mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
1665 lines
57 KiB
Nim
1665 lines
57 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module contains routines for accessing and iterating over types
|
|
|
|
import
|
|
intsets, ast, astalgo, trees, msgs, strutils, platform, renderer, options,
|
|
lineinfos, int128
|
|
|
|
type
|
|
TPreferedDesc* = enum
|
|
preferName, # default
|
|
preferDesc, # probably should become what preferResolved is
|
|
preferExported,
|
|
preferModuleInfo, # fully qualified
|
|
preferGenericArg,
|
|
preferTypeName,
|
|
preferResolved, # fully resolved symbols
|
|
preferMixed, # show symbol + resolved symbols if it differs, eg: seq[cint{int32}, float]
|
|
|
|
proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string
|
|
template `$`*(typ: PType): string = typeToString(typ)
|
|
|
|
proc base*(t: PType): PType =
|
|
result = t[0]
|
|
|
|
# ------------------- type iterator: ----------------------------------------
|
|
type
|
|
TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
|
|
TTypeMutator* = proc (t: PType, closure: RootRef): PType {.nimcall.} # copy t and mutate it
|
|
TTypePredicate* = proc (t: PType): bool {.nimcall.}
|
|
|
|
proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
|
|
# Returns result of `iter`.
|
|
proc mutateType*(t: PType, iter: TTypeMutator, closure: RootRef): PType
|
|
# Returns result of `iter`.
|
|
|
|
type
|
|
TParamsEquality* = enum # they are equal, but their
|
|
# identifiers or their return
|
|
# type differ (i.e. they cannot be
|
|
# overloaded)
|
|
# this used to provide better error messages
|
|
paramsNotEqual, # parameters are not equal
|
|
paramsEqual, # parameters are equal
|
|
paramsIncompatible
|
|
|
|
proc equalParams*(a, b: PNode): TParamsEquality
|
|
# returns whether the parameter lists of the procs a, b are exactly the same
|
|
|
|
const
|
|
# TODO: Remove tyTypeDesc from each abstractX and (where necessary)
|
|
# replace with typedescX
|
|
abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
|
|
tyTypeDesc, tyAlias, tyInferred, tySink, tyLent, tyOwned}
|
|
abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
|
|
tyAlias, tyInferred, tySink, tyLent, tyOwned}
|
|
abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
|
|
tyAlias, tyInferred, tySink, tyOwned}
|
|
# see also ast.abstractVarRange
|
|
abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
|
|
tyInferred, tySink, tyOwned}
|
|
abstractInstOwned* = abstractInst + {tyOwned}
|
|
skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
|
|
tyInferred, tySink, tyLent, tyOwned}
|
|
# typedescX is used if we're sure tyTypeDesc should be included (or skipped)
|
|
typedescPtrs* = abstractPtrs + {tyTypeDesc}
|
|
typedescInst* = abstractInst + {tyTypeDesc, tyOwned, tyUserTypeClass}
|
|
|
|
proc invalidGenericInst*(f: PType): bool =
|
|
result = f.kind == tyGenericInst and lastSon(f) == nil
|
|
|
|
proc isPureObject*(typ: PType): bool =
|
|
var t = typ
|
|
while t.kind == tyObject and t[0] != nil:
|
|
t = t[0].skipTypes(skipPtrs)
|
|
result = t.sym != nil and sfPure in t.sym.flags
|
|
|
|
proc isUnsigned*(t: PType): bool =
|
|
t.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}
|
|
|
|
proc getOrdValue*(n: PNode; onError = high(Int128)): Int128 =
|
|
var k = n.kind
|
|
if n.typ != nil and n.typ.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}:
|
|
k = nkUIntLit
|
|
|
|
case k
|
|
of nkCharLit, nkUIntLit..nkUInt64Lit:
|
|
# XXX: enable this assert
|
|
#assert n.typ == nil or isUnsigned(n.typ), $n.typ
|
|
toInt128(cast[uint64](n.intVal))
|
|
of nkIntLit..nkInt64Lit:
|
|
# XXX: enable this assert
|
|
#assert n.typ == nil or not isUnsigned(n.typ), $n.typ.kind
|
|
toInt128(n.intVal)
|
|
of nkNilLit:
|
|
int128.Zero
|
|
of nkHiddenStdConv: getOrdValue(n[1], onError)
|
|
else:
|
|
# XXX: The idea behind the introduction of int128 was to finally
|
|
# have all calculations numerically far away from any
|
|
# overflows. This command just introduces such overflows and
|
|
# should therefore really be revisited.
|
|
onError
|
|
|
|
proc getFloatValue*(n: PNode): BiggestFloat =
|
|
case n.kind
|
|
of nkFloatLiterals: n.floatVal
|
|
of nkHiddenStdConv: getFloatValue(n[1])
|
|
else: NaN
|
|
|
|
proc isIntLit*(t: PType): bool {.inline.} =
|
|
result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit
|
|
|
|
proc isFloatLit*(t: PType): bool {.inline.} =
|
|
result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit
|
|
|
|
proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName; getDeclarationPath = true): string =
|
|
assert sym != nil
|
|
# consider using `skipGenericOwner` to avoid fun2.fun2 when fun2 is generic
|
|
result = sym.owner.name.s & '.' & sym.name.s
|
|
if sym.kind in routineKinds:
|
|
result.add '('
|
|
var n = sym.typ.n
|
|
for i in 1..<n.len:
|
|
let p = n[i]
|
|
if p.kind == nkSym:
|
|
result.add(p.sym.name.s)
|
|
result.add(": ")
|
|
result.add(typeToString(p.sym.typ, prefer))
|
|
if i != n.len-1: result.add(", ")
|
|
else:
|
|
result.add renderTree(p)
|
|
result.add(')')
|
|
if n[0].typ != nil:
|
|
result.add(": " & typeToString(n[0].typ, prefer))
|
|
if getDeclarationPath:
|
|
result.add " [declared in "
|
|
result.add(conf$sym.info)
|
|
result.add "]"
|
|
|
|
proc elemType*(t: PType): PType =
|
|
assert(t != nil)
|
|
case t.kind
|
|
of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(lastSon(t))
|
|
of tyArray: result = t[1]
|
|
of tyError: result = t
|
|
else: result = t.lastSon
|
|
assert(result != nil)
|
|
|
|
proc enumHasHoles*(t: PType): bool =
|
|
var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
|
|
result = b.kind == tyEnum and tfEnumHasHoles in b.flags
|
|
|
|
proc isOrdinalType*(t: PType, allowEnumWithHoles: bool = false): bool =
|
|
assert(t != nil)
|
|
const
|
|
baseKinds = {tyChar,tyInt..tyInt64,tyUInt..tyUInt64,tyBool,tyEnum}
|
|
parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
|
|
result = (t.kind in baseKinds and (not t.enumHasHoles or allowEnumWithHoles)) or
|
|
(t.kind in parentKinds and isOrdinalType(t.lastSon, allowEnumWithHoles))
|
|
|
|
proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
|
|
closure: RootRef): bool
|
|
proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
|
|
closure: RootRef): bool =
|
|
if n != nil:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
# a leaf
|
|
result = iterOverTypeAux(marker, n.typ, iter, closure)
|
|
else:
|
|
for i in 0..<n.len:
|
|
result = iterOverNode(marker, n[i], iter, closure)
|
|
if result: return
|
|
|
|
proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
|
|
closure: RootRef): bool =
|
|
result = false
|
|
if t == nil: return
|
|
result = iter(t, closure)
|
|
if result: return
|
|
if not containsOrIncl(marker, t.id):
|
|
case t.kind
|
|
of tyGenericInst, tyGenericBody, tyAlias, tySink, tyInferred:
|
|
result = iterOverTypeAux(marker, lastSon(t), iter, closure)
|
|
else:
|
|
for i in 0..<t.len:
|
|
result = iterOverTypeAux(marker, t[i], iter, closure)
|
|
if result: return
|
|
if t.n != nil and t.kind != tyProc: result = iterOverNode(marker, t.n, iter, closure)
|
|
|
|
proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
|
|
var marker = initIntSet()
|
|
result = iterOverTypeAux(marker, t, iter, closure)
|
|
|
|
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
|
|
marker: var IntSet): bool
|
|
|
|
proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
|
|
marker: var IntSet): bool =
|
|
result = false
|
|
case n.kind
|
|
of nkRecList:
|
|
for i in 0..<n.len:
|
|
result = searchTypeNodeForAux(n[i], p, marker)
|
|
if result: return
|
|
of nkRecCase:
|
|
assert(n[0].kind == nkSym)
|
|
result = searchTypeNodeForAux(n[0], p, marker)
|
|
if result: return
|
|
for i in 1..<n.len:
|
|
case n[i].kind
|
|
of nkOfBranch, nkElse:
|
|
result = searchTypeNodeForAux(lastSon(n[i]), p, marker)
|
|
if result: return
|
|
else: discard
|
|
of nkSym:
|
|
result = searchTypeForAux(n.sym.typ, p, marker)
|
|
else: discard
|
|
|
|
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
|
|
marker: var IntSet): bool =
|
|
# iterates over VALUE types!
|
|
result = false
|
|
if t == nil: return
|
|
if containsOrIncl(marker, t.id): return
|
|
result = predicate(t)
|
|
if result: return
|
|
case t.kind
|
|
of tyObject:
|
|
if t[0] != nil:
|
|
result = searchTypeForAux(t[0].skipTypes(skipPtrs), predicate, marker)
|
|
if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
|
|
of tyGenericInst, tyDistinct, tyAlias, tySink:
|
|
result = searchTypeForAux(lastSon(t), predicate, marker)
|
|
of tyArray, tySet, tyTuple:
|
|
for i in 0..<t.len:
|
|
result = searchTypeForAux(t[i], predicate, marker)
|
|
if result: return
|
|
else:
|
|
discard
|
|
|
|
proc searchTypeFor(t: PType, predicate: TTypePredicate): bool =
|
|
var marker = initIntSet()
|
|
result = searchTypeForAux(t, predicate, marker)
|
|
|
|
proc isObjectPredicate(t: PType): bool =
|
|
result = t.kind == tyObject
|
|
|
|
proc containsObject*(t: PType): bool =
|
|
result = searchTypeFor(t, isObjectPredicate)
|
|
|
|
proc isObjectWithTypeFieldPredicate(t: PType): bool =
|
|
result = t.kind == tyObject and t[0] == nil and
|
|
not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
|
|
tfFinal notin t.flags
|
|
|
|
type
|
|
TTypeFieldResult* = enum
|
|
frNone, # type has no object type field
|
|
frHeader, # type has an object type field only in the header
|
|
frEmbedded # type has an object type field somewhere embedded
|
|
|
|
proc analyseObjectWithTypeFieldAux(t: PType,
|
|
marker: var IntSet): TTypeFieldResult =
|
|
var res: TTypeFieldResult
|
|
result = frNone
|
|
if t == nil: return
|
|
case t.kind
|
|
of tyObject:
|
|
if t.n != nil:
|
|
if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
|
|
return frEmbedded
|
|
for i in 0..<t.len:
|
|
var x = t[i]
|
|
if x != nil: x = x.skipTypes(skipPtrs)
|
|
res = analyseObjectWithTypeFieldAux(x, marker)
|
|
if res == frEmbedded:
|
|
return frEmbedded
|
|
if res == frHeader: result = frHeader
|
|
if result == frNone:
|
|
if isObjectWithTypeFieldPredicate(t): result = frHeader
|
|
of tyGenericInst, tyDistinct, tyAlias, tySink:
|
|
result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
|
|
of tyArray, tyTuple:
|
|
for i in 0..<t.len:
|
|
res = analyseObjectWithTypeFieldAux(t[i], marker)
|
|
if res != frNone:
|
|
return frEmbedded
|
|
else:
|
|
discard
|
|
|
|
proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult =
|
|
# this does a complex analysis whether a call to ``objectInit`` needs to be
|
|
# made or initializing of the type field suffices or if there is no type field
|
|
# at all in this type.
|
|
var marker = initIntSet()
|
|
result = analyseObjectWithTypeFieldAux(t, marker)
|
|
|
|
proc isGCRef(t: PType): bool =
|
|
result = t.kind in GcTypeKinds or
|
|
(t.kind == tyProc and t.callConv == ccClosure)
|
|
if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
|
|
result = false
|
|
|
|
proc containsGarbageCollectedRef*(typ: PType): bool =
|
|
# returns true if typ contains a reference, sequence or string (all the
|
|
# things that are garbage-collected)
|
|
result = searchTypeFor(typ, isGCRef)
|
|
|
|
proc isTyRef(t: PType): bool =
|
|
result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)
|
|
|
|
proc containsTyRef*(typ: PType): bool =
|
|
# returns true if typ contains a 'ref'
|
|
result = searchTypeFor(typ, isTyRef)
|
|
|
|
proc isHiddenPointer(t: PType): bool =
|
|
result = t.kind in {tyString, tySequence}
|
|
|
|
proc containsHiddenPointer*(typ: PType): bool =
|
|
# returns true if typ contains a string, table or sequence (all the things
|
|
# that need to be copied deeply)
|
|
result = searchTypeFor(typ, isHiddenPointer)
|
|
|
|
proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool
|
|
proc canFormAcycleNode(marker: var IntSet, n: PNode, startId: int): bool =
|
|
result = false
|
|
if n != nil:
|
|
result = canFormAcycleAux(marker, n.typ, startId)
|
|
if not result:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
discard
|
|
else:
|
|
for i in 0..<n.len:
|
|
result = canFormAcycleNode(marker, n[i], startId)
|
|
if result: return
|
|
|
|
proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool =
|
|
result = false
|
|
if typ == nil: return
|
|
if tfAcyclic in typ.flags: return
|
|
var t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
|
|
if tfAcyclic in t.flags: return
|
|
case t.kind
|
|
of tyTuple, tyObject, tyRef, tySequence, tyArray, tyOpenArray, tyVarargs:
|
|
if not containsOrIncl(marker, t.id):
|
|
for i in 0..<t.len:
|
|
result = canFormAcycleAux(marker, t[i], startId)
|
|
if result: return
|
|
if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
|
|
else:
|
|
result = t.id == startId
|
|
# Inheritance can introduce cyclic types, however this is not relevant
|
|
# as the type that is passed to 'new' is statically known!
|
|
# er but we use it also for the write barrier ...
|
|
if t.kind == tyObject and tfFinal notin t.flags:
|
|
# damn inheritance may introduce cycles:
|
|
result = true
|
|
of tyProc: result = typ.callConv == ccClosure
|
|
else: discard
|
|
|
|
proc isFinal*(t: PType): bool =
|
|
let t = t.skipTypes(abstractInst)
|
|
result = t.kind != tyObject or tfFinal in t.flags or isPureObject(t)
|
|
|
|
proc canFormAcycle*(typ: PType): bool =
|
|
var marker = initIntSet()
|
|
result = canFormAcycleAux(marker, typ, typ.id)
|
|
|
|
proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
|
|
closure: RootRef): PType
|
|
proc mutateNode(marker: var IntSet, n: PNode, iter: TTypeMutator,
|
|
closure: RootRef): PNode =
|
|
result = nil
|
|
if n != nil:
|
|
result = copyNode(n)
|
|
result.typ = mutateTypeAux(marker, n.typ, iter, closure)
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
# a leaf
|
|
discard
|
|
else:
|
|
for i in 0..<n.len:
|
|
result.add mutateNode(marker, n[i], iter, closure)
|
|
|
|
proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
|
|
closure: RootRef): PType =
|
|
result = nil
|
|
if t == nil: return
|
|
result = iter(t, closure)
|
|
if not containsOrIncl(marker, t.id):
|
|
for i in 0..<t.len:
|
|
result[i] = mutateTypeAux(marker, result[i], iter, closure)
|
|
if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
|
|
assert(result != nil)
|
|
|
|
proc mutateType(t: PType, iter: TTypeMutator, closure: RootRef): PType =
|
|
var marker = initIntSet()
|
|
result = mutateTypeAux(marker, t, iter, closure)
|
|
|
|
proc valueToString(a: PNode): string =
|
|
case a.kind
|
|
of nkCharLit..nkUInt64Lit: result = $a.intVal
|
|
of nkFloatLit..nkFloat128Lit: result = $a.floatVal
|
|
of nkStrLit..nkTripleStrLit: result = a.strVal
|
|
else: result = "<invalid value>"
|
|
|
|
proc rangeToStr(n: PNode): string =
|
|
assert(n.kind == nkRange)
|
|
result = valueToString(n[0]) & ".." & valueToString(n[1])
|
|
|
|
const
|
|
typeToStr: array[TTypeKind, string] = ["None", "bool", "char", "empty",
|
|
"Alias", "typeof(nil)", "untyped", "typed", "typeDesc",
|
|
"GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
|
|
"distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
|
|
"set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
|
|
"pointer", "OpenArray[$1]", "string", "cstring", "Forward",
|
|
"int", "int8", "int16", "int32", "int64",
|
|
"float", "float32", "float64", "float128",
|
|
"uint", "uint8", "uint16", "uint32", "uint64",
|
|
"owned", "sink",
|
|
"lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
|
|
"BuiltInTypeClass", "UserTypeClass",
|
|
"UserTypeClassInst", "CompositeTypeClass", "inferred",
|
|
"and", "or", "not", "any", "static", "TypeFromExpr", "FieldAccessor",
|
|
"void"]
|
|
|
|
const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo,
|
|
preferGenericArg, preferResolved, preferMixed}
|
|
|
|
template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
|
|
tc.add concrete
|
|
tc.flags.incl tfResolved
|
|
|
|
# TODO: It would be a good idea to kill the special state of a resolved
|
|
# concept by switching to tyAlias within the instantiated procs.
|
|
# Currently, tyAlias is always skipped with lastSon, which means that
|
|
# we can store information about the matched concept in another position.
|
|
# Then builtInFieldAccess can be modified to properly read the derived
|
|
# consts and types stored within the concept.
|
|
template isResolvedUserTypeClass*(t: PType): bool =
|
|
tfResolved in t.flags
|
|
|
|
proc addTypeFlags(name: var string, typ: PType) {.inline.} =
|
|
if tfNotNil in typ.flags: name.add(" not nil")
|
|
|
|
proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
|
|
let preferToplevel = prefer
|
|
proc getPrefer(prefer: TPreferedDesc): TPreferedDesc =
|
|
if preferToplevel in {preferResolved, preferMixed}:
|
|
preferToplevel # sticky option
|
|
else:
|
|
prefer
|
|
|
|
proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
|
|
let prefer = getPrefer(prefer)
|
|
let t = typ
|
|
result = ""
|
|
if t == nil: return
|
|
if prefer in preferToResolveSymbols and t.sym != nil and
|
|
sfAnon notin t.sym.flags and t.kind != tySequence:
|
|
if t.kind == tyInt and isIntLit(t):
|
|
result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
|
|
elif t.kind == tyAlias and t[0].kind != tyAlias:
|
|
result = typeToString(t[0])
|
|
elif prefer in {preferResolved, preferMixed}:
|
|
case t.kind
|
|
of IntegralTypes + {tyFloat..tyFloat128} + {tyString, tyCString}:
|
|
result = typeToStr[t.kind]
|
|
of tyGenericBody:
|
|
result = typeToString(t.lastSon)
|
|
of tyCompositeTypeClass:
|
|
# avoids showing `A[any]` in `proc fun(a: A)` with `A = object[T]`
|
|
result = typeToString(t.lastSon.lastSon)
|
|
else:
|
|
result = t.sym.name.s
|
|
if prefer == preferMixed and result != t.sym.name.s:
|
|
result = t.sym.name.s & "{" & result & "}"
|
|
elif prefer in {preferName, preferTypeName} or t.sym.owner.isNil:
|
|
# note: should probably be: {preferName, preferTypeName, preferGenericArg}
|
|
result = t.sym.name.s
|
|
if t.kind == tyGenericParam and t.len > 0:
|
|
result.add ": "
|
|
var first = true
|
|
for son in t.sons:
|
|
if not first: result.add " or "
|
|
result.add son.typeToString
|
|
first = false
|
|
else:
|
|
result = t.sym.owner.name.s & '.' & t.sym.name.s
|
|
result.addTypeFlags(t)
|
|
return
|
|
case t.kind
|
|
of tyInt:
|
|
if not isIntLit(t) or prefer == preferExported:
|
|
result = typeToStr[t.kind]
|
|
else:
|
|
if prefer == preferGenericArg:
|
|
result = $t.n.intVal
|
|
else:
|
|
result = "int literal(" & $t.n.intVal & ")"
|
|
of tyGenericInst, tyGenericInvocation:
|
|
result = typeToString(t[0]) & '['
|
|
for i in 1..<t.len-ord(t.kind != tyGenericInvocation):
|
|
if i > 1: result.add(", ")
|
|
result.add(typeToString(t[i], preferGenericArg))
|
|
result.add(']')
|
|
of tyGenericBody:
|
|
result = typeToString(t.lastSon) & '['
|
|
for i in 0..<t.len-1:
|
|
if i > 0: result.add(", ")
|
|
result.add(typeToString(t[i], preferTypeName))
|
|
result.add(']')
|
|
of tyTypeDesc:
|
|
if t[0].kind == tyNone: result = "typedesc"
|
|
else: result = "type " & typeToString(t[0])
|
|
of tyStatic:
|
|
if prefer == preferGenericArg and t.n != nil:
|
|
result = t.n.renderTree
|
|
else:
|
|
result = "static[" & (if t.len > 0: typeToString(t[0]) else: "") & "]"
|
|
if t.n != nil: result.add "(" & renderTree(t.n) & ")"
|
|
of tyUserTypeClass:
|
|
if t.sym != nil and t.sym.owner != nil:
|
|
if t.isResolvedUserTypeClass: return typeToString(t.lastSon)
|
|
return t.sym.owner.name.s
|
|
else:
|
|
result = "<invalid tyUserTypeClass>"
|
|
of tyBuiltInTypeClass:
|
|
result = case t.base.kind:
|
|
of tyVar: "var"
|
|
of tyRef: "ref"
|
|
of tyPtr: "ptr"
|
|
of tySequence: "seq"
|
|
of tyArray: "array"
|
|
of tySet: "set"
|
|
of tyRange: "range"
|
|
of tyDistinct: "distinct"
|
|
of tyProc: "proc"
|
|
of tyObject: "object"
|
|
of tyTuple: "tuple"
|
|
of tyOpenArray: "openArray"
|
|
else: typeToStr[t.base.kind]
|
|
of tyInferred:
|
|
let concrete = t.previouslyInferred
|
|
if concrete != nil: result = typeToString(concrete)
|
|
else: result = "inferred[" & typeToString(t.base) & "]"
|
|
of tyUserTypeClassInst:
|
|
let body = t.base
|
|
result = body.sym.name.s & "["
|
|
for i in 1..<t.len - 1:
|
|
if i > 1: result.add(", ")
|
|
result.add(typeToString(t[i]))
|
|
result.add "]"
|
|
of tyAnd:
|
|
for i, son in t.sons:
|
|
result.add(typeToString(son))
|
|
if i < t.sons.high:
|
|
result.add(" and ")
|
|
of tyOr:
|
|
for i, son in t.sons:
|
|
result.add(typeToString(son))
|
|
if i < t.sons.high:
|
|
result.add(" or ")
|
|
of tyNot:
|
|
result = "not " & typeToString(t[0])
|
|
of tyUntyped:
|
|
#internalAssert t.len == 0
|
|
result = "untyped"
|
|
of tyFromExpr:
|
|
if t.n == nil:
|
|
result = "unknown"
|
|
else:
|
|
result = "type(" & renderTree(t.n) & ")"
|
|
of tyArray:
|
|
if t[0].kind == tyRange:
|
|
result = "array[" & rangeToStr(t[0].n) & ", " &
|
|
typeToString(t[1]) & ']'
|
|
else:
|
|
result = "array[" & typeToString(t[0]) & ", " &
|
|
typeToString(t[1]) & ']'
|
|
of tyUncheckedArray:
|
|
result = "UncheckedArray[" & typeToString(t[0]) & ']'
|
|
of tySequence:
|
|
if t.sym != nil and prefer != preferResolved:
|
|
result = t.sym.name.s
|
|
else:
|
|
result = "seq[" & typeToString(t[0]) & ']'
|
|
of tyOpt:
|
|
result = "opt[" & typeToString(t[0]) & ']'
|
|
of tyOrdinal:
|
|
result = "ordinal[" & typeToString(t[0]) & ']'
|
|
of tySet:
|
|
result = "set[" & typeToString(t[0]) & ']'
|
|
of tyOpenArray:
|
|
result = "openArray[" & typeToString(t[0]) & ']'
|
|
of tyDistinct:
|
|
result = "distinct " & typeToString(t[0],
|
|
if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
|
|
of tyTuple:
|
|
# we iterate over t.sons here, because t.n may be nil
|
|
if t.n != nil:
|
|
result = "tuple["
|
|
assert(t.n.len == t.len)
|
|
for i in 0..<t.n.len:
|
|
assert(t.n[i].kind == nkSym)
|
|
result.add(t.n[i].sym.name.s & ": " & typeToString(t[i]))
|
|
if i < t.n.len - 1: result.add(", ")
|
|
result.add(']')
|
|
elif t.len == 0:
|
|
result = "tuple[]"
|
|
else:
|
|
if prefer == preferTypeName: result = "("
|
|
else: result = "tuple of ("
|
|
for i in 0..<t.len:
|
|
result.add(typeToString(t[i]))
|
|
if i < t.len - 1: result.add(", ")
|
|
result.add(')')
|
|
of tyPtr, tyRef, tyVar, tyLent:
|
|
result = typeToStr[t.kind]
|
|
if t.len >= 2:
|
|
setLen(result, result.len-1)
|
|
result.add '['
|
|
for i in 0..<t.len:
|
|
result.add(typeToString(t[i]))
|
|
if i < t.len - 1: result.add(", ")
|
|
result.add ']'
|
|
else:
|
|
result.add typeToString(t[0])
|
|
of tyRange:
|
|
result = "range "
|
|
if t.n != nil and t.n.kind == nkRange:
|
|
result.add rangeToStr(t.n)
|
|
if prefer != preferExported:
|
|
result.add("(" & typeToString(t[0]) & ")")
|
|
of tyProc:
|
|
result = if tfIterator in t.flags: "iterator "
|
|
elif t.owner != nil:
|
|
case t.owner.kind
|
|
of skTemplate: "template "
|
|
of skMacro: "macro "
|
|
of skConverter: "converter "
|
|
else: "proc "
|
|
else:
|
|
"proc "
|
|
if tfUnresolved in t.flags: result.add "[*missing parameters*]"
|
|
result.add "("
|
|
for i in 1..<t.len:
|
|
if t.n != nil and i < t.n.len and t.n[i].kind == nkSym:
|
|
result.add(t.n[i].sym.name.s)
|
|
result.add(": ")
|
|
result.add(typeToString(t[i]))
|
|
if i < t.len - 1: result.add(", ")
|
|
result.add(')')
|
|
if t.len > 0 and t[0] != nil: result.add(": " & typeToString(t[0]))
|
|
var prag = if t.callConv == ccDefault: "" else: CallingConvToStr[t.callConv]
|
|
if tfNoSideEffect in t.flags:
|
|
addSep(prag)
|
|
prag.add("noSideEffect")
|
|
if tfThread in t.flags:
|
|
addSep(prag)
|
|
prag.add("gcsafe")
|
|
if t.lockLevel.ord != UnspecifiedLockLevel.ord:
|
|
addSep(prag)
|
|
prag.add("locks: " & $t.lockLevel)
|
|
if prag.len != 0: result.add("{." & prag & ".}")
|
|
of tyVarargs:
|
|
result = typeToStr[t.kind] % typeToString(t[0])
|
|
of tySink:
|
|
result = "sink " & typeToString(t[0])
|
|
of tyOwned:
|
|
result = "owned " & typeToString(t[0])
|
|
else:
|
|
result = typeToStr[t.kind]
|
|
result.addTypeFlags(t)
|
|
result = typeToString(typ, prefer)
|
|
|
|
proc firstOrd*(conf: ConfigRef; t: PType): Int128 =
|
|
case t.kind
|
|
of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyProxy:
|
|
result = Zero
|
|
of tySet, tyVar: result = firstOrd(conf, t[0])
|
|
of tyArray: result = firstOrd(conf, t[0])
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
result = getOrdValue(t.n[0])
|
|
of tyInt:
|
|
if conf != nil and conf.target.intSize == 4:
|
|
result = toInt128(-2147483648)
|
|
else:
|
|
result = toInt128(0x8000000000000000'i64)
|
|
of tyInt8: result = toInt128(-128)
|
|
of tyInt16: result = toInt128(-32768)
|
|
of tyInt32: result = toInt128(-2147483648)
|
|
of tyInt64: result = toInt128(0x8000000000000000'i64)
|
|
of tyUInt..tyUInt64: result = Zero
|
|
of tyEnum:
|
|
# if basetype <> nil then return firstOrd of basetype
|
|
if t.len > 0 and t[0] != nil:
|
|
result = firstOrd(conf, t[0])
|
|
else:
|
|
assert(t.n[0].kind == nkSym)
|
|
result = toInt128(t.n[0].sym.position)
|
|
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
|
|
tyStatic, tyInferred, tyUserTypeClasses:
|
|
result = firstOrd(conf, lastSon(t))
|
|
of tyOrdinal:
|
|
if t.len > 0: result = firstOrd(conf, lastSon(t))
|
|
else: internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
|
|
of tyUncheckedArray, tyCString:
|
|
result = Zero
|
|
else:
|
|
internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
|
|
result = Zero
|
|
|
|
proc firstFloat*(t: PType): BiggestFloat =
|
|
case t.kind
|
|
of tyFloat..tyFloat128: -Inf
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
getFloatValue(t.n[0])
|
|
of tyVar: firstFloat(t[0])
|
|
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
|
|
tyStatic, tyInferred, tyUserTypeClasses:
|
|
firstFloat(lastSon(t))
|
|
else:
|
|
internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
|
|
NaN
|
|
|
|
proc lastOrd*(conf: ConfigRef; t: PType): Int128 =
|
|
case t.kind
|
|
of tyBool: result = toInt128(1'u)
|
|
of tyChar: result = toInt128(255'u)
|
|
of tySet, tyVar: result = lastOrd(conf, t[0])
|
|
of tyArray: result = lastOrd(conf, t[0])
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
result = getOrdValue(t.n[1])
|
|
of tyInt:
|
|
if conf != nil and conf.target.intSize == 4: result = toInt128(0x7FFFFFFF)
|
|
else: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
|
|
of tyInt8: result = toInt128(0x0000007F)
|
|
of tyInt16: result = toInt128(0x00007FFF)
|
|
of tyInt32: result = toInt128(0x7FFFFFFF)
|
|
of tyInt64: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
|
|
of tyUInt:
|
|
if conf != nil and conf.target.intSize == 4:
|
|
result = toInt128(0xFFFFFFFF)
|
|
else:
|
|
result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
|
|
of tyUInt8: result = toInt128(0xFF)
|
|
of tyUInt16: result = toInt128(0xFFFF)
|
|
of tyUInt32: result = toInt128(0xFFFFFFFF)
|
|
of tyUInt64:
|
|
result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
|
|
of tyEnum:
|
|
assert(t.n[^1].kind == nkSym)
|
|
result = toInt128(t.n[^1].sym.position)
|
|
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
|
|
tyStatic, tyInferred, tyUserTypeClasses:
|
|
result = lastOrd(conf, lastSon(t))
|
|
of tyProxy: result = Zero
|
|
of tyOrdinal:
|
|
if t.len > 0: result = lastOrd(conf, lastSon(t))
|
|
else: internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
|
|
of tyUncheckedArray:
|
|
result = Zero
|
|
else:
|
|
internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
|
|
result = Zero
|
|
|
|
proc lastFloat*(t: PType): BiggestFloat =
|
|
case t.kind
|
|
of tyFloat..tyFloat128: Inf
|
|
of tyVar: lastFloat(t[0])
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
getFloatValue(t.n[1])
|
|
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
|
|
tyStatic, tyInferred, tyUserTypeClasses:
|
|
lastFloat(lastSon(t))
|
|
else:
|
|
internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
|
|
NaN
|
|
|
|
proc floatRangeCheck*(x: BiggestFloat, t: PType): bool =
|
|
case t.kind
|
|
# This needs to be special cased since NaN is never
|
|
# part of firstFloat(t)..lastFloat(t)
|
|
of tyFloat..tyFloat128:
|
|
true
|
|
of tyRange:
|
|
x in firstFloat(t)..lastFloat(t)
|
|
of tyVar:
|
|
floatRangeCheck(x, t[0])
|
|
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
|
|
tyStatic, tyInferred, tyUserTypeClasses:
|
|
floatRangeCheck(x, lastSon(t))
|
|
else:
|
|
internalError(newPartialConfigRef(), "invalid kind for floatRangeCheck:" & $t.kind)
|
|
false
|
|
|
|
proc lengthOrd*(conf: ConfigRef; t: PType): Int128 =
|
|
if t.skipTypes(tyUserTypeClasses).kind == tyDistinct:
|
|
result = lengthOrd(conf, t[0])
|
|
else:
|
|
let last = lastOrd(conf, t)
|
|
let first = firstOrd(conf, t)
|
|
result = last - first + One
|
|
|
|
# -------------- type equality -----------------------------------------------
|
|
|
|
type
|
|
TDistinctCompare* = enum ## how distinct types are to be compared
|
|
dcEq, ## a and b should be the same type
|
|
dcEqIgnoreDistinct, ## compare symmetrically: (distinct a) == b, a == b
|
|
## or a == (distinct b)
|
|
dcEqOrDistinctOf ## a equals b or a is distinct of b
|
|
|
|
TTypeCmpFlag* = enum
|
|
IgnoreTupleFields ## NOTE: Only set this flag for backends!
|
|
IgnoreCC
|
|
ExactTypeDescValues
|
|
ExactGenericParams
|
|
ExactConstraints
|
|
ExactGcSafety
|
|
AllowCommonBase
|
|
|
|
TTypeCmpFlags* = set[TTypeCmpFlag]
|
|
|
|
TSameTypeClosure = object
|
|
cmp: TDistinctCompare
|
|
recCheck: int
|
|
flags: TTypeCmpFlags
|
|
s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
|
|
# (few elements expected)
|
|
|
|
proc initSameTypeClosure: TSameTypeClosure =
|
|
# we do the initialization lazily for performance (avoids memory allocations)
|
|
discard
|
|
|
|
proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
|
|
result = c.s.len > 0 and c.s.contains((a.id, b.id))
|
|
if not result:
|
|
when not defined(nimNoNilSeqs):
|
|
if isNil(c.s): c.s = @[]
|
|
c.s.add((a.id, b.id))
|
|
|
|
proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
|
|
proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
|
|
if a == b:
|
|
result = true
|
|
else:
|
|
if a == nil or b == nil: result = false
|
|
else: result = sameTypeAux(a, b, c)
|
|
|
|
proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
|
|
var c = initSameTypeClosure()
|
|
c.flags = flags
|
|
result = sameTypeAux(a, b, c)
|
|
|
|
proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
|
|
if a == b:
|
|
result = true
|
|
else:
|
|
if a == nil or b == nil: result = false
|
|
else: result = sameType(a, b, flags)
|
|
|
|
proc equalParam(a, b: PSym): TParamsEquality =
|
|
if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
|
|
exprStructuralEquivalent(a.constraint, b.constraint):
|
|
if a.ast == b.ast:
|
|
result = paramsEqual
|
|
elif a.ast != nil and b.ast != nil:
|
|
if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
|
|
else: result = paramsIncompatible
|
|
elif a.ast != nil:
|
|
result = paramsEqual
|
|
elif b.ast != nil:
|
|
result = paramsIncompatible
|
|
else:
|
|
result = paramsNotEqual
|
|
|
|
proc sameConstraints(a, b: PNode): bool =
|
|
if isNil(a) and isNil(b): return true
|
|
if a.len != b.len: return false
|
|
for i in 1..<a.len:
|
|
if not exprStructuralEquivalent(a[i].sym.constraint,
|
|
b[i].sym.constraint):
|
|
return false
|
|
return true
|
|
|
|
proc equalParams(a, b: PNode): TParamsEquality =
|
|
result = paramsEqual
|
|
if a.len != b.len:
|
|
result = paramsNotEqual
|
|
else:
|
|
for i in 1..<a.len:
|
|
var m = a[i].sym
|
|
var n = b[i].sym
|
|
assert((m.kind == skParam) and (n.kind == skParam))
|
|
case equalParam(m, n)
|
|
of paramsNotEqual:
|
|
return paramsNotEqual
|
|
of paramsEqual:
|
|
discard
|
|
of paramsIncompatible:
|
|
result = paramsIncompatible
|
|
if (m.name.id != n.name.id):
|
|
# BUGFIX
|
|
return paramsNotEqual # paramsIncompatible;
|
|
# continue traversal! If not equal, we can return immediately; else
|
|
# it stays incompatible
|
|
if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
|
|
if (a.typ == nil) or (b.typ == nil):
|
|
result = paramsNotEqual # one proc has a result, the other not is OK
|
|
else:
|
|
result = paramsIncompatible # overloading by different
|
|
# result types does not work
|
|
|
|
proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
|
|
# two tuples are equivalent iff the names, types and positions are the same;
|
|
# however, both types may not have any field names (t.n may be nil) which
|
|
# complicates the matter a bit.
|
|
if a.len == b.len:
|
|
result = true
|
|
for i in 0..<a.len:
|
|
var x = a[i]
|
|
var y = b[i]
|
|
if IgnoreTupleFields in c.flags:
|
|
x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
|
|
y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
|
|
|
|
result = sameTypeAux(x, y, c)
|
|
if not result: return
|
|
if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
|
|
for i in 0..<a.n.len:
|
|
# check field names:
|
|
if a.n[i].kind == nkSym and b.n[i].kind == nkSym:
|
|
var x = a.n[i].sym
|
|
var y = b.n[i].sym
|
|
result = x.name.id == y.name.id
|
|
if not result: break
|
|
else:
|
|
return false
|
|
elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
|
|
result = false
|
|
|
|
template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
|
|
if tfFromGeneric notin a.flags + b.flags:
|
|
# fast case: id comparison suffices:
|
|
result = a.id == b.id
|
|
else:
|
|
# expensive structural equality test; however due to the way generic and
|
|
# objects work, if one of the types does **not** contain tfFromGeneric,
|
|
# they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
|
|
# for the same origin and is essential because we don't want "pure"
|
|
# structural type equivalence:
|
|
#
|
|
# type
|
|
# TA[T] = object
|
|
# TB[T] = object
|
|
# --> TA[int] != TB[int]
|
|
if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
|
|
# ok, we need the expensive structural check
|
|
body
|
|
|
|
proc sameObjectTypes*(a, b: PType): bool =
|
|
# specialized for efficiency (sigmatch uses it)
|
|
ifFastObjectTypeCheckFailed(a, b):
|
|
var c = initSameTypeClosure()
|
|
result = sameTypeAux(a, b, c)
|
|
|
|
proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
|
|
result = sameObjectTypes(a, b)
|
|
|
|
proc sameEnumTypes*(a, b: PType): bool {.inline.} =
|
|
result = a.id == b.id
|
|
|
|
proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
|
|
if a == b:
|
|
result = true
|
|
elif a != nil and b != nil and a.kind == b.kind:
|
|
var x = a.typ
|
|
var y = b.typ
|
|
if IgnoreTupleFields in c.flags:
|
|
if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
|
|
if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
|
|
if sameTypeOrNilAux(x, y, c):
|
|
case a.kind
|
|
of nkSym:
|
|
# same symbol as string is enough:
|
|
result = a.sym.name.id == b.sym.name.id
|
|
of nkIdent: result = a.ident.id == b.ident.id
|
|
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
|
|
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
|
|
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
|
|
of nkEmpty, nkNilLit, nkType: result = true
|
|
else:
|
|
if a.len == b.len:
|
|
for i in 0..<a.len:
|
|
if not sameObjectTree(a[i], b[i], c): return
|
|
result = true
|
|
|
|
proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
|
|
# check base types:
|
|
if a.len != b.len: return
|
|
for i in 0..<a.len:
|
|
if not sameTypeOrNilAux(a[i], b[i], c): return
|
|
if not sameObjectTree(a.n, b.n, c): return
|
|
result = true
|
|
|
|
proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
|
|
if a.len != b.len: return false
|
|
result = true
|
|
for i in 0..<a.len:
|
|
result = sameTypeOrNilAux(a[i], b[i], c)
|
|
if not result: return
|
|
|
|
proc isGenericAlias*(t: PType): bool =
|
|
return t.kind == tyGenericInst and t.lastSon.kind == tyGenericInst
|
|
|
|
proc skipGenericAlias*(t: PType): PType =
|
|
return if t.isGenericAlias: t.lastSon else: t
|
|
|
|
proc sameFlags*(a, b: PType): bool {.inline.} =
|
|
result = eqTypeFlags*a.flags == eqTypeFlags*b.flags
|
|
|
|
proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
|
|
template cycleCheck() =
|
|
# believe it or not, the direct check for ``containsOrIncl(c, a, b)``
|
|
# increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
|
|
# again: Since the recursion check is only to not get caught in an endless
|
|
# recursion, we use a counter and only if it's value is over some
|
|
# threshold we perform the expensive exact cycle check:
|
|
if c.recCheck < 3:
|
|
inc c.recCheck
|
|
else:
|
|
if containsOrIncl(c, a, b): return true
|
|
|
|
if x == y: return true
|
|
var a = skipTypes(x, {tyGenericInst, tyAlias})
|
|
var b = skipTypes(y, {tyGenericInst, tyAlias})
|
|
assert(a != nil)
|
|
assert(b != nil)
|
|
if a.kind != b.kind:
|
|
case c.cmp
|
|
of dcEq: return false
|
|
of dcEqIgnoreDistinct:
|
|
while a.kind == tyDistinct: a = a[0]
|
|
while b.kind == tyDistinct: b = b[0]
|
|
if a.kind != b.kind: return false
|
|
of dcEqOrDistinctOf:
|
|
while a.kind == tyDistinct: a = a[0]
|
|
if a.kind != b.kind: return false
|
|
|
|
# this is required by tunique_type but makes no sense really:
|
|
if x.kind == tyGenericInst and IgnoreTupleFields notin c.flags:
|
|
let
|
|
lhs = x.skipGenericAlias
|
|
rhs = y.skipGenericAlias
|
|
if rhs.kind != tyGenericInst or lhs.base != rhs.base:
|
|
return false
|
|
for i in 1..<lhs.len - 1:
|
|
let ff = rhs[i]
|
|
let aa = lhs[i]
|
|
if not sameTypeAux(ff, aa, c): return false
|
|
return true
|
|
|
|
case a.kind
|
|
of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCString,
|
|
tyInt..tyUInt64, tyTyped, tyUntyped, tyVoid:
|
|
result = sameFlags(a, b)
|
|
of tyStatic, tyFromExpr:
|
|
result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
|
|
if result and a.len == b.len and a.len == 1:
|
|
cycleCheck()
|
|
result = sameTypeAux(a[0], b[0], c)
|
|
of tyObject:
|
|
ifFastObjectTypeCheckFailed(a, b):
|
|
cycleCheck()
|
|
result = sameObjectStructures(a, b, c) and sameFlags(a, b)
|
|
of tyDistinct:
|
|
cycleCheck()
|
|
if c.cmp == dcEq:
|
|
if sameFlags(a, b):
|
|
ifFastObjectTypeCheckFailed(a, b):
|
|
result = sameTypeAux(a[0], b[0], c)
|
|
else:
|
|
result = sameTypeAux(a[0], b[0], c) and sameFlags(a, b)
|
|
of tyEnum, tyForward:
|
|
# XXX generic enums do not make much sense, but require structural checking
|
|
result = a.id == b.id and sameFlags(a, b)
|
|
of tyError:
|
|
result = b.kind == tyError
|
|
of tyTuple:
|
|
cycleCheck()
|
|
result = sameTuple(a, b, c) and sameFlags(a, b)
|
|
of tyTypeDesc:
|
|
if c.cmp == dcEqIgnoreDistinct: result = false
|
|
elif ExactTypeDescValues in c.flags:
|
|
cycleCheck()
|
|
result = sameChildrenAux(x, y, c) and sameFlags(a, b)
|
|
else:
|
|
result = sameFlags(a, b)
|
|
of tyGenericParam:
|
|
result = sameChildrenAux(a, b, c) and sameFlags(a, b)
|
|
if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
|
|
result = a.sym.position == b.sym.position
|
|
of tyBuiltInTypeClass:
|
|
assert a.len == 1
|
|
assert a[0].len == 0
|
|
assert b.len == 1
|
|
assert b[0].len == 0
|
|
result = a[0].kind == b[0].kind
|
|
of tyGenericInvocation, tyGenericBody, tySequence, tyOpenArray, tySet, tyRef,
|
|
tyPtr, tyVar, tyLent, tySink, tyUncheckedArray, tyArray, tyProc, tyVarargs,
|
|
tyOrdinal, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst,
|
|
tyAnd, tyOr, tyNot, tyAnything, tyOpt, tyOwned:
|
|
cycleCheck()
|
|
if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
|
|
result = sameChildrenAux(a, b, c)
|
|
if result:
|
|
if IgnoreTupleFields in c.flags:
|
|
result = a.flags * {tfVarIsPtr} == b.flags * {tfVarIsPtr}
|
|
else:
|
|
result = sameFlags(a, b)
|
|
if result and ExactGcSafety in c.flags:
|
|
result = a.flags * {tfThread} == b.flags * {tfThread}
|
|
if result and a.kind == tyProc:
|
|
result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
|
|
((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
|
|
of tyRange:
|
|
cycleCheck()
|
|
result = sameTypeOrNilAux(a[0], b[0], c) and
|
|
sameValue(a.n[0], b.n[0]) and
|
|
sameValue(a.n[1], b.n[1])
|
|
of tyGenericInst, tyAlias, tyInferred:
|
|
cycleCheck()
|
|
result = sameTypeAux(a.lastSon, b.lastSon, c)
|
|
of tyNone: result = false
|
|
|
|
proc sameBackendType*(x, y: PType): bool =
|
|
var c = initSameTypeClosure()
|
|
c.flags.incl IgnoreTupleFields
|
|
c.cmp = dcEqIgnoreDistinct
|
|
result = sameTypeAux(x, y, c)
|
|
|
|
proc compareTypes*(x, y: PType,
|
|
cmp: TDistinctCompare = dcEq,
|
|
flags: TTypeCmpFlags = {}): bool =
|
|
## compares two type for equality (modulo type distinction)
|
|
var c = initSameTypeClosure()
|
|
c.cmp = cmp
|
|
c.flags = flags
|
|
if x == y: result = true
|
|
elif x.isNil or y.isNil: result = false
|
|
else: result = sameTypeAux(x, y, c)
|
|
|
|
proc inheritanceDiff*(a, b: PType): int =
|
|
# | returns: 0 iff `a` == `b`
|
|
# | returns: -x iff `a` is the x'th direct superclass of `b`
|
|
# | returns: +x iff `a` is the x'th direct subclass of `b`
|
|
# | returns: `maxint` iff `a` and `b` are not compatible at all
|
|
if a == b or a.kind == tyError or b.kind == tyError: return 0
|
|
assert a.kind in {tyObject} + skipPtrs
|
|
assert b.kind in {tyObject} + skipPtrs
|
|
var x = a
|
|
result = 0
|
|
while x != nil:
|
|
x = skipTypes(x, skipPtrs)
|
|
if sameObjectTypes(x, b): return
|
|
x = x[0]
|
|
dec(result)
|
|
var y = b
|
|
result = 0
|
|
while y != nil:
|
|
y = skipTypes(y, skipPtrs)
|
|
if sameObjectTypes(y, a): return
|
|
y = y[0]
|
|
inc(result)
|
|
result = high(int)
|
|
|
|
proc commonSuperclass*(a, b: PType): PType =
|
|
# quick check: are they the same?
|
|
if sameObjectTypes(a, b): return a
|
|
|
|
# simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
|
|
# up until the ID is found:
|
|
assert a.kind == tyObject
|
|
assert b.kind == tyObject
|
|
var x = a
|
|
var ancestors = initIntSet()
|
|
while x != nil:
|
|
x = skipTypes(x, skipPtrs)
|
|
ancestors.incl(x.id)
|
|
x = x[0]
|
|
var y = b
|
|
while y != nil:
|
|
var t = y # bug #7818, save type before skip
|
|
y = skipTypes(y, skipPtrs)
|
|
if ancestors.contains(y.id):
|
|
# bug #7818, defer the previous skipTypes
|
|
if t.kind != tyGenericInst: t = y
|
|
return t
|
|
y = y[0]
|
|
|
|
type
|
|
TTypeAllowedFlag* = enum
|
|
taField,
|
|
taHeap,
|
|
taConcept,
|
|
taIsOpenArray,
|
|
taNoUntyped
|
|
|
|
TTypeAllowedFlags* = set[TTypeAllowedFlag]
|
|
|
|
proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
|
|
flags: TTypeAllowedFlags = {}): PType
|
|
|
|
proc typeAllowedNode(marker: var IntSet, n: PNode, kind: TSymKind,
|
|
flags: TTypeAllowedFlags = {}): PType =
|
|
if n != nil:
|
|
result = typeAllowedAux(marker, n.typ, kind, flags)
|
|
if result == nil:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
discard
|
|
else:
|
|
#if n.kind == nkRecCase and kind in {skProc, skFunc, skConst}:
|
|
# return n[0].typ
|
|
for i in 0..<n.len:
|
|
let it = n[i]
|
|
result = typeAllowedNode(marker, it, kind, flags)
|
|
if result != nil: break
|
|
|
|
proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
|
|
last: TTypeKind): bool =
|
|
var a = a
|
|
for k, i in pattern.items:
|
|
if a.kind != k: return false
|
|
if i >= a.len or a[i] == nil: return false
|
|
a = a[i]
|
|
result = a.kind == last
|
|
|
|
proc typeAllowedAux(marker: var IntSet, typ: PType, kind: TSymKind,
|
|
flags: TTypeAllowedFlags = {}): PType =
|
|
assert(kind in {skVar, skLet, skConst, skProc, skFunc, skParam, skResult})
|
|
# if we have already checked the type, return true, because we stop the
|
|
# evaluation if something is wrong:
|
|
result = nil
|
|
if typ == nil: return nil
|
|
if containsOrIncl(marker, typ.id): return nil
|
|
var t = skipTypes(typ, abstractInst-{tyTypeDesc})
|
|
case t.kind
|
|
of tyVar, tyLent:
|
|
if kind in {skProc, skFunc, skConst}:
|
|
result = t
|
|
elif t.kind == tyLent and kind != skResult:
|
|
result = t
|
|
else:
|
|
var t2 = skipTypes(t[0], abstractInst-{tyTypeDesc})
|
|
case t2.kind
|
|
of tyVar, tyLent:
|
|
if taHeap notin flags: result = t2 # ``var var`` is illegal on the heap
|
|
of tyOpenArray:
|
|
if kind != skParam or taIsOpenArray in flags: result = t
|
|
else: result = typeAllowedAux(marker, t2[0], kind, flags+{taIsOpenArray})
|
|
of tyUncheckedArray:
|
|
if kind != skParam: result = t
|
|
else: result = typeAllowedAux(marker, t2[0], kind, flags)
|
|
else:
|
|
if kind notin {skParam, skResult}: result = t
|
|
else: result = typeAllowedAux(marker, t2, kind, flags)
|
|
of tyProc:
|
|
if isInlineIterator(typ) and kind in {skVar, skLet, skConst, skParam, skResult}:
|
|
# only closure iterators my be assigned to anything.
|
|
result = t
|
|
let f = if kind in {skProc, skFunc}: flags+{taNoUntyped} else: flags
|
|
for i in 1..<t.len:
|
|
if result != nil: break
|
|
result = typeAllowedAux(marker, t[i], skParam, f-{taIsOpenArray})
|
|
if result.isNil and t[0] != nil:
|
|
result = typeAllowedAux(marker, t[0], skResult, flags)
|
|
of tyTypeDesc:
|
|
# XXX: This is still a horrible idea...
|
|
result = nil
|
|
of tyUntyped, tyTyped:
|
|
if kind notin {skParam, skResult} or taNoUntyped in flags: result = t
|
|
of tyStatic:
|
|
if kind notin {skParam}: result = t
|
|
of tyVoid:
|
|
if taField notin flags: result = t
|
|
of tyTypeClasses:
|
|
if tfGenericTypeParam in t.flags or taConcept in flags: #or taField notin flags:
|
|
discard
|
|
elif t.isResolvedUserTypeClass:
|
|
result = typeAllowedAux(marker, t.lastSon, kind, flags)
|
|
elif kind notin {skParam, skResult}:
|
|
result = t
|
|
of tyGenericBody, tyGenericParam, tyGenericInvocation,
|
|
tyNone, tyForward, tyFromExpr:
|
|
result = t
|
|
of tyNil:
|
|
if kind != skConst and kind != skParam: result = t
|
|
of tyString, tyBool, tyChar, tyEnum, tyInt..tyUInt64, tyCString, tyPointer:
|
|
result = nil
|
|
of tyOrdinal:
|
|
if kind != skParam: result = t
|
|
of tyGenericInst, tyDistinct, tyAlias, tyInferred:
|
|
result = typeAllowedAux(marker, lastSon(t), kind, flags)
|
|
of tyRange:
|
|
if skipTypes(t[0], abstractInst-{tyTypeDesc}).kind notin
|
|
{tyChar, tyEnum, tyInt..tyFloat128, tyInt..tyUInt64}: result = t
|
|
of tyOpenArray, tyVarargs, tySink:
|
|
# you cannot nest openArrays/sinks/etc.
|
|
if kind != skParam or taIsOpenArray in flags:
|
|
result = t
|
|
else:
|
|
result = typeAllowedAux(marker, t[0], kind, flags+{taIsOpenArray})
|
|
of tyUncheckedArray:
|
|
if kind != skParam and taHeap notin flags:
|
|
result = t
|
|
else:
|
|
result = typeAllowedAux(marker, lastSon(t), kind, flags-{taHeap})
|
|
of tySequence, tyOpt:
|
|
if t[0].kind != tyEmpty:
|
|
result = typeAllowedAux(marker, t[0], kind, flags+{taHeap})
|
|
elif kind in {skVar, skLet}:
|
|
result = t[0]
|
|
of tyArray:
|
|
if t[1].kind != tyEmpty:
|
|
result = typeAllowedAux(marker, t[1], kind, flags)
|
|
elif kind in {skVar, skLet}:
|
|
result = t[1]
|
|
of tyRef:
|
|
if kind == skConst: result = t
|
|
else: result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
|
|
of tyPtr:
|
|
result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
|
|
of tySet:
|
|
for i in 0..<t.len:
|
|
result = typeAllowedAux(marker, t[i], kind, flags)
|
|
if result != nil: break
|
|
of tyObject, tyTuple:
|
|
if kind in {skProc, skFunc, skConst} and
|
|
t.kind == tyObject and t[0] != nil:
|
|
result = t
|
|
else:
|
|
let flags = flags+{taField}
|
|
for i in 0..<t.len:
|
|
result = typeAllowedAux(marker, t[i], kind, flags)
|
|
if result != nil: break
|
|
if result.isNil and t.n != nil:
|
|
result = typeAllowedNode(marker, t.n, kind, flags)
|
|
of tyEmpty:
|
|
if kind in {skVar, skLet}: result = t
|
|
of tyProxy:
|
|
# for now same as error node; we say it's a valid type as it should
|
|
# prevent cascading errors:
|
|
result = nil
|
|
of tyOwned:
|
|
if t.len == 1 and t[0].skipTypes(abstractInst).kind in {tyRef, tyPtr, tyProc}:
|
|
result = typeAllowedAux(marker, t.lastSon, kind, flags+{taHeap})
|
|
else:
|
|
result = t
|
|
|
|
proc typeAllowed*(t: PType, kind: TSymKind; flags: TTypeAllowedFlags = {}): PType =
|
|
# returns 'nil' on success and otherwise the part of the type that is
|
|
# wrong!
|
|
var marker = initIntSet()
|
|
result = typeAllowedAux(marker, t, kind, flags)
|
|
|
|
include sizealignoffsetimpl
|
|
|
|
proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
|
|
computeSizeAlign(conf, typ)
|
|
result = typ.size
|
|
|
|
proc getReturnType*(s: PSym): PType =
|
|
# Obtains the return type of a iterator/proc/macro/template
|
|
assert s.kind in skProcKinds
|
|
result = s.typ[0]
|
|
|
|
proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
|
|
computeSizeAlign(conf, typ)
|
|
result = typ.align
|
|
|
|
proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
|
|
computeSizeAlign(conf, typ)
|
|
result = typ.size
|
|
|
|
proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
|
|
case t.kind
|
|
of tyStatic:
|
|
return t.n == nil
|
|
of tyTypeDesc:
|
|
if t.base.kind == tyNone: return true
|
|
if containsGenericTypeIter(t.base, closure): return true
|
|
return false
|
|
of GenericTypes + tyTypeClasses + {tyFromExpr}:
|
|
return true
|
|
else:
|
|
return false
|
|
|
|
proc containsGenericType*(t: PType): bool =
|
|
result = iterOverType(t, containsGenericTypeIter, nil)
|
|
|
|
proc baseOfDistinct*(t: PType): PType =
|
|
if t.kind == tyDistinct:
|
|
result = t[0]
|
|
else:
|
|
result = copyType(t, t.owner, false)
|
|
var parent: PType = nil
|
|
var it = result
|
|
while it.kind in {tyPtr, tyRef, tyOwned}:
|
|
parent = it
|
|
it = it.lastSon
|
|
if it.kind == tyDistinct and parent != nil:
|
|
parent[0] = it[0]
|
|
|
|
proc safeInheritanceDiff*(a, b: PType): int =
|
|
# same as inheritanceDiff but checks for tyError:
|
|
if a.kind == tyError or b.kind == tyError:
|
|
result = -1
|
|
else:
|
|
result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))
|
|
|
|
proc compatibleEffectsAux(se, re: PNode): bool =
|
|
if re.isNil: return false
|
|
for r in items(re):
|
|
block search:
|
|
for s in items(se):
|
|
if safeInheritanceDiff(r.typ, s.typ) <= 0:
|
|
break search
|
|
return false
|
|
result = true
|
|
|
|
type
|
|
EffectsCompat* = enum
|
|
efCompat
|
|
efRaisesDiffer
|
|
efRaisesUnknown
|
|
efTagsDiffer
|
|
efTagsUnknown
|
|
efLockLevelsDiffer
|
|
|
|
proc compatibleEffects*(formal, actual: PType): EffectsCompat =
|
|
# for proc type compatibility checking:
|
|
assert formal.kind == tyProc and actual.kind == tyProc
|
|
if formal.n[0].kind != nkEffectList or
|
|
actual.n[0].kind != nkEffectList:
|
|
return efTagsUnknown
|
|
|
|
var spec = formal.n[0]
|
|
if spec.len != 0:
|
|
var real = actual.n[0]
|
|
|
|
let se = spec[exceptionEffects]
|
|
# if 'se.kind == nkArgList' it is no formal type really, but a
|
|
# computed effect and as such no spec:
|
|
# 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
|
|
if not isNil(se) and se.kind != nkArgList:
|
|
# spec requires some exception or tag, but we don't know anything:
|
|
if real.len == 0: return efRaisesUnknown
|
|
let res = compatibleEffectsAux(se, real[exceptionEffects])
|
|
if not res: return efRaisesDiffer
|
|
|
|
let st = spec[tagEffects]
|
|
if not isNil(st) and st.kind != nkArgList:
|
|
# spec requires some exception or tag, but we don't know anything:
|
|
if real.len == 0: return efTagsUnknown
|
|
let res = compatibleEffectsAux(st, real[tagEffects])
|
|
if not res: return efTagsDiffer
|
|
if formal.lockLevel.ord < 0 or
|
|
actual.lockLevel.ord <= formal.lockLevel.ord:
|
|
result = efCompat
|
|
else:
|
|
result = efLockLevelsDiffer
|
|
|
|
proc isCompileTimeOnly*(t: PType): bool {.inline.} =
|
|
result = t.kind in {tyTypeDesc, tyStatic}
|
|
|
|
proc containsCompileTimeOnly*(t: PType): bool =
|
|
if isCompileTimeOnly(t): return true
|
|
for i in 0..<t.len:
|
|
if t[i] != nil and isCompileTimeOnly(t[i]):
|
|
return true
|
|
return false
|
|
|
|
proc safeSkipTypes*(t: PType, kinds: TTypeKinds): PType =
|
|
## same as 'skipTypes' but with a simple cycle detector.
|
|
result = t
|
|
var seen = initIntSet()
|
|
while result.kind in kinds and not containsOrIncl(seen, result.id):
|
|
result = lastSon(result)
|
|
|
|
type
|
|
OrdinalType* = enum
|
|
NoneLike, IntLike, FloatLike
|
|
|
|
proc classify*(t: PType): OrdinalType =
|
|
## for convenient type checking:
|
|
if t == nil:
|
|
result = NoneLike
|
|
else:
|
|
case skipTypes(t, abstractVarRange).kind
|
|
of tyFloat..tyFloat128: result = FloatLike
|
|
of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
|
|
result = IntLike
|
|
else: result = NoneLike
|
|
|
|
proc skipConv*(n: PNode): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
|
|
# only skip the conversion if it doesn't lose too important information
|
|
# (see bug #1334)
|
|
if n[0].typ.classify == n.typ.classify:
|
|
result = n[0]
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
|
|
if n[1].typ.classify == n.typ.classify:
|
|
result = n[1]
|
|
else: discard
|
|
|
|
proc skipHidden*(n: PNode): PNode =
|
|
result = n
|
|
while true:
|
|
case result.kind
|
|
of nkHiddenStdConv, nkHiddenSubConv:
|
|
if result[1].typ.classify == result.typ.classify:
|
|
result = result[1]
|
|
else: break
|
|
of nkHiddenDeref, nkHiddenAddr:
|
|
result = result[0]
|
|
else: break
|
|
|
|
proc skipConvTakeType*(n: PNode): PNode =
|
|
result = n.skipConv
|
|
result.typ = n.typ
|
|
|
|
proc isEmptyContainer*(t: PType): bool =
|
|
case t.kind
|
|
of tyUntyped, tyNil: result = true
|
|
of tyArray: result = t[1].kind == tyEmpty
|
|
of tySet, tySequence, tyOpenArray, tyVarargs:
|
|
result = t[0].kind == tyEmpty
|
|
of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.lastSon)
|
|
else: result = false
|
|
|
|
proc takeType*(formal, arg: PType): PType =
|
|
# param: openArray[string] = []
|
|
# [] is an array constructor of length 0 of type string!
|
|
if arg.kind == tyNil:
|
|
# and not (formal.kind == tyProc and formal.callConv == ccClosure):
|
|
result = formal
|
|
elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
|
|
arg.isEmptyContainer:
|
|
let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), arg.owner, keepId=false)
|
|
a[ord(arg.kind == tyArray)] = formal[0]
|
|
result = a
|
|
elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
|
|
result = formal
|
|
else:
|
|
result = arg
|
|
|
|
proc skipHiddenSubConv*(n: PNode): PNode =
|
|
if n.kind == nkHiddenSubConv:
|
|
# param: openArray[string] = []
|
|
# [] is an array constructor of length 0 of type string!
|
|
let formal = n.typ
|
|
result = n[1]
|
|
let arg = result.typ
|
|
let dest = takeType(formal, arg)
|
|
if dest == arg and formal.kind != tyUntyped:
|
|
#echo n.info, " came here for ", formal.typeToString
|
|
result = n
|
|
else:
|
|
result = copyTree(result)
|
|
result.typ = dest
|
|
else:
|
|
result = n
|
|
|
|
proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType) =
|
|
if formal.kind != tyError and actual.kind != tyError:
|
|
let named = typeToString(formal)
|
|
let desc = typeToString(formal, preferDesc)
|
|
let x = if named == desc: named else: named & " = " & desc
|
|
var msg = "type mismatch: got <" &
|
|
typeToString(actual) & "> " &
|
|
"but expected '" & x & "'"
|
|
|
|
if formal.kind == tyProc and actual.kind == tyProc:
|
|
case compatibleEffects(formal, actual)
|
|
of efCompat: discard
|
|
of efRaisesDiffer:
|
|
msg.add "\n.raise effects differ"
|
|
of efRaisesUnknown:
|
|
msg.add "\n.raise effect is 'can raise any'"
|
|
of efTagsDiffer:
|
|
msg.add "\n.tag effects differ"
|
|
of efTagsUnknown:
|
|
msg.add "\n.tag effect is 'any tag allowed'"
|
|
of efLockLevelsDiffer:
|
|
msg.add "\nlock levels differ"
|
|
localError(conf, info, msg)
|
|
|
|
proc isTupleRecursive(t: PType, cycleDetector: var IntSet): bool =
|
|
if t == nil:
|
|
return false
|
|
if cycleDetector.containsOrIncl(t.id):
|
|
return true
|
|
case t.kind
|
|
of tyTuple:
|
|
var cycleDetectorCopy: IntSet
|
|
for i in 0..<t.len:
|
|
assign(cycleDetectorCopy, cycleDetector)
|
|
if isTupleRecursive(t[i], cycleDetectorCopy):
|
|
return true
|
|
of tyAlias, tyRef, tyPtr, tyGenericInst, tyVar, tyLent, tySink,
|
|
tyArray, tyUncheckedArray, tySequence, tyDistinct:
|
|
return isTupleRecursive(t.lastSon, cycleDetector)
|
|
else:
|
|
return false
|
|
|
|
proc isTupleRecursive*(t: PType): bool =
|
|
var cycleDetector = initIntSet()
|
|
isTupleRecursive(t, cycleDetector)
|
|
|
|
proc isException*(t: PType): bool =
|
|
# check if `y` is object type and it inherits from Exception
|
|
assert(t != nil)
|
|
|
|
var t = t.skipTypes(abstractInst)
|
|
while t.kind == tyObject:
|
|
if t.sym != nil and t.sym.magic == mException: return true
|
|
if t[0] == nil: break
|
|
t = skipTypes(t[0], abstractPtrs)
|
|
return false
|
|
|
|
proc isSinkTypeForParam*(t: PType): bool =
|
|
# a parameter like 'seq[owned T]' must not be used only once, but its
|
|
# elements must, so we detect this case here:
|
|
result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
|
|
when false:
|
|
if isSinkType(t):
|
|
if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
|
|
result = false
|
|
else:
|
|
result = true
|