unique4 == @["a", "c", "d"]
|
|
|
|
block: # zip test
|
|
let
|
|
short = @[1, 2, 3]
|
|
long = @[6, 5, 4, 3, 2, 1]
|
|
words = @["one", "two", "three"]
|
|
ashort = [1, 2, 3]
|
|
along = [6, 5, 4, 3, 2, 1]
|
|
awords = ["one", "two", "three"]
|
|
zip1 = zip(short, long)
|
|
zip2 = zip(short, words)
|
|
zip3 = zip(ashort, along)
|
|
zip4 = zip(ashort, awords)
|
|
zip5 = zip(ashort, words)
|
|
assert zip1 == @[(1, 6), (2, 5), (3, 4)]
|
|
assert zip2 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
assert zip3 == @[(1, 6), (2, 5), (3, 4)]
|
|
assert zip4 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
assert zip5 == @[(1, "one"), (2, "two"), (3, "three")]
|
|
assert zip1[2].b == 4
|
|
assert zip2[2].b == "three"
|
|
assert zip3[2].b == 4
|
|
assert zip4[2].b == "three"
|
|
assert zip5[2].b == "three"
|
|
|
|
block: # distribute tests
|
|
let numbers = @[1, 2, 3, 4, 5, 6, 7]
|
|
doAssert numbers.distribute(3) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
doAssert numbers.distribute(6)[0] == @[1, 2]
|
|
doAssert numbers.distribute(6)[5] == @[7]
|
|
let a = @[1, 2, 3, 4, 5, 6, 7]
|
|
doAssert a.distribute(1, true) == @[@[1, 2, 3, 4, 5, 6, 7]]
|
|
doAssert a.distribute(1, false) == @[@[1, 2, 3, 4, 5, 6, 7]]
|
|
doAssert a.distribute(2, true) == @[@[1, 2, 3, 4], @[5, 6, 7]]
|
|
doAssert a.distribute(2, false) == @[@[1, 2, 3, 4], @[5, 6, 7]]
|
|
doAssert a.distribute(3, true) == @[@[1, 2, 3], @[4, 5], @[6, 7]]
|
|
doAssert a.distribute(3, false) == @[@[1, 2, 3], @[4, 5, 6], @[7]]
|
|
doAssert a.distribute(4, true) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
|
|
doAssert a.distribute(4, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7]]
|
|
doAssert a.distribute(5, true) == @[@[1, 2], @[3, 4], @[5], @[6], @[7]]
|
|
doAssert a.distribute(5, false) == @[@[1, 2], @[3, 4], @[5, 6], @[7], @[]]
|
|
doAssert a.distribute(6, true) == @[@[1, 2], @[3], @[4], @[5], @[6], @[7]]
|
|
doAssert a.distribute(6, false) == @[
|
|
@[1, 2], @[3, 4], @[5, 6], @[7], @[], @[]]
|
|
doAssert a.distribute(8, false) == a.distribute(8, true)
|
|
doAssert a.distribute(90, false) == a.distribute(90, true)
|
|
var b = @[0]
|
|
for f in 1 .. 25: b.add(f)
|
|
doAssert b.distribute(5, true)[4].len == 5
|
|
doAssert b.distribute(5, false)[4].len == 2
|
|
|
|
block: # map test
|
|
let
|
|
numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
m1 = map(numbers, proc(x: int): int = 2*x)
|
|
m2 = map(anumbers, proc(x: int): int = 2*x)
|
|
assert m1 == @[2, 8, 10, 16, 18, 14, 8]
|
|
assert m2 == @[2, 8, 10, 16, 18, 14, 8]
|
|
|
|
block: # apply test
|
|
var a = @["1", "2", "3", "4"]
|
|
apply(a, proc(x: var string) = x &= "42")
|
|
assert a == @["142", "242", "342", "442"]
|
|
|
|
block: # filter proc test
|
|
let
|
|
colors = @["red", "yellow", "black"]
|
|
acolors = ["red", "yellow", "black"]
|
|
f1 = filter(colors, proc(x: string): bool = x.len < 6)
|
|
f2 = filter(colors) do (x: string) -> bool : x.len > 5
|
|
f3 = filter(acolors, proc(x: string): bool = x.len < 6)
|
|
f4 = filter(acolors) do (x: string) -> bool : x.len > 5
|
|
assert f1 == @["red", "black"]
|
|
assert f2 == @["yellow"]
|
|
assert f3 == @["red", "black"]
|
|
assert f4 == @["yellow"]
|
|
|
|
block: # filter iterator test
|
|
let numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
let anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
assert toSeq(filter(numbers, proc (x: int): bool = x mod 2 == 0)) ==
|
|
@[4, 8, 4]
|
|
assert toSeq(filter(anumbers, proc (x: int): bool = x mod 2 == 0)) ==
|
|
@[4, 8, 4]
|
|
|
|
block: # keepIf test
|
|
var floats = @[13.0, 12.5, 5.8, 2.0, 6.1, 9.9, 10.1]
|
|
keepIf(floats, proc(x: float): bool = x > 10)
|
|
assert floats == @[13.0, 12.5, 10.1]
|
|
|
|
block: # delete tests
|
|
let outcome = @[1,1,1,1,1,1,1,1]
|
|
var dest = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
dest.delete(3, 8)
|
|
assert outcome == dest, """\
|
|
Deleting range 3-9 from [1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
is [1,1,1,1,1,1,1,1]"""
|
|
|
|
block: # insert tests
|
|
var dest = @[1,1,1,1,1,1,1,1]
|
|
let
|
|
src = @[2,2,2,2,2,2]
|
|
outcome = @[1,1,1,2,2,2,2,2,2,1,1,1,1,1]
|
|
dest.insert(src, 3)
|
|
assert dest == outcome, """\
|
|
Inserting [2,2,2,2,2,2] into [1,1,1,1,1,1,1,1]
|
|
at 3 is [1,1,1,2,2,2,2,2,2,1,1,1,1,1]"""
|
|
|
|
block: # filterIt test
|
|
let
|
|
temperatures = @[-272.15, -2.0, 24.5, 44.31, 99.9, -113.44]
|
|
acceptable = filterIt(temperatures, it < 50 and it > -10)
|
|
notAcceptable = filterIt(temperatures, it > 50 or it < -10)
|
|
assert acceptable == @[-2.0, 24.5, 44.31]
|
|
assert notAcceptable == @[-272.15, 99.9, -113.44]
|
|
|
|
block: # keepItIf test
|
|
var candidates = @["foo", "bar", "baz", "foobar"]
|
|
keepItIf(candidates, it.len == 3 and it[0] == 'b')
|
|
assert candidates == @["bar", "baz"]
|
|
|
|
block: # all
|
|
let
|
|
numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
len0seq : seq[int] = @[]
|
|
assert all(numbers, proc (x: int): bool = return x < 10) == true
|
|
assert all(numbers, proc (x: int): bool = return x < 9) == false
|
|
assert all(len0seq, proc (x: int): bool = return false) == true
|
|
assert all(anumbers, proc (x: int): bool = return x < 10) == true
|
|
assert all(anumbers, proc (x: int): bool = return x < 9) == false
|
|
|
|
block: # allIt
|
|
let
|
|
numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
len0seq : seq[int] = @[]
|
|
assert allIt(numbers, it < 10) == true
|
|
assert allIt(numbers, it < 9) == false
|
|
assert allIt(len0seq, false) == true
|
|
assert allIt(anumbers, it < 10) == true
|
|
assert allIt(anumbers, it < 9) == false
|
|
|
|
block: # any
|
|
let
|
|
numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
len0seq : seq[int] = @[]
|
|
assert any(numbers, proc (x: int): bool = return x > 8) == true
|
|
assert any(numbers, proc (x: int): bool = return x > 9) == false
|
|
assert any(len0seq, proc (x: int): bool = return true) == false
|
|
assert any(anumbers, proc (x: int): bool = return x > 8) == true
|
|
assert any(anumbers, proc (x: int): bool = return x > 9) == false
|
|
|
|
block: # anyIt
|
|
let
|
|
numbers = @[1, 4, 5, 8, 9, 7, 4]
|
|
anumbers = [1, 4, 5, 8, 9, 7, 4]
|
|
len0seq : seq[int] = @[]
|
|
assert anyIt(numbers, it > 8) == true
|
|
assert anyIt(numbers, it > 9) == false
|
|
assert anyIt(len0seq, true) == false
|
|
assert anyIt(anumbers, it > 8) == true
|
|
assert anyIt(anumbers, it > 9) == false
|
|
|
|
block: # toSeq test
|
|
let
|
|
numeric = @[1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
odd_numbers = toSeq(filter(numeric) do (x: int) -> bool:
|
|
if x mod 2 == 1:
|
|
result = true)
|
|
assert odd_numbers == @[1, 3, 5, 7, 9]
|
|
|
|
block:
|
|
# tests https://github.com/nim-lang/Nim/issues/7187
|
|
counter = 0
|
|
let ret = toSeq(@[1, 2, 3].identity().filter(proc (x: int): bool = x < 3))
|
|
doAssert ret == @[1, 2]
|
|
doAssert counter == 1
|
|
block: # foldl tests
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldl(numbers, a + b)
|
|
subtraction = foldl(numbers, a - b)
|
|
multiplication = foldl(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldl(words, a & b)
|
|
assert addition == 25, "Addition is (((5)+9)+11)"
|
|
assert subtraction == -15, "Subtraction is (((5)-9)-11)"
|
|
assert multiplication == 495, "Multiplication is (((5)*9)*11)"
|
|
assert concatenation == "nimiscool"
|
|
|
|
block: # foldr tests
|
|
let
|
|
numbers = @[5, 9, 11]
|
|
addition = foldr(numbers, a + b)
|
|
subtraction = foldr(numbers, a - b)
|
|
multiplication = foldr(numbers, a * b)
|
|
words = @["nim", "is", "cool"]
|
|
concatenation = foldr(words, a & b)
|
|
assert addition == 25, "Addition is (5+(9+(11)))"
|
|
assert subtraction == 7, "Subtraction is (5-(9-(11)))"
|
|
assert multiplication == 495, "Multiplication is (5*(9*(11)))"
|
|
assert concatenation == "nimiscool"
|
|
|
|
block: # mapIt + applyIt test
|
|
counter = 0
|
|
var
|
|
nums = @[1, 2, 3, 4]
|
|
strings = nums.identity.mapIt($(4 * it))
|
|
doAssert counter == 1
|
|
nums.applyIt(it * 3)
|
|
assert nums[0] + nums[3] == 15
|
|
assert strings[2] == "12"
|
|
|
|
block: # newSeqWith tests
|
|
var seq2D = newSeqWith(4, newSeq[bool](2))
|
|
seq2D[0][0] = true
|
|
seq2D[1][0] = true
|
|
seq2D[0][1] = true
|
|
doAssert seq2D == @[@[true, true], @[true, false], @[false, false], @[false, false]]
|
|
|
|
block: # mapLiterals tests
|
|
let x = mapLiterals([0.1, 1.2, 2.3, 3.4], int)
|
|
doAssert x is array[4, int]
|
|
doAssert mapLiterals((1, ("abc"), 2), float, nested=false) == (float(1), "abc", float(2))
|
|
doAssert mapLiterals(([1], ("abc"), 2), `$`, nested=true) == (["1"], "abc", "2")
|
|
|
|
block: # mapIt with openArray
|
|
counter = 0
|
|
proc foo(x: openArray[int]): seq[int] = x.mapIt(it * 10)
|
|
doAssert foo([identity(1),identity(2)]) == @[10, 20]
|
|
doAssert counter == 2
|
|
|
|
block: # mapIt with direct openArray
|
|
proc foo1(x: openArray[int]): seq[int] = x.mapIt(it * 10)
|
|
counter = 0
|
|
doAssert foo1(openArray[int]([identity(1),identity(2)])) == @[10,20]
|
|
doAssert counter == 2
|
|
|
|
# Corner cases (openArray litterals should not be common)
|
|
template foo2(x: openArray[int]): seq[int] = x.mapIt(it * 10)
|
|
counter = 0
|
|
doAssert foo2(openArray[int]([identity(1),identity(2)])) == @[10,20]
|
|
# TODO: this fails; not sure how to fix this case
|
|
# doAssert counter == 2
|
|
|
|
counter = 0
|
|
doAssert openArray[int]([identity(1), identity(2)]).mapIt(it) == @[1,2]
|
|
# ditto
|
|
# doAssert counter == 2
|
|
|
|
block: # mapIt empty test, see https://github.com/nim-lang/Nim/pull/8584#pullrequestreview-144723468
|
|
# NOTE: `[].mapIt(it)` is illegal, just as `let a = @[]` is (lacks type
|
|
# of elements)
|
|
doAssert: not compiles(mapIt(@[], it))
|
|
doAssert: not compiles(mapIt([], it))
|
|
doAssert newSeq[int](0).mapIt(it) == @[]
|
|
|
|
block: # mapIt redifinition check, see https://github.com/nim-lang/Nim/issues/8580
|
|
let s2 = [1,2].mapIt(it)
|
|
doAssert s2 == @[1,2]
|
|
|
|
block:
|
|
counter = 0
|
|
doAssert [1,2].identity().mapIt(it*2).mapIt(it*10) == @[20, 40]
|
|
# https://github.com/nim-lang/Nim/issues/7187 test case
|
|
doAssert counter == 1
|
|
|
|
block: # mapIt with invalid RHS for `let` (#8566)
|
|
type X = enum
|
|
A, B
|
|
doAssert mapIt(X, $it) == @["A", "B"]
|
|
|
|
when not defined(testing):
|
|
echo "Finished doc tests"
|