Files
Nim/lib/pure/concurrency/threadpool.nim
Jjp137 dedff71ca0 Fix many broken links
Note that contrary to what docgen.rst currently says, the ids have
to match exactly or else most web browsers will not jump to the
intended symbol.

(cherry picked from commit 93461aee34)
2019-10-24 14:10:46 +02:00

610 lines
19 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Implements Nim's `spawn <manual_experimental.html#parallel-amp-spawn>`_.
##
## **See also:**
## * `threads module <threads.html>`_
## * `channels module <channels.html>`_
## * `locks module <locks.html>`_
## * `asyncdispatch module <asyncdispatch.html>`_
##
## Unstable API.
when not compileOption("threads"):
{.error: "Threadpool requires --threads:on option.".}
import cpuinfo, cpuload, locks, os
{.push stackTrace:off.}
type
Semaphore = object
c: Cond
L: Lock
counter: int
proc initSemaphore(cv: var Semaphore) =
initCond(cv.c)
initLock(cv.L)
proc destroySemaphore(cv: var Semaphore) {.inline.} =
deinitCond(cv.c)
deinitLock(cv.L)
proc blockUntil(cv: var Semaphore) =
acquire(cv.L)
while cv.counter <= 0:
wait(cv.c, cv.L)
dec cv.counter
release(cv.L)
proc signal(cv: var Semaphore) =
acquire(cv.L)
inc cv.counter
release(cv.L)
signal(cv.c)
const CacheLineSize = 32 # true for most archs
type
Barrier {.compilerProc.} = object
entered: int
cv: Semaphore # Semaphore takes 3 words at least
when sizeof(int) < 8:
cacheAlign: array[CacheLineSize-4*sizeof(int), byte]
left: int
cacheAlign2: array[CacheLineSize-sizeof(int), byte]
interest: bool # whether the master is interested in the "all done" event
proc barrierEnter(b: ptr Barrier) {.compilerProc, inline.} =
# due to the signaling between threads, it is ensured we are the only
# one with access to 'entered' so we don't need 'atomicInc' here:
inc b.entered
# also we need no 'fence' instructions here as soon 'nimArgsPassingDone'
# will be called which already will perform a fence for us.
proc barrierLeave(b: ptr Barrier) {.compilerProc, inline.} =
atomicInc b.left
when not defined(x86): fence()
# We may not have seen the final value of b.entered yet,
# so we need to check for >= instead of ==.
if b.interest and b.left >= b.entered: signal(b.cv)
proc openBarrier(b: ptr Barrier) {.compilerProc, inline.} =
b.entered = 0
b.left = 0
b.interest = false
proc closeBarrier(b: ptr Barrier) {.compilerProc.} =
fence()
if b.left != b.entered:
b.cv.initSemaphore()
fence()
b.interest = true
fence()
while b.left != b.entered: blockUntil(b.cv)
destroySemaphore(b.cv)
{.pop.}
# ----------------------------------------------------------------------------
type
AwaitInfo = object
cv: Semaphore
idx: int
FlowVarBase* = ref FlowVarBaseObj ## Untyped base class for ``FlowVar[T]``.
FlowVarBaseObj = object of RootObj
ready, usesSemaphore, awaited: bool
cv: Semaphore # for 'blockUntilAny' support
ai: ptr AwaitInfo
idx: int
data: pointer # we incRef and unref it to keep it alive; note this MUST NOT
# be RootRef here otherwise the wrong GC keeps track of it!
owner: pointer # ptr Worker
FlowVarObj[T] = object of FlowVarBaseObj
blob: T
FlowVar*{.compilerProc.}[T] = ref FlowVarObj[T] ## A data flow variable.
ToFreeQueue = object
len: int
lock: Lock
empty: Semaphore
data: array[128, pointer]
WorkerProc = proc (thread, args: pointer) {.nimcall, gcsafe.}
Worker = object
taskArrived: Semaphore
taskStarted: Semaphore #\
# task data:
f: WorkerProc
data: pointer
ready: bool # put it here for correct alignment!
initialized: bool # whether it has even been initialized
shutdown: bool # the pool requests to shut down this worker thread
q: ToFreeQueue
readyForTask: Semaphore
const threadpoolWaitMs {.intdefine.}: int = 100
proc blockUntil*(fv: FlowVarBase) =
## Waits until the value for the ``fv`` arrives.
##
## Usually it is not necessary to call this explicitly.
if fv.usesSemaphore and not fv.awaited:
fv.awaited = true
blockUntil(fv.cv)
destroySemaphore(fv.cv)
proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool =
if cas(addr w.ready, true, false):
w.data = data
w.f = fn
signal(w.taskArrived)
blockUntil(w.taskStarted)
result = true
proc cleanFlowVars(w: ptr Worker) =
let q = addr(w.q)
acquire(q.lock)
for i in 0 ..< q.len:
GC_unref(cast[RootRef](q.data[i]))
#echo "GC_unref"
q.len = 0
release(q.lock)
proc wakeupWorkerToProcessQueue(w: ptr Worker) =
# we have to ensure it's us who wakes up the owning thread.
# This is quite horrible code, but it runs so rarely that it doesn't matter:
while not cas(addr w.ready, true, false):
cpuRelax()
discard
w.data = nil
w.f = proc (w, a: pointer) {.nimcall.} =
let w = cast[ptr Worker](w)
cleanFlowVars(w)
signal(w.q.empty)
signal(w.taskArrived)
proc attach(fv: FlowVarBase; i: int): bool =
acquire(fv.cv.L)
if fv.cv.counter <= 0:
fv.idx = i
result = true
else:
result = false
release(fv.cv.L)
proc finished(fv: FlowVarBase) =
doAssert fv.ai.isNil, "flowVar is still attached to an 'blockUntilAny'"
# we have to protect against the rare cases where the owner of the flowVar
# simply disregards the flowVar and yet the "flowVar" has not yet written
# anything to it:
blockUntil(fv)
if fv.data.isNil: return
let owner = cast[ptr Worker](fv.owner)
let q = addr(owner.q)
acquire(q.lock)
while not (q.len < q.data.len):
#echo "EXHAUSTED!"
release(q.lock)
wakeupWorkerToProcessQueue(owner)
blockUntil(q.empty)
acquire(q.lock)
q.data[q.len] = cast[pointer](fv.data)
inc q.len
release(q.lock)
fv.data = nil
# the worker thread waits for "data" to be set to nil before shutting down
owner.data = nil
proc fvFinalizer[T](fv: FlowVar[T]) = finished(fv)
proc nimCreateFlowVar[T](): FlowVar[T] {.compilerProc.} =
new(result, fvFinalizer)
proc nimFlowVarCreateSemaphore(fv: FlowVarBase) {.compilerProc.} =
fv.cv.initSemaphore()
fv.usesSemaphore = true
proc nimFlowVarSignal(fv: FlowVarBase) {.compilerProc.} =
if fv.ai != nil:
acquire(fv.ai.cv.L)
fv.ai.idx = fv.idx
inc fv.ai.cv.counter
release(fv.ai.cv.L)
signal(fv.ai.cv.c)
if fv.usesSemaphore:
signal(fv.cv)
proc awaitAndThen*[T](fv: FlowVar[T]; action: proc (x: T) {.closure.}) =
## Blocks until the ``fv`` is available and then passes its value
## to ``action``.
##
## Note that due to Nim's parameter passing semantics this
## means that ``T`` doesn't need to be copied so ``awaitAndThen`` can
## sometimes be more efficient than `^ proc <#^,FlowVar[T]>`_.
blockUntil(fv)
when T is string or T is seq:
action(cast[T](fv.data))
elif T is ref:
{.error: "'awaitAndThen' not available for FlowVar[ref]".}
else:
action(fv.blob)
finished(fv)
proc unsafeRead*[T](fv: FlowVar[ref T]): ptr T =
## Blocks until the value is available and then returns this value.
blockUntil(fv)
result = cast[ptr T](fv.data)
finished(fv)
proc `^`*[T](fv: FlowVar[ref T]): ref T =
## Blocks until the value is available and then returns this value.
blockUntil(fv)
let src = cast[ref T](fv.data)
when defined(nimV2):
result = src
else:
deepCopy result, src
finished(fv)
proc `^`*[T](fv: FlowVar[T]): T =
## Blocks until the value is available and then returns this value.
blockUntil(fv)
when T is string or T is seq:
let src = cast[T](fv.data)
when defined(nimV2):
result = src
else:
deepCopy result, src
else:
result = fv.blob
finished(fv)
proc blockUntilAny*(flowVars: openArray[FlowVarBase]): int =
## Awaits any of the given ``flowVars``. Returns the index of one ``flowVar``
## for which a value arrived.
##
## A ``flowVar`` only supports one call to ``blockUntilAny`` at the same time.
## That means if you ``blockUntilAny([a,b])`` and ``blockUntilAny([b,c])``
## the second call will only block until ``c``. If there is no ``flowVar`` left
## to be able to wait on, -1 is returned.
##
## **Note**: This results in non-deterministic behaviour and should be avoided.
var ai: AwaitInfo
ai.cv.initSemaphore()
var conflicts = 0
result = -1
for i in 0 .. flowVars.high:
if cas(addr flowVars[i].ai, nil, addr ai):
if not attach(flowVars[i], i):
result = i
break
else:
inc conflicts
if conflicts < flowVars.len:
if result < 0:
blockUntil(ai.cv)
result = ai.idx
for i in 0 .. flowVars.high:
discard cas(addr flowVars[i].ai, addr ai, nil)
destroySemaphore(ai.cv)
proc isReady*(fv: FlowVarBase): bool =
## Determines whether the specified ``FlowVarBase``'s value is available.
##
## If ``true``, awaiting ``fv`` will not block.
if fv.usesSemaphore and not fv.awaited:
acquire(fv.cv.L)
result = fv.cv.counter > 0
release(fv.cv.L)
else:
result = true
proc nimArgsPassingDone(p: pointer) {.compilerProc.} =
let w = cast[ptr Worker](p)
signal(w.taskStarted)
const
MaxThreadPoolSize* = 256 ## Maximum size of the thread pool. 256 threads
## should be good enough for anybody ;-)
MaxDistinguishedThread* = 32 ## Maximum number of "distinguished" threads.
type
ThreadId* = range[0..MaxDistinguishedThread-1]
var
currentPoolSize: int
maxPoolSize = MaxThreadPoolSize
minPoolSize = 4
gSomeReady : Semaphore
readyWorker: ptr Worker
# A workaround for recursion deadlock issue
# https://github.com/nim-lang/Nim/issues/4597
var
numSlavesLock: Lock
numSlavesRunning {.guard: numSlavesLock}: int
numSlavesWaiting {.guard: numSlavesLock}: int
isSlave {.threadvar.}: bool
numSlavesLock.initLock
gSomeReady.initSemaphore()
proc slave(w: ptr Worker) {.thread.} =
isSlave = true
while true:
if w.shutdown:
w.shutdown = false
atomicDec currentPoolSize
while true:
if w.data != nil:
sleep(threadpoolWaitMs)
else:
# The flowvar finalizer ("finished()") set w.data to nil, so we can
# safely terminate the thread.
#
# TODO: look for scenarios in which the flowvar is never finalized, so
# a shut down thread gets stuck in this loop until the main thread exits.
break
break
when declared(atomicStoreN):
atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
else:
w.ready = true
readyWorker = w
signal(gSomeReady)
blockUntil(w.taskArrived)
# XXX Somebody needs to look into this (why does this assertion fail
# in Visual Studio?)
when not defined(vcc) and not defined(tcc): assert(not w.ready)
withLock numSlavesLock:
inc numSlavesRunning
w.f(w, w.data)
withLock numSlavesLock:
dec numSlavesRunning
if w.q.len != 0: w.cleanFlowVars
proc distinguishedSlave(w: ptr Worker) {.thread.} =
while true:
when declared(atomicStoreN):
atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
else:
w.ready = true
signal(w.readyForTask)
blockUntil(w.taskArrived)
assert(not w.ready)
w.f(w, w.data)
if w.q.len != 0: w.cleanFlowVars
var
workers: array[MaxThreadPoolSize, Thread[ptr Worker]]
workersData: array[MaxThreadPoolSize, Worker]
distinguished: array[MaxDistinguishedThread, Thread[ptr Worker]]
distinguishedData: array[MaxDistinguishedThread, Worker]
when defined(nimPinToCpu):
var gCpus: Natural
proc setMinPoolSize*(size: range[1..MaxThreadPoolSize]) =
## Sets the minimum thread pool size. The default value of this is 4.
minPoolSize = size
proc setMaxPoolSize*(size: range[1..MaxThreadPoolSize]) =
## Sets the maximum thread pool size. The default value of this
## is ``MaxThreadPoolSize`` (256).
maxPoolSize = size
if currentPoolSize > maxPoolSize:
for i in maxPoolSize..currentPoolSize-1:
let w = addr(workersData[i])
w.shutdown = true
when defined(nimRecursiveSpawn):
var localThreadId {.threadvar.}: int
proc activateWorkerThread(i: int) {.noinline.} =
workersData[i].taskArrived.initSemaphore()
workersData[i].taskStarted.initSemaphore()
workersData[i].initialized = true
workersData[i].q.empty.initSemaphore()
initLock(workersData[i].q.lock)
createThread(workers[i], slave, addr(workersData[i]))
when defined(nimRecursiveSpawn):
localThreadId = i+1
when defined(nimPinToCpu):
if gCpus > 0: pinToCpu(workers[i], i mod gCpus)
proc activateDistinguishedThread(i: int) {.noinline.} =
distinguishedData[i].taskArrived.initSemaphore()
distinguishedData[i].taskStarted.initSemaphore()
distinguishedData[i].initialized = true
distinguishedData[i].q.empty.initSemaphore()
initLock(distinguishedData[i].q.lock)
distinguishedData[i].readyForTask.initSemaphore()
createThread(distinguished[i], distinguishedSlave, addr(distinguishedData[i]))
proc setup() =
let p = countProcessors()
when defined(nimPinToCpu):
gCpus = p
currentPoolSize = min(p, MaxThreadPoolSize)
readyWorker = addr(workersData[0])
for i in 0..<currentPoolSize: activateWorkerThread(i)
proc preferSpawn*(): bool =
## Use this proc to determine quickly if a ``spawn`` or a direct call is
## preferable.
##
## If it returns ``true``, a ``spawn`` may make sense. In general
## it is not necessary to call this directly; use `spawnX template
## <#spawnX.t>`_ instead.
result = gSomeReady.counter > 0
proc spawn*(call: typed): void {.magic: "Spawn".}
## Always spawns a new task, so that the ``call`` is never executed on
## the calling thread.
##
## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
## return type that is either ``void`` or compatible with ``FlowVar[T]``.
proc pinnedSpawn*(id: ThreadId; call: typed): void {.magic: "Spawn".}
## Always spawns a new task on the worker thread with ``id``, so that
## the ``call`` is **always** executed on the thread.
##
## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
## return type that is either ``void`` or compatible with ``FlowVar[T]``.
template spawnX*(call): void =
## Spawns a new task if a CPU core is ready, otherwise executes the
## call in the calling thread.
##
## Usually it is advised to use `spawn proc <#spawn,typed>`_ in order to
## not block the producer for an unknown amount of time.
##
## ``call`` has to be proc call ``p(...)`` where ``p`` is gcsafe and has a
## return type that is either 'void' or compatible with ``FlowVar[T]``.
(if preferSpawn(): spawn call else: call)
proc parallel*(body: untyped) {.magic: "Parallel".}
## A parallel section can be used to execute a block in parallel.
##
## ``body`` has to be in a DSL that is a particular subset of the language.
##
## Please refer to `the manual <manual_experimental.html#parallel-amp-spawn>`_
## for further information.
var
state: ThreadPoolState
stateLock: Lock
initLock stateLock
proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerProc.} =
# implementation of 'spawn' that is used by the code generator.
while true:
if selectWorker(readyWorker, fn, data): return
for i in 0..<currentPoolSize:
if selectWorker(addr(workersData[i]), fn, data): return
# determine what to do, but keep in mind this is expensive too:
# state.calls < maxPoolSize: warmup phase
# (state.calls and 127) == 0: periodic check
if state.calls < maxPoolSize or (state.calls and 127) == 0:
# ensure the call to 'advice' is atomic:
if tryAcquire(stateLock):
if currentPoolSize < minPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
release(stateLock)
return
case advice(state)
of doNothing: discard
of doCreateThread:
if currentPoolSize < maxPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
release(stateLock)
return
# else we didn't succeed but some other thread, so do nothing.
of doShutdownThread:
if currentPoolSize > minPoolSize:
let w = addr(workersData[currentPoolSize-1])
w.shutdown = true
# we don't free anything here. Too dangerous.
release(stateLock)
# else the acquire failed, but this means some
# other thread succeeded, so we don't need to do anything here.
when defined(nimRecursiveSpawn):
if localThreadId > 0:
# we are a worker thread, so instead of waiting for something which
# might as well never happen (see tparallel_quicksort), we run the task
# on the current thread instead.
var self = addr(workersData[localThreadId-1])
fn(self, data)
blockUntil(self.taskStarted)
return
if isSlave:
# Run under lock until `numSlavesWaiting` increment to avoid a
# race (otherwise two last threads might start waiting together)
withLock numSlavesLock:
if numSlavesRunning <= numSlavesWaiting + 1:
# All the other slaves are waiting
# If we wait now, we-re deadlocked until
# an external spawn happens !
if currentPoolSize < maxPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
return
else:
# There is no place in the pool. We're deadlocked.
# echo "Deadlock!"
discard
inc numSlavesWaiting
blockUntil(gSomeReady)
if isSlave:
withLock numSlavesLock:
dec numSlavesWaiting
var
distinguishedLock: Lock
initLock distinguishedLock
proc nimSpawn4(fn: WorkerProc; data: pointer; id: ThreadId) {.compilerProc.} =
acquire(distinguishedLock)
if not distinguishedData[id].initialized:
activateDistinguishedThread(id)
release(distinguishedLock)
while true:
if selectWorker(addr(distinguishedData[id]), fn, data): break
blockUntil(distinguishedData[id].readyForTask)
proc sync*() =
## A simple barrier to wait for all ``spawn``'ed tasks.
##
## If you need more elaborate waiting, you have to use an explicit barrier.
while true:
var allReady = true
for i in 0 ..< currentPoolSize:
if not allReady: break
allReady = allReady and workersData[i].ready
if allReady: break
sleep(threadpoolWaitMs)
# We cannot "blockUntil(gSomeReady)" because workers may be shut down between
# the time we establish that some are not "ready" and the time we wait for a
# "signal(gSomeReady)" from inside "slave()" that can never come.
setup()