Files
Nim/lib/pure/math.nim
2018-11-01 18:03:16 +01:00

861 lines
31 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Constructive mathematics is naturally typed. -- Simon Thompson
##
## Basic math routines for Nim.
## This module is available for the `JavaScript target
## <backends.html#the-javascript-target>`_.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad` and `radToDeg` provide conversion
## between radians and degrees.
include "system/inclrtl"
{.push debugger:off .} # the user does not want to trace a part
# of the standard library!
import bitops
proc binom*(n, k: int): int {.noSideEffect.} =
## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
##
## .. code-block:: nim
## echo binom(6, 2) ## 15
if k <= 0: return 1
if 2*k > n: return binom(n, n-k)
result = n
for i in countup(2, k):
result = (result * (n + 1 - i)) div i
proc createFactTable[N: static[int]]: array[N, int] =
result[0] = 1
for i in 1 ..< N:
result[i] = result[i - 1] * i
proc fac*(n: int): int =
## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of a non-negative integer ``n``
##
## .. code-block:: nim
## echo fac(4) ## 24
const factTable =
when sizeof(int) == 4:
createFactTable[13]()
else:
createFactTable[21]()
assert(n >= 0, $n & " must not be negative.")
assert(n < factTable.len, $n & " is too large to look up in the table")
factTable[n]
{.push checks:off, line_dir:off, stack_trace:off.}
when defined(Posix):
{.passl: "-lm".}
const
PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
E* = 2.71828182845904523536028747 ## Euler's number
MaxFloat64Precision* = 16 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float64`` type.
MaxFloat32Precision* = 8 ## maximum number of meaningful digits
## after the decimal point for Nim's
## ``float32`` type.
MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
## meaningful digits
## after the decimal point
## for Nim's ``float`` type.
RadPerDeg = PI / 180.0 ## number of radians per degree
type
FloatClass* = enum ## describes the class a floating point value belongs to.
## This is the type that is returned by `classify`.
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not-A-Number (NAN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
proc classify*(x: float): FloatClass =
## Classifies a floating point value. Returns ``x``'s class as specified by
## `FloatClass`.
##
## .. code-block:: nim
## echo classify(0.3) ## fcNormal
## echo classify(0.0) ## fcZero
## echo classify(0.3/0.0) ## fcInf
# JavaScript and most C compilers have no classify:
if x == 0.0:
if 1.0/x == Inf:
return fcZero
else:
return fcNegZero
if x*0.5 == x:
if x > 0.0: return fcInf
else: return fcNegInf
if x != x: return fcNan
return fcNormal
# XXX: fcSubnormal is not detected!
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
## Zero and negative numbers are not a power of two.
##
## .. code-block:: nim
## echo isPowerOfTwo(5) ## false
## echo isPowerOfTwo(8) ## true
return (x > 0) and ((x and (x - 1)) == 0)
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
## Returns ``x`` rounded up to the nearest power of two.
## Zero and negative numbers get rounded up to 1.
##
## .. code-block:: nim
## echo nextPowerOfTwo(8) ## 8
## echo nextPowerOfTwo(9) ## 16
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
when sizeof(int) > 2:
result = result or (result shr 16)
when sizeof(int) > 1:
result = result or (result shr 8)
result = result or (result shr 4)
result = result or (result shr 2)
result = result or (result shr 1)
result += 1 + ord(x<=0)
proc countBits32*(n: int32): int {.noSideEffect.} =
## Counts the set bits in ``n``.
##
## .. code-block:: nim
## echo countBits32(13'i32) ## 3
var v = n
v = v -% ((v shr 1'i32) and 0x55555555'i32)
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
## Computes the sum of the elements in ``x``.
## If ``x`` is empty, 0 is returned.
##
## .. code-block:: nim
## echo sum([1.0, 2.5, -3.0, 4.3]) ## 4.8
for i in items(x): result = result + i
proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
## Computes the product of the elements in ``x``.
## If ``x`` is empty, 1 is returned.
##
## .. code-block:: nim
## echo prod([1.0, 3.0, -0.2]) ## -0.6
result = 1.T
for i in items(x): result = result * i
{.push noSideEffect.}
when not defined(JS): # C
proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
## Computes the square root of ``x``.
##
## .. code-block:: nim
## echo sqrt(1.44) ## 1.2
proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
## Computes the cubic root of ``x``.
##
## .. code-block:: nim
## echo cbrt(2.197) ## 1.3
proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ of ``x``.
##
## .. code-block:: nim
## echo ln(exp(4.0)) ## 4.0
else: # JS
proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
proc ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
proc log*[T: SomeFloat](x, base: T): T =
## Computes the logarithm of ``x`` to base ``base``.
##
## .. code-block:: nim
## echo log(9.0, 3.0) ## 2.0
ln(x) / ln(base)
when not defined(JS): # C
proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
## Computes the common logarithm (base 10) of ``x``.
##
## .. code-block:: nim
## echo log10(100.0) ## 2.0
proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
## Computes the exponential function of ``x`` (pow(E, x)).
##
## .. code-block:: nim
## echo exp(1.0) ## 2.718281828459045
## echo ln(exp(4.0)) ## 4.0
proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
## Computes the sine of ``x``.
##
## .. code-block:: nim
## echo sin(PI / 6) ## 0.4999999999999999
## echo sin(degToRad(90.0)) ## 1.0
proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
## Computes the cosine of ``x``.
##
## .. code-block:: nim
## echo cos(2 * PI) ## 1.0
## echo cos(degToRad(60.0)) ## 0.5000000000000001
proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
## Computes the tangent of ``x``.
##
## .. code-block:: nim
## echo tan(degToRad(45.0)) ## 0.9999999999999999
## echo tan(PI / 4) ## 0.9999999999999999
proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
##
## .. code-block:: nim
## echo sinh(1.0) ## 1.175201193643801
proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
##
## .. code-block:: nim
## echo cosh(1.0) ## 1.543080634815244
proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
##
## .. code-block:: nim
## echo tanh(1.0) ## 0.7615941559557649
proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
## Computes the arc cosine of ``x``.
##
## .. code-block:: nim
## echo arccos(1.0) ## 0.0
proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
## Computes the arc sine of ``x``.
proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
## Calculate the arc tangent of ``x``.
##
## .. code-block:: nim
## echo arctan(1.0) ## 0.7853981633974483
## echo radToDeg(arctan(1.0)) ## 45.0
proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
## Calculate the arc tangent of ``y`` / ``x``.
## `arctan2` returns the arc tangent of ``y`` / ``x``; it produces correct
## results even when the resulting angle is near pi/2 or -pi/2
## (``x`` near 0).
##
## .. code-block:: nim
## echo arctan2(1.0, 0.0) ## 1.570796326794897
## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
## Computes the inverse hyperbolic sine of ``x``.
proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
## Computes the inverse hyperbolic cosine of ``x``.
proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
## Computes the inverse hyperbolic tangent of ``x``.
else: # JS
proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
proc log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
proc log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
proc log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
proc exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
proc exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
proc sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
proc cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
proc tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
proc sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
proc cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
proc tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
proc arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
proc arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
proc arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
proc arctan2*[T: float32|float64](y, x: T): T {.importC: "Math.atan2", nodecl.}
proc arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
proc arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
## Computes the cotangent of ``x``.
proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
## Computes the secant of ``x``.
proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
## Computes the cosecant of ``x``.
proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
## Computes the hyperbolic cotangent of ``x``.
proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
## Computes the hyperbolic secant of ``x``.
proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
## Computes the hyperbolic cosecant of ``x``.
proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
## Computes the inverse cotangent of ``x``.
proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
## Computes the inverse secant of ``x``.
proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
## Computes the inverse cosecant of ``x``.
proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
## Computes the inverse hyperbolic cotangent of ``x``.
proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
## Computes the inverse hyperbolic secant of ``x``.
proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
## Computes the inverse hyperbolic cosecant of ``x``.
const windowsCC89 = defined(windows) and defined(bcc)
when not defined(JS): # C
proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
## Computes the hypotenuse of a right-angle triangle with ``x`` and
## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
##
## .. code-block:: nim
## echo hypot(4.0, 3.0) ## 5.0
proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
## computes x to power raised of y.
##
## To compute power between integers, use ``^`` e.g. 2 ^ 6
##
## .. code-block:: nim
## echo pow(16.0, 0.5) ## 4.0
# TODO: add C89 version on windows
when not windowsCC89:
proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
proc tgamma*(x: float32): float32
{.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
proc tgamma*(x: float64): float64
{.deprecated: "use gamma instead", importc: "tgamma", header: "<math.h>".}
## The gamma function
## **Deprecated since version 0.19.0**: Use ``gamma`` instead.
proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
## Computes the natural log of the gamma function for ``x``.
proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
## Computes the floor function (i.e., the largest integer not greater than ``x``).
##
## .. code-block:: nim
## echo floor(-3.5) ## -4.0
proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
## Computes the ceiling function (i.e., the smallest integer not less than ``x``).
##
## .. code-block:: nim
## echo ceil(-2.1) ## -2.0
when windowsCC89:
# MSVC 2010 don't have trunc/truncf
# this implementation was inspired by Go-lang Math.Trunc
proc truncImpl(f: float64): float64 =
const
mask : uint64 = 0x7FF
shift: uint64 = 64 - 12
bias : uint64 = 0x3FF
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint64](f)
let e = (x shr shift) and mask - bias
# Keep the top 12+e bits, the integer part; clear the rest.
if e < 64-12:
x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
result = cast[float64](x)
proc truncImpl(f: float32): float32 =
const
mask : uint32 = 0xFF
shift: uint32 = 32 - 9
bias : uint32 = 0x7F
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint32](f)
let e = (x shr shift) and mask - bias
# Keep the top 9+e bits, the integer part; clear the rest.
if e < 32-9:
x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
result = cast[float32](x)
proc trunc*(x: float64): float64 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
proc trunc*(x: float32): float32 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
proc round0[T: float32|float64](x: T): T =
## Windows compilers prior to MSVC 2012 do not implement 'round',
## 'roundl' or 'roundf'.
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
else:
proc round0(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
proc round0(x: float64): float64 {.importc: "round", header: "<math.h>".}
## Rounds a float to zero decimal places. Used internally by the round
## function when the specified number of places is 0.
proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
## Truncates ``x`` to the decimal point.
##
## .. code-block:: nim
## echo trunc(PI) # 3.0
## echo trunc(-1.85) # -1.0
proc fmod*(x, y: float32): float32 {.deprecated: "use mod instead", importc: "fmodf", header: "<math.h>".}
proc fmod*(x, y: float64): float64 {.deprecated: "use mod instead", importc: "fmod", header: "<math.h>".}
## Computes the remainder of ``x`` divided by ``y``.
## **Deprecated since version 0.19.0**: Use the ``mod`` operator instead.
proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
##
## .. code-block:: nim
## ( 6.5 mod 2.5) == 1.5
## (-6.5 mod 2.5) == -1.5
## ( 6.5 mod -2.5) == 1.5
## (-6.5 mod -2.5) == -1.5
else: # JS
proc hypot*[T: float32|float64](x, y: T): T = return sqrt(x*x + y*y)
proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
proc pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
proc floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
proc floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
proc ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
proc ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
proc round0(x: float): float {.importc: "Math.round", nodecl.}
proc trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
proc trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
##
## .. code-block:: nim
## ( 6.5 mod 2.5) == 1.5
## (-6.5 mod 2.5) == -1.5
## ( 6.5 mod -2.5) == 1.5
## (-6.5 mod -2.5) == -1.5
proc round*[T: float32|float64](x: T, places: int = 0): T =
## Round a floating point number.
##
## This function is NOT reliable. Floating point numbers cannot hold
## non integer decimals precisely. If ``places`` is 0 (or omitted),
## round to the nearest integral value following normal mathematical
## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
## greater than 0, round to the given number of decimal places,
## e.g. ``round(54.346, 2) -> 54.350000000000001421...``. If ``places`` is negative, round
## to the left of the decimal place, e.g. ``round(537.345, -1) ->
## 540.0``
if places == 0:
result = round0(x)
else:
var mult = pow(10.0, places.T)
result = round0(x*mult)/mult
proc floorDiv*[T: SomeInteger](x, y: T): T =
## Floor division is conceptually defined as ``floor(x / y)``.
## This is different from the ``div`` operator, which is defined
## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
## rounds down.
##
## .. code-block:: nim
## echo floorDiv( 13, 3) # 4
## echo floorDiv(-13, 3) # -5
## echo floorDiv( 13, -3) # -5
## echo floorDiv(-13, -3) # 4
result = x div y
let r = x mod y
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
proc floorMod*[T: SomeNumber](x, y: T): T =
## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
## This proc behaves the same as the ``%`` operator in Python.
##
## .. code-block:: nim
## echo floorMod( 13, 3) # 1
## echo floorMod(-13, 3) # 2
## echo floorMod( 13, -3) # -2
## echo floorMod(-13, -3) # -1
result = x mod y
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
when not defined(JS):
proc c_frexp*(x: float32, exponent: var int32): float32 {.
importc: "frexp", header: "<math.h>".}
proc c_frexp*(x: float64, exponent: var int32): float64 {.
importc: "frexp", header: "<math.h>".}
proc frexp*[T, U](x: T, exponent: var U): T =
## Split a number into mantissa and exponent.
## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
## and less than 1) and the integer value n such that ``x`` (the original
## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
## m.
##
## .. code-block:: nim
## var x : int
## echo frexp(5.0, x) # 0.625
## echo x # 3
var exp: int32
result = c_frexp(x, exp)
exponent = exp
when windowsCC89:
# taken from Go-lang Math.Log2
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
template log2Impl[T](x: T): T =
var exp: int32
var frac = frexp(x, exp)
# Make sure exact powers of two give an exact answer.
# Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
if frac == 0.5: return T(exp - 1)
log10(frac)*(1/ln2) + T(exp)
proc log2*(x: float32): float32 = log2Impl(x)
proc log2*(x: float64): float64 = log2Impl(x)
## Log2 returns the binary logarithm of x.
## The special cases are the same as for Log.
else:
proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
## Computes the binary logarithm (base 2) of ``x``
else:
proc frexp*[T: float32|float64](x: T, exponent: var int): T =
if x == 0.0:
exponent = 0
result = 0.0
elif x < 0.0:
result = -frexp(-x, exponent)
else:
var ex = trunc(log2(x))
exponent = int(ex)
result = x / pow(2.0, ex)
if abs(result) >= 1:
inc(exponent)
result = result / 2
if exponent == 1024 and result == 0.0:
result = 0.99999999999999988898
proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
## Breaks ``x`` into an integer and a fractional part.
##
## Returns a tuple containing ``intpart`` and ``floatpart`` representing
## the integer part and the fractional part respectively.
##
## Both parts have the same sign as ``x``. Analogous to the ``modf``
## function in C.
##
## .. code-block:: nim
## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
var
absolute: T
absolute = abs(x)
result.intpart = floor(absolute)
result.floatpart = absolute - result.intpart
if x < 0:
result.intpart = -result.intpart
result.floatpart = -result.floatpart
{.pop.}
proc degToRad*[T: float32|float64](d: T): T {.inline.} =
## Convert from degrees to radians
##
## .. code-block:: nim
## echo degToRad(180.0) # 3.141592653589793
result = T(d) * RadPerDeg
proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
## Convert from radians to degrees
## .. code-block:: nim
## echo degToRad(2 * PI) # 360.0
result = T(d) / RadPerDeg
proc sgn*[T: SomeNumber](x: T): int {.inline.} =
## Sign function. Returns -1 for negative numbers and ``NegInf``, 1 for
## positive numbers and ``Inf``, and 0 for positive zero, negative zero and
## ``NaN``.
##
## .. code-block:: nim
## echo sgn(-5) # 1
## echo sgn(-4.1) # -1
ord(T(0) < x) - ord(x < T(0))
{.pop.}
{.pop.}
proc `^`*[T](x: T, y: Natural): T =
## Computes ``x`` to the power ``y``. ``x`` must be non-negative, use
## `pow <#pow,float,float>`_ for negative exponents.
##
## .. code-block:: nim
## echo 2 ^ 3 # 8
when compiles(y >= T(0)):
assert y >= T(0)
else:
assert T(y) >= T(0)
var (x, y) = (x, y)
result = 1
while true:
if (y and 1) != 0:
result *= x
y = y shr 1
if y == 0:
break
x *= x
proc gcd*[T](x, y: T): T =
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
## Note that for floats, the result cannot always be interpreted as
## "greatest decimal `z` such that ``z*N == x and z*M == y``
## where N and M are positive integers."
var (x, y) = (x, y)
while y != 0:
x = x mod y
swap x, y
abs x
proc gcd*(x, y: SomeInteger): SomeInteger =
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
## Using binary GCD (aka Stein's) algorithm.
##
## .. code-block:: nim
## echo gcd(24, 30) # 6
when x is SomeSignedInt:
var x = abs(x)
else:
var x = x
when y is SomeSignedInt:
var y = abs(y)
else:
var y = y
if x == 0:
return y
if y == 0:
return x
let shift = countTrailingZeroBits(x or y)
y = y shr countTrailingZeroBits(y)
while x != 0:
x = x shr countTrailingZeroBits(x)
if y > x:
swap y, x
x -= y
y shl shift
proc lcm*[T](x, y: T): T =
## Computes the least common multiple of ``x`` and ``y``.
##
## .. code-block:: nim
## echo lcm(24, 30) # 120
x div gcd(x, y) * y
when isMainModule and not defined(JS) and not windowsCC89:
# Check for no side effect annotation
proc mySqrt(num: float): float {.noSideEffect.} =
return sqrt(num)
# check gamma function
assert(gamma(5.0) == 24.0) # 4!
assert($tgamma(5.0) == $24.0) # 4!
assert(lgamma(1.0) == 0.0) # ln(1.0) == 0.0
assert(erf(6.0) > erf(5.0))
assert(erfc(6.0) < erfc(5.0))
when isMainModule:
# Function for approximate comparison of floats
proc `==~`(x, y: float): bool = (abs(x-y) < 1e-9)
block: # prod
doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([1.5, 3.4]) == 5.1
let x: seq[float] = @[]
doAssert prod(x) == 1.0
block: # round() tests
# Round to 0 decimal places
doAssert round(54.652) ==~ 55.0
doAssert round(54.352) ==~ 54.0
doAssert round(-54.652) ==~ -55.0
doAssert round(-54.352) ==~ -54.0
doAssert round(0.0) ==~ 0.0
# Round to positive decimal places
doAssert round(-547.652, 1) ==~ -547.7
doAssert round(547.652, 1) ==~ 547.7
doAssert round(-547.652, 2) ==~ -547.65
doAssert round(547.652, 2) ==~ 547.65
# Round to negative decimal places
doAssert round(547.652, -1) ==~ 550.0
doAssert round(547.652, -2) ==~ 500.0
doAssert round(547.652, -3) ==~ 1000.0
doAssert round(547.652, -4) ==~ 0.0
doAssert round(-547.652, -1) ==~ -550.0
doAssert round(-547.652, -2) ==~ -500.0
doAssert round(-547.652, -3) ==~ -1000.0
doAssert round(-547.652, -4) ==~ 0.0
block: # splitDecimal() tests
doAssert splitDecimal(54.674).intpart ==~ 54.0
doAssert splitDecimal(54.674).floatpart ==~ 0.674
doAssert splitDecimal(-693.4356).intpart ==~ -693.0
doAssert splitDecimal(-693.4356).floatpart ==~ -0.4356
doAssert splitDecimal(0.0).intpart ==~ 0.0
doAssert splitDecimal(0.0).floatpart ==~ 0.0
block: # trunc tests for vcc
doAssert(trunc(-1.1) == -1)
doAssert(trunc(1.1) == 1)
doAssert(trunc(-0.1) == -0)
doAssert(trunc(0.1) == 0)
#special case
doAssert(classify(trunc(1e1000000)) == fcInf)
doAssert(classify(trunc(-1e1000000)) == fcNegInf)
doAssert(classify(trunc(0.0/0.0)) == fcNan)
doAssert(classify(trunc(0.0)) == fcZero)
#trick the compiler to produce signed zero
let
f_neg_one = -1.0
f_zero = 0.0
f_nan = f_zero / f_zero
doAssert(classify(trunc(f_neg_one*f_zero)) == fcNegZero)
doAssert(trunc(-1.1'f32) == -1)
doAssert(trunc(1.1'f32) == 1)
doAssert(trunc(-0.1'f32) == -0)
doAssert(trunc(0.1'f32) == 0)
doAssert(classify(trunc(1e1000000'f32)) == fcInf)
doAssert(classify(trunc(-1e1000000'f32)) == fcNegInf)
doAssert(classify(trunc(f_nan.float32)) == fcNan)
doAssert(classify(trunc(0.0'f32)) == fcZero)
block: # sgn() tests
assert sgn(1'i8) == 1
assert sgn(1'i16) == 1
assert sgn(1'i32) == 1
assert sgn(1'i64) == 1
assert sgn(1'u8) == 1
assert sgn(1'u16) == 1
assert sgn(1'u32) == 1
assert sgn(1'u64) == 1
assert sgn(-12342.8844'f32) == -1
assert sgn(123.9834'f64) == 1
assert sgn(0'i32) == 0
assert sgn(0'f32) == 0
assert sgn(NegInf) == -1
assert sgn(Inf) == 1
assert sgn(NaN) == 0
block: # fac() tests
try:
discard fac(-1)
except AssertionError:
discard
doAssert fac(0) == 1
doAssert fac(1) == 1
doAssert fac(2) == 2
doAssert fac(3) == 6
doAssert fac(4) == 24
block: # floorMod/floorDiv
doAssert floorDiv(8, 3) == 2
doAssert floorMod(8, 3) == 2
doAssert floorDiv(8, -3) == -3
doAssert floorMod(8, -3) == -1
doAssert floorDiv(-8, 3) == -3
doAssert floorMod(-8, 3) == 1
doAssert floorDiv(-8, -3) == 2
doAssert floorMod(-8, -3) == -2
doAssert floorMod(8.0, -3.0) ==~ -1.0
doAssert floorMod(-8.5, 3.0) ==~ 0.5
block: # log
doAssert log(4.0, 3.0) == ln(4.0) / ln(3.0)
doAssert log2(8.0'f64) == 3.0'f64
doAssert log2(4.0'f64) == 2.0'f64
doAssert log2(2.0'f64) == 1.0'f64
doAssert log2(1.0'f64) == 0.0'f64
doAssert classify(log2(0.0'f64)) == fcNegInf
doAssert log2(8.0'f32) == 3.0'f32
doAssert log2(4.0'f32) == 2.0'f32
doAssert log2(2.0'f32) == 1.0'f32
doAssert log2(1.0'f32) == 0.0'f32
doAssert classify(log2(0.0'f32)) == fcNegInf