mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 01:14:41 +00:00
When calling procs from Nim in Nimscript you could hit the VM iteration limit even though the code is functioning properly. This resolves that by making the iteration limit reset eachtime you call a proc.
(cherry picked from commit a87617956f)
2302 lines
81 KiB
Nim
2302 lines
81 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This file implements the new evaluation engine for Nim code.
|
|
## An instruction is 1-3 int32s in memory, it is a register based VM.
|
|
|
|
import ast except getstr
|
|
|
|
import
|
|
strutils, msgs, vmdef, vmgen, nimsets, types, passes,
|
|
parser, vmdeps, idents, trees, renderer, options, transf, parseutils,
|
|
vmmarshal, gorgeimpl, lineinfos, tables, btrees, macrocacheimpl,
|
|
modulegraphs, sighashes, int128
|
|
|
|
from semfold import leValueConv, ordinalValToString
|
|
from evaltempl import evalTemplate
|
|
|
|
const
|
|
traceCode = defined(nimVMDebug)
|
|
|
|
when hasFFI:
|
|
import evalffi
|
|
|
|
type
|
|
PStackFrame* = ref TStackFrame
|
|
TStackFrame* = object
|
|
prc: PSym # current prc; proc that is evaluated
|
|
slots: seq[TFullReg] # parameters passed to the proc + locals;
|
|
# parameters come first
|
|
next: PStackFrame # for stacking
|
|
comesFrom: int
|
|
safePoints: seq[int] # used for exception handling
|
|
# XXX 'break' should perform cleanup actions
|
|
# What does the C backend do for it?
|
|
|
|
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
|
|
if x != nil:
|
|
if recursionLimit == 0:
|
|
var calls = 0
|
|
var x = x
|
|
while x != nil:
|
|
inc calls
|
|
x = x.next
|
|
msgWriteln(c.config, $calls & " calls omitted\n")
|
|
return
|
|
stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
|
|
var info = c.debug[pc]
|
|
# we now use a format similar to the one in lib/system/excpt.nim
|
|
var s = ""
|
|
# todo: factor with quotedFilename
|
|
if optExcessiveStackTrace in c.config.globalOptions:
|
|
s = toFullPath(c.config, info)
|
|
else:
|
|
s = toFilename(c.config, info)
|
|
var line = toLinenumber(info)
|
|
var col = toColumn(info)
|
|
if line > 0:
|
|
s.add('(')
|
|
s.add($line)
|
|
s.add(", ")
|
|
s.add($(col + ColOffset))
|
|
s.add(')')
|
|
if x.prc != nil:
|
|
for k in 1..max(1, 25-s.len): s.add(' ')
|
|
s.add(x.prc.name.s)
|
|
msgWriteln(c.config, s)
|
|
|
|
proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
|
|
msg: string, lineInfo: TLineInfo) =
|
|
msgWriteln(c.config, "stack trace: (most recent call last)")
|
|
stackTraceAux(c, tos, pc)
|
|
# XXX test if we want 'globalError' for every mode
|
|
if c.mode == emRepl: globalError(c.config, lineInfo, msg)
|
|
else: localError(c.config, lineInfo, msg)
|
|
|
|
template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
|
|
msg: string, lineInfo: TLineInfo) =
|
|
stackTraceImpl(c, tos, pc, msg, lineInfo)
|
|
return
|
|
|
|
template stackTrace(c: PCtx, tos: PStackFrame, pc: int, msg: string) =
|
|
stackTraceImpl(c, tos, pc, msg, c.debug[pc])
|
|
return
|
|
|
|
proc bailOut(c: PCtx; tos: PStackFrame) =
|
|
stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
|
|
c.currentExceptionA[3].skipColon.strVal &
|
|
" [" & c.currentExceptionA[2].skipColon.strVal & "]")
|
|
|
|
when not defined(nimComputedGoto):
|
|
{.pragma: computedGoto.}
|
|
|
|
proc ensureKind(n: var TFullReg, kind: TRegisterKind) =
|
|
if n.kind != kind:
|
|
n = TFullReg(kind: kind)
|
|
|
|
template ensureKind(k: untyped) {.dirty.} =
|
|
ensureKind(regs[ra], k)
|
|
|
|
template decodeB(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
ensureKind(k)
|
|
|
|
template decodeBC(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
ensureKind(k)
|
|
|
|
template declBC() {.dirty.} =
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
|
|
template decodeBImm(k: untyped) {.dirty.} =
|
|
let rb = instr.regB
|
|
let imm = instr.regC - byteExcess
|
|
ensureKind(k)
|
|
|
|
template decodeBx(k: untyped) {.dirty.} =
|
|
let rbx = instr.regBx - wordExcess
|
|
ensureKind(k)
|
|
|
|
template move(a, b: untyped) {.dirty.} = system.shallowCopy(a, b)
|
|
# XXX fix minor 'shallowCopy' overloading bug in compiler
|
|
|
|
proc derefPtrToReg(address: BiggestInt, typ: PType, r: var TFullReg, isAssign: bool): bool =
|
|
# nim bug: `isAssign: static bool` doesn't work, giving odd compiler error
|
|
template fun(field, T, rkind) =
|
|
if isAssign:
|
|
cast[ptr T](address)[] = T(r.field)
|
|
else:
|
|
r.ensureKind(rkind)
|
|
let val = cast[ptr T](address)[]
|
|
when T is SomeInteger:
|
|
r.field = BiggestInt(val)
|
|
else:
|
|
r.field = val
|
|
return true
|
|
|
|
## see also typeinfo.getBiggestInt
|
|
case typ.kind
|
|
of tyInt: fun(intVal, int, rkInt)
|
|
of tyInt8: fun(intVal, int8, rkInt)
|
|
of tyInt16: fun(intVal, int16, rkInt)
|
|
of tyInt32: fun(intVal, int32, rkInt)
|
|
of tyInt64: fun(intVal, int64, rkInt)
|
|
of tyUInt: fun(intVal, uint, rkInt)
|
|
of tyUInt8: fun(intVal, uint8, rkInt)
|
|
of tyUInt16: fun(intVal, uint16, rkInt)
|
|
of tyUInt32: fun(intVal, uint32, rkInt)
|
|
of tyUInt64: fun(intVal, uint64, rkInt) # note: differs from typeinfo.getBiggestInt
|
|
of tyFloat: fun(floatVal, float, rkFloat)
|
|
of tyFloat32: fun(floatVal, float32, rkFloat)
|
|
of tyFloat64: fun(floatVal, float64, rkFloat)
|
|
else: return false
|
|
|
|
proc createStrKeepNode(x: var TFullReg; keepNode=true) =
|
|
if x.node.isNil or not keepNode:
|
|
x.node = newNode(nkStrLit)
|
|
elif x.node.kind == nkNilLit and keepNode:
|
|
when defined(useNodeIds):
|
|
let id = x.node.id
|
|
x.node[] = TNode(kind: nkStrLit)
|
|
when defined(useNodeIds):
|
|
x.node.id = id
|
|
elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
|
|
nfAllConst in x.node.flags:
|
|
# XXX this is hacky; tests/txmlgen triggers it:
|
|
x.node = newNode(nkStrLit)
|
|
# It not only hackey, it is also wrong for tgentemplate. The primary
|
|
# cause of bugs like these is that the VM does not properly distinguish
|
|
# between variable definitions (var foo = e) and variable updates (foo = e).
|
|
|
|
include vmhooks
|
|
|
|
template createStr(x) =
|
|
x.node = newNode(nkStrLit)
|
|
|
|
template createSet(x) =
|
|
x.node = newNode(nkCurly)
|
|
|
|
proc moveConst(x: var TFullReg, y: TFullReg) =
|
|
x.ensureKind(y.kind)
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: x.intVal = y.intVal
|
|
of rkFloat: x.floatVal = y.floatVal
|
|
of rkNode: x.node = y.node
|
|
of rkRegisterAddr: x.regAddr = y.regAddr
|
|
of rkNodeAddr: x.nodeAddr = y.nodeAddr
|
|
|
|
# this seems to be the best way to model the reference semantics
|
|
# of system.NimNode:
|
|
template asgnRef(x, y: untyped) = moveConst(x, y)
|
|
|
|
proc copyValue(src: PNode): PNode =
|
|
if src == nil or nfIsRef in src.flags:
|
|
return src
|
|
result = newNode(src.kind)
|
|
result.info = src.info
|
|
result.typ = src.typ
|
|
result.flags = src.flags * PersistentNodeFlags
|
|
result.comment = src.comment
|
|
when defined(useNodeIds):
|
|
if result.id == nodeIdToDebug:
|
|
echo "COMES FROM ", src.id
|
|
case src.kind
|
|
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
|
|
of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
|
|
of nkSym: result.sym = src.sym
|
|
of nkIdent: result.ident = src.ident
|
|
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
|
|
else:
|
|
newSeq(result.sons, src.len)
|
|
for i in 0..<src.len:
|
|
result[i] = copyValue(src[i])
|
|
|
|
proc asgnComplex(x: var TFullReg, y: TFullReg) =
|
|
x.ensureKind(y.kind)
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: x.intVal = y.intVal
|
|
of rkFloat: x.floatVal = y.floatVal
|
|
of rkNode: x.node = copyValue(y.node)
|
|
of rkRegisterAddr: x.regAddr = y.regAddr
|
|
of rkNodeAddr: x.nodeAddr = y.nodeAddr
|
|
|
|
proc fastAsgnComplex(x: var TFullReg, y: TFullReg) =
|
|
x.ensureKind(y.kind)
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt: x.intVal = y.intVal
|
|
of rkFloat: x.floatVal = y.floatVal
|
|
of rkNode: x.node = y.node
|
|
of rkRegisterAddr: x.regAddr = y.regAddr
|
|
of rkNodeAddr: x.nodeAddr = y.nodeAddr
|
|
|
|
proc writeField(n: var PNode, x: TFullReg) =
|
|
case x.kind
|
|
of rkNone: discard
|
|
of rkInt:
|
|
if n.kind == nkNilLit:
|
|
n[] = TNode(kind: nkIntLit) # ideally, `nkPtrLit`
|
|
n.intVal = x.intVal
|
|
of rkFloat: n.floatVal = x.floatVal
|
|
of rkNode: n = copyValue(x.node)
|
|
of rkRegisterAddr: writeField(n, x.regAddr[])
|
|
of rkNodeAddr: n = x.nodeAddr[]
|
|
|
|
proc putIntoReg(dest: var TFullReg; n: PNode) =
|
|
case n.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
dest = TFullReg(kind: rkNode, node: newStrNode(nkStrLit, n.strVal))
|
|
of nkIntLit: # use `nkPtrLit` once this is added
|
|
if dest.kind == rkNode: dest.node = n
|
|
elif n.typ != nil and n.typ.kind in PtrLikeKinds:
|
|
dest = TFullReg(kind: rkNode, node: n)
|
|
else:
|
|
dest = TFullReg(kind: rkInt, intVal: n.intVal)
|
|
of {nkCharLit..nkUInt64Lit} - {nkIntLit}:
|
|
dest = TFullReg(kind: rkInt, intVal: n.intVal)
|
|
of nkFloatLit..nkFloat128Lit:
|
|
dest = TFullReg(kind: rkFloat, floatVal: n.floatVal)
|
|
else:
|
|
dest = TFullReg(kind: rkNode, node: n)
|
|
|
|
proc regToNode(x: TFullReg): PNode =
|
|
case x.kind
|
|
of rkNone: result = newNode(nkEmpty)
|
|
of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
|
|
of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
|
|
of rkNode: result = x.node
|
|
of rkRegisterAddr: result = regToNode(x.regAddr[])
|
|
of rkNodeAddr: result = x.nodeAddr[]
|
|
|
|
template getstr(a: untyped): untyped =
|
|
(if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
|
|
|
|
proc pushSafePoint(f: PStackFrame; pc: int) =
|
|
when not defined(nimNoNilSeqs):
|
|
if f.safePoints.isNil: f.safePoints = @[]
|
|
f.safePoints.add(pc)
|
|
|
|
proc popSafePoint(f: PStackFrame) =
|
|
discard f.safePoints.pop()
|
|
|
|
type
|
|
ExceptionGoto = enum
|
|
ExceptionGotoHandler,
|
|
ExceptionGotoFinally,
|
|
ExceptionGotoUnhandled
|
|
|
|
proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
|
|
tuple[why: ExceptionGoto, where: int] =
|
|
let raisedType = exc.typ.skipTypes(abstractPtrs)
|
|
|
|
while f.safePoints.len > 0:
|
|
var pc = f.safePoints.pop()
|
|
|
|
var matched = false
|
|
var pcEndExcept = pc
|
|
|
|
# Scan the chain of exceptions starting at pc.
|
|
# The structure is the following:
|
|
# pc - opcExcept, <end of this block>
|
|
# - opcExcept, <pattern1>
|
|
# - opcExcept, <pattern2>
|
|
# ...
|
|
# - opcExcept, <patternN>
|
|
# - Exception handler body
|
|
# - ... more opcExcept blocks may follow
|
|
# - ... an optional opcFinally block may follow
|
|
#
|
|
# Note that the exception handler body already contains a jump to the
|
|
# finally block or, if that's not present, to the point where the execution
|
|
# should continue.
|
|
# Also note that opcFinally blocks are the last in the chain.
|
|
while c.code[pc].opcode == opcExcept:
|
|
# Where this Except block ends
|
|
pcEndExcept = pc + c.code[pc].regBx - wordExcess
|
|
inc pc
|
|
|
|
# A series of opcExcept follows for each exception type matched
|
|
while c.code[pc].opcode == opcExcept:
|
|
let excIndex = c.code[pc].regBx - wordExcess
|
|
let exceptType =
|
|
if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
|
|
else: nil
|
|
|
|
# echo typeToString(exceptType), " ", typeToString(raisedType)
|
|
|
|
# Determine if the exception type matches the pattern
|
|
if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
|
|
matched = true
|
|
break
|
|
|
|
inc pc
|
|
|
|
# Skip any further ``except`` pattern and find the first instruction of
|
|
# the handler body
|
|
while c.code[pc].opcode == opcExcept:
|
|
inc pc
|
|
|
|
if matched:
|
|
break
|
|
|
|
# If no handler in this chain is able to catch this exception we check if
|
|
# the "parent" chains are able to. If this chain ends with a `finally`
|
|
# block we must execute it before continuing.
|
|
pc = pcEndExcept
|
|
|
|
# Where the handler body starts
|
|
let pcBody = pc
|
|
|
|
if matched:
|
|
return (ExceptionGotoHandler, pcBody)
|
|
elif c.code[pc].opcode == opcFinally:
|
|
# The +1 here is here because we don't want to execute it since we've
|
|
# already pop'd this statepoint from the stack.
|
|
return (ExceptionGotoFinally, pc + 1)
|
|
|
|
return (ExceptionGotoUnhandled, 0)
|
|
|
|
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
|
|
# Walk up the chain of safepoints and return the PC of the first `finally`
|
|
# block we find or -1 if no such block is found.
|
|
# Note that the safepoint is removed once the function returns!
|
|
result = -1
|
|
|
|
# Traverse the stack starting from the end in order to execute the blocks in
|
|
# the intended order
|
|
for i in 1..f.safePoints.len:
|
|
var pc = f.safePoints[^i]
|
|
# Skip the `except` blocks
|
|
while c.code[pc].opcode == opcExcept:
|
|
pc += c.code[pc].regBx - wordExcess
|
|
if c.code[pc].opcode == opcFinally:
|
|
discard f.safePoints.pop
|
|
return pc + 1
|
|
|
|
proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
|
|
if desttyp.kind == tyString:
|
|
dest.ensureKind(rkNode)
|
|
dest.node = newNode(nkStrLit)
|
|
let styp = srctyp.skipTypes(abstractRange)
|
|
case styp.kind
|
|
of tyEnum:
|
|
let n = styp.n
|
|
let x = src.intVal.int
|
|
if x <% n.len and (let f = n[x].sym; f.position == x):
|
|
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
|
|
else:
|
|
for i in 0..<n.len:
|
|
if n[i].kind != nkSym: internalError(c.config, "opConv for enum")
|
|
let f = n[i].sym
|
|
if f.position == x:
|
|
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
|
|
return
|
|
dest.node.strVal = styp.sym.name.s & " " & $x
|
|
of tyInt..tyInt64:
|
|
dest.node.strVal = $src.intVal
|
|
of tyUInt..tyUInt64:
|
|
dest.node.strVal = $uint64(src.intVal)
|
|
of tyBool:
|
|
dest.node.strVal = if src.intVal == 0: "false" else: "true"
|
|
of tyFloat..tyFloat128:
|
|
dest.node.strVal = $src.floatVal
|
|
of tyString:
|
|
dest.node.strVal = src.node.strVal
|
|
of tyCString:
|
|
if src.node.kind == nkBracket:
|
|
# Array of chars
|
|
var strVal = ""
|
|
for son in src.node.sons:
|
|
let c = char(son.intVal)
|
|
if c == '\0': break
|
|
strVal.add(c)
|
|
dest.node.strVal = strVal
|
|
else:
|
|
dest.node.strVal = src.node.strVal
|
|
of tyChar:
|
|
dest.node.strVal = $chr(src.intVal)
|
|
else:
|
|
internalError(c.config, "cannot convert to string " & desttyp.typeToString)
|
|
else:
|
|
case skipTypes(desttyp, abstractVarRange).kind
|
|
of tyInt..tyInt64:
|
|
dest.ensureKind(rkInt)
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyFloat..tyFloat64:
|
|
dest.intVal = int(src.floatVal)
|
|
else:
|
|
dest.intVal = src.intVal
|
|
if toInt128(dest.intVal) < firstOrd(c.config, desttyp) or toInt128(dest.intVal) > lastOrd(c.config, desttyp):
|
|
return true
|
|
of tyUInt..tyUInt64:
|
|
dest.ensureKind(rkInt)
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyFloat..tyFloat64:
|
|
dest.intVal = int(src.floatVal)
|
|
else:
|
|
let srcDist = (sizeof(src.intVal) - srctyp.size) * 8
|
|
let destDist = (sizeof(dest.intVal) - desttyp.size) * 8
|
|
|
|
var value = cast[BiggestUInt](src.intVal)
|
|
value = (value shl srcDist) shr srcDist
|
|
value = (value shl destDist) shr destDist
|
|
dest.intVal = cast[BiggestInt](value)
|
|
of tyBool:
|
|
dest.ensureKind(rkInt)
|
|
dest.intVal =
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyFloat..tyFloat64: int(src.floatVal != 0.0)
|
|
else: int(src.intVal != 0)
|
|
of tyFloat..tyFloat64:
|
|
dest.ensureKind(rkFloat)
|
|
case skipTypes(srctyp, abstractRange).kind
|
|
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
|
|
dest.floatVal = toBiggestFloat(src.intVal)
|
|
else:
|
|
dest.floatVal = src.floatVal
|
|
of tyObject:
|
|
if srctyp.skipTypes(abstractVarRange).kind != tyObject:
|
|
internalError(c.config, "invalid object-to-object conversion")
|
|
# A object-to-object conversion is essentially a no-op
|
|
moveConst(dest, src)
|
|
else:
|
|
asgnComplex(dest, src)
|
|
|
|
proc compile(c: PCtx, s: PSym): int =
|
|
result = vmgen.genProc(c, s)
|
|
when debugEchoCode: c.echoCode result
|
|
#c.echoCode
|
|
|
|
template handleJmpBack() {.dirty.} =
|
|
if c.loopIterations <= 0:
|
|
if allowInfiniteLoops in c.features:
|
|
c.loopIterations = c.config.maxLoopIterationsVM
|
|
else:
|
|
msgWriteln(c.config, "stack trace: (most recent call last)")
|
|
stackTraceAux(c, tos, pc)
|
|
globalError(c.config, c.debug[pc], errTooManyIterations % $c.config.maxLoopIterationsVM)
|
|
dec(c.loopIterations)
|
|
|
|
proc recSetFlagIsRef(arg: PNode) =
|
|
if arg.kind notin {nkStrLit..nkTripleStrLit}:
|
|
arg.flags.incl(nfIsRef)
|
|
for i in 0..<arg.safeLen:
|
|
arg[i].recSetFlagIsRef
|
|
|
|
proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
|
|
let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
|
|
let oldLen = node.len
|
|
setLen(node.sons, newLen)
|
|
if oldLen < newLen:
|
|
for i in oldLen..<newLen:
|
|
node[i] = getNullValue(typ[0], info, c.config)
|
|
|
|
const
|
|
errNilAccess = "attempt to access a nil address"
|
|
errOverOrUnderflow = "over- or underflow"
|
|
errConstantDivisionByZero = "division by zero"
|
|
errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
|
|
errTooManyIterations = "interpretation requires too many iterations; " &
|
|
"if you are sure this is not a bug in your code, compile with `--maxLoopIterationsVM:number` (current value: $1)"
|
|
errFieldXNotFound = "node lacks field: "
|
|
|
|
|
|
template maybeHandlePtr(node2: PNode, reg: TFullReg, isAssign2: bool): bool =
|
|
let node = node2 # prevent double evaluation
|
|
if node.kind == nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
let typ = node.typ
|
|
if nfIsPtr in node.flags or (typ != nil and typ.kind == tyPtr):
|
|
assert node.kind == nkIntLit, $(node.kind)
|
|
assert typ != nil
|
|
let typ2 = if typ.kind == tyPtr: typ[0] else: typ
|
|
if not derefPtrToReg(node.intVal, typ2, reg, isAssign = isAssign2):
|
|
# tyObject not supported in this context
|
|
stackTrace(c, tos, pc, "deref unsupported ptr type: " & $(typeToString(typ), typ.kind))
|
|
true
|
|
else:
|
|
false
|
|
|
|
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
|
|
var pc = start
|
|
var tos = tos
|
|
# Used to keep track of where the execution is resumed.
|
|
var savedPC = -1
|
|
var savedFrame: PStackFrame
|
|
var regs: seq[TFullReg] # alias to tos.slots for performance
|
|
move(regs, tos.slots)
|
|
#echo "NEW RUN ------------------------"
|
|
while true:
|
|
#{.computedGoto.}
|
|
let instr = c.code[pc]
|
|
let ra = instr.regA
|
|
|
|
when traceCode:
|
|
template regDescr(name, r): string =
|
|
let kind = if r < regs.len: $regs[r].kind else: ""
|
|
let ret = name & ": " & $r & " " & $kind
|
|
alignLeft(ret, 15)
|
|
echo "PC:$pc $opcode $ra $rb $rc" % [
|
|
"pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
|
|
"ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
|
|
"rc", regDescr("rc", instr.regC)]
|
|
|
|
case instr.opcode
|
|
of opcEof: return regs[ra]
|
|
of opcRet:
|
|
let newPc = c.cleanUpOnReturn(tos)
|
|
# Perform any cleanup action before returning
|
|
if newPc < 0:
|
|
pc = tos.comesFrom
|
|
tos = tos.next
|
|
let retVal = regs[0]
|
|
if tos.isNil:
|
|
return retVal
|
|
|
|
move(regs, tos.slots)
|
|
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
|
|
if c.code[pc].opcode == opcIndCallAsgn:
|
|
regs[c.code[pc].regA] = retVal
|
|
else:
|
|
savedPC = pc
|
|
savedFrame = tos
|
|
# The -1 is needed because at the end of the loop we increment `pc`
|
|
pc = newPc - 1
|
|
of opcYldYoid: assert false
|
|
of opcYldVal: assert false
|
|
of opcAsgnInt:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal
|
|
of opcAsgnFloat:
|
|
decodeB(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal
|
|
of opcCastFloatToInt32:
|
|
let rb = instr.regB
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
|
|
of opcCastFloatToInt64:
|
|
let rb = instr.regB
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = cast[int64](regs[rb].floatVal)
|
|
of opcCastIntToFloat32:
|
|
let rb = instr.regB
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = cast[float32](regs[rb].intVal)
|
|
of opcCastIntToFloat64:
|
|
let rb = instr.regB
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = cast[float64](regs[rb].intVal)
|
|
|
|
of opcCastPtrToInt: # RENAME opcCastPtrOrRefToInt
|
|
decodeBImm(rkInt)
|
|
case imm
|
|
of 1: # PtrLikeKinds
|
|
case regs[rb].kind
|
|
of rkNode:
|
|
regs[ra].intVal = cast[int](regs[rb].node.intVal)
|
|
of rkNodeAddr:
|
|
regs[ra].intVal = cast[int](regs[rb].nodeAddr)
|
|
else:
|
|
stackTrace(c, tos, pc, "opcCastPtrToInt: got " & $regs[rb].kind)
|
|
of 2: # tyRef
|
|
regs[ra].intVal = cast[int](regs[rb].node)
|
|
else: assert false, $imm
|
|
of opcCastIntToPtr:
|
|
let rb = instr.regB
|
|
let typ = regs[ra].node.typ
|
|
let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
|
|
case regs[rb].kind
|
|
of rkInt: node2.intVal = regs[rb].intVal
|
|
of rkNode:
|
|
if regs[rb].node.typ.kind notin PtrLikeKinds:
|
|
stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].node.typ: " & $regs[rb].node.typ.kind)
|
|
node2.intVal = regs[rb].node.intVal
|
|
else: stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].kind: " & $regs[rb].kind)
|
|
regs[ra].node = node2
|
|
of opcAsgnComplex:
|
|
asgnComplex(regs[ra], regs[instr.regB])
|
|
of opcFastAsgnComplex:
|
|
fastAsgnComplex(regs[ra], regs[instr.regB])
|
|
of opcAsgnRef:
|
|
asgnRef(regs[ra], regs[instr.regB])
|
|
of opcNodeToReg:
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
# opcDeref might already have loaded it into a register. XXX Let's hope
|
|
# this is still correct this way:
|
|
if regs[rb].kind != rkNode:
|
|
regs[ra] = regs[rb]
|
|
else:
|
|
assert regs[rb].kind == rkNode
|
|
let nb = regs[rb].node
|
|
case nb.kind
|
|
of nkCharLit..nkUInt64Lit:
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = nb.intVal
|
|
of nkFloatLit..nkFloat64Lit:
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = nb.floatVal
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = nb
|
|
of opcLdArr:
|
|
# a = b[c]
|
|
decodeBC(rkNode)
|
|
if regs[rc].intVal > high(int):
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
|
|
let idx = regs[rc].intVal.int
|
|
let src = regs[rb].node
|
|
if src.kind in {nkStrLit..nkTripleStrLit}:
|
|
if idx <% src.strVal.len:
|
|
regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
|
|
regs[ra].node.intVal = src.strVal[idx].ord
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
|
|
elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
|
|
regs[ra].node = src[idx]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
|
|
of opcLdArrAddr:
|
|
# a = addr(b[c])
|
|
decodeBC(rkNodeAddr)
|
|
if regs[rc].intVal > high(int):
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
|
|
let idx = regs[rc].intVal.int
|
|
let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
|
|
if src.kind notin {nkEmpty..nkTripleStrLit} and idx <% src.len:
|
|
regs[ra].nodeAddr = addr src.sons[idx]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
|
|
of opcLdStrIdx:
|
|
decodeBC(rkInt)
|
|
let idx = regs[rc].intVal.int
|
|
let s = regs[rb].node.strVal
|
|
if idx <% s.len:
|
|
regs[ra].intVal = s[idx].ord
|
|
elif idx == s.len and optLaxStrings in c.config.options:
|
|
regs[ra].intVal = 0
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
|
|
of opcWrArr:
|
|
# a[b] = c
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
let arr = regs[ra].node
|
|
if arr.kind in {nkStrLit..nkTripleStrLit}:
|
|
if idx <% arr.strVal.len:
|
|
arr.strVal[idx] = chr(regs[rc].intVal)
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
|
|
elif idx <% arr.len:
|
|
writeField(arr[idx], regs[rc])
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.len-1))
|
|
of opcLdObj:
|
|
# a = b.c
|
|
decodeBC(rkNode)
|
|
let src = regs[rb].node
|
|
case src.kind
|
|
of nkEmpty..nkNilLit:
|
|
# for nkPtrLit, this could be supported in the future, use something like:
|
|
# derefPtrToReg(src.intVal + offsetof(src.typ, rc), typ_field, regs[ra], isAssign = false)
|
|
# where we compute the offset in bytes for field rc
|
|
stackTrace(c, tos, pc, errNilAccess & " " & $("kind", src.kind, "typ", typeToString(src.typ), "rc", rc))
|
|
of nkObjConstr:
|
|
let n = src[rc + 1].skipColon
|
|
regs[ra].node = n
|
|
else:
|
|
let n = src[rc]
|
|
regs[ra].node = n
|
|
of opcLdObjAddr:
|
|
# a = addr(b.c)
|
|
decodeBC(rkNodeAddr)
|
|
let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
|
|
case src.kind
|
|
of nkEmpty..nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
of nkObjConstr:
|
|
let n = src.sons[rc + 1]
|
|
if n.kind == nkExprColonExpr:
|
|
regs[ra].nodeAddr = addr n.sons[1]
|
|
else:
|
|
regs[ra].nodeAddr = addr src.sons[rc + 1]
|
|
else:
|
|
regs[ra].nodeAddr = addr src.sons[rc]
|
|
of opcWrObj:
|
|
# a.b = c
|
|
decodeBC(rkNode)
|
|
assert regs[ra].node != nil
|
|
let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
|
|
let dest = regs[ra].node
|
|
if dest.kind == nkNilLit:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
elif dest[shiftedRb].kind == nkExprColonExpr:
|
|
writeField(dest[shiftedRb][1], regs[rc])
|
|
else:
|
|
writeField(dest[shiftedRb], regs[rc])
|
|
of opcWrStrIdx:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
if idx <% regs[ra].node.strVal.len:
|
|
regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
|
|
of opcAddrReg:
|
|
decodeB(rkRegisterAddr)
|
|
regs[ra].regAddr = addr(regs[rb])
|
|
of opcAddrNode:
|
|
decodeB(rkNodeAddr)
|
|
if regs[rb].kind == rkNode:
|
|
regs[ra].nodeAddr = addr(regs[rb].node)
|
|
else:
|
|
stackTrace(c, tos, pc, "limited VM support for 'addr'")
|
|
of opcLdDeref:
|
|
# a = b[]
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
case regs[rb].kind
|
|
of rkNodeAddr:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = regs[rb].nodeAddr[]
|
|
of rkRegisterAddr:
|
|
ensureKind(regs[rb].regAddr.kind)
|
|
regs[ra] = regs[rb].regAddr[]
|
|
of rkNode:
|
|
if regs[rb].node.kind == nkRefTy:
|
|
regs[ra].node = regs[rb].node[0]
|
|
elif not maybeHandlePtr(regs[rb].node, regs[ra], false):
|
|
## eg: typ.kind = tyObject
|
|
ensureKind(rkNode)
|
|
regs[ra].node = regs[rb].node
|
|
else:
|
|
stackTrace(c, tos, pc, errNilAccess & " kind: " & $regs[rb].kind)
|
|
of opcWrDeref:
|
|
# a[] = c; b unused
|
|
let ra = instr.regA
|
|
let rc = instr.regC
|
|
case regs[ra].kind
|
|
of rkNodeAddr:
|
|
let n = regs[rc].regToNode
|
|
# `var object` parameters are sent as rkNodeAddr. When they are mutated
|
|
# vmgen generates opcWrDeref, which means that we must dereference
|
|
# twice.
|
|
# TODO: This should likely be handled differently in vmgen.
|
|
if (nfIsRef notin regs[ra].nodeAddr[].flags and
|
|
nfIsRef notin n.flags):
|
|
regs[ra].nodeAddr[][] = n[]
|
|
else:
|
|
regs[ra].nodeAddr[] = n
|
|
of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
|
|
of rkNode:
|
|
# xxx: also check for nkRefTy as in opcLdDeref?
|
|
if not maybeHandlePtr(regs[ra].node, regs[rc], true):
|
|
regs[ra].node[] = regs[rc].regToNode[]
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else: stackTrace(c, tos, pc, errNilAccess)
|
|
of opcAddInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
sum = bVal +% cVal
|
|
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
|
|
regs[ra].intVal = sum
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcAddImmInt:
|
|
decodeBImm(rkInt)
|
|
#message(c.config, c.debug[pc], warnUser, "came here")
|
|
#debug regs[rb].node
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = imm
|
|
sum = bVal +% cVal
|
|
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
|
|
regs[ra].intVal = sum
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcSubInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
diff = bVal -% cVal
|
|
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
|
|
regs[ra].intVal = diff
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcSubImmInt:
|
|
decodeBImm(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = imm
|
|
diff = bVal -% cVal
|
|
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
|
|
regs[ra].intVal = diff
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcLenSeq:
|
|
decodeBImm(rkInt)
|
|
#assert regs[rb].kind == nkBracket
|
|
let high = (imm and 1) # discard flags
|
|
if (imm and nimNodeFlag) != 0:
|
|
# used by mNLen (NimNode.len)
|
|
regs[ra].intVal = regs[rb].node.safeLen - high
|
|
else:
|
|
# safeArrLen also return string node len
|
|
# used when string is passed as openArray in VM
|
|
regs[ra].intVal = regs[rb].node.safeArrLen - high
|
|
of opcLenStr:
|
|
decodeBImm(rkInt)
|
|
assert regs[rb].kind == rkNode
|
|
regs[ra].intVal = regs[rb].node.strVal.len - imm
|
|
of opcIncl:
|
|
decodeB(rkNode)
|
|
let b = regs[rb].regToNode
|
|
if not inSet(regs[ra].node, b):
|
|
regs[ra].node.add copyTree(b)
|
|
of opcInclRange:
|
|
decodeBC(rkNode)
|
|
var r = newNode(nkRange)
|
|
r.add regs[rb].regToNode
|
|
r.add regs[rc].regToNode
|
|
regs[ra].node.add r.copyTree
|
|
of opcExcl:
|
|
decodeB(rkNode)
|
|
var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
|
|
b.add regs[rb].regToNode
|
|
var r = diffSets(c.config, regs[ra].node, b)
|
|
discardSons(regs[ra].node)
|
|
for i in 0..<r.len: regs[ra].node.add r[i]
|
|
of opcCard:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
|
|
of opcMulInt:
|
|
decodeBC(rkInt)
|
|
let
|
|
bVal = regs[rb].intVal
|
|
cVal = regs[rc].intVal
|
|
product = bVal *% cVal
|
|
floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
|
|
resAsFloat = toBiggestFloat(product)
|
|
if resAsFloat == floatProd:
|
|
regs[ra].intVal = product
|
|
elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
|
|
regs[ra].intVal = product
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcDivInt:
|
|
decodeBC(rkInt)
|
|
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
|
|
else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
|
|
of opcModInt:
|
|
decodeBC(rkInt)
|
|
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
|
|
else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
|
|
of opcAddFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
|
|
of opcSubFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
|
|
of opcMulFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
|
|
of opcDivFloat:
|
|
decodeBC(rkFloat)
|
|
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
|
|
of opcShrInt:
|
|
decodeBC(rkInt)
|
|
let b = cast[uint64](regs[rb].intVal)
|
|
let c = cast[uint64](regs[rc].intVal)
|
|
let a = cast[int64](b shr c)
|
|
regs[ra].intVal = a
|
|
of opcShlInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
|
|
of opcAshrInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
|
|
of opcBitandInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
|
|
of opcBitorInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
|
|
of opcBitxorInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
|
|
of opcAddu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
|
|
of opcSubu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
|
|
of opcMulu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
|
|
of opcDivu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
|
|
of opcModu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
|
|
of opcEqInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
|
|
of opcLeInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
|
|
of opcLtInt:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
|
|
of opcEqFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
|
|
of opcLeFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
|
|
of opcLtFloat:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
|
|
of opcLeu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
|
|
of opcLtu:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
|
|
of opcEqRef:
|
|
var ret = false
|
|
decodeBC(rkInt)
|
|
template getTyp(n): untyped =
|
|
n.typ.skipTypes(abstractInst)
|
|
proc ptrEquality(n1: ptr PNode, n2: PNode): bool =
|
|
## true if n2.intVal represents a ptr equal to n1
|
|
let p1 = cast[int](n1)
|
|
case n2.kind
|
|
of nkNilLit: return p1 == 0
|
|
of nkIntLit: # TODO: nkPtrLit
|
|
# for example, n1.kind == nkFloatLit (ptr float)
|
|
# the problem is that n1.typ == nil so we can't compare n1.typ and n2.typ
|
|
# this is the best we can do (pending making sure we assign a valid n1.typ to nodeAddr's)
|
|
let t2 = n2.getTyp
|
|
return t2.kind in PtrLikeKinds and n2.intVal == p1
|
|
else: return false
|
|
|
|
if regs[rb].kind == rkNodeAddr:
|
|
if regs[rc].kind == rkNodeAddr:
|
|
ret = regs[rb].nodeAddr == regs[rc].nodeAddr
|
|
else:
|
|
ret = ptrEquality(regs[rb].nodeAddr, regs[rc].node)
|
|
elif regs[rc].kind == rkNodeAddr:
|
|
ret = ptrEquality(regs[rc].nodeAddr, regs[rb].node)
|
|
else:
|
|
let nb = regs[rb].node
|
|
let nc = regs[rc].node
|
|
if nb.kind != nc.kind: discard
|
|
elif (nb == nc) or (nb.kind == nkNilLit): ret = true
|
|
elif nb.kind == nkIntLit and nb.intVal == nc.intVal: # TODO: nkPtrLit
|
|
let tb = nb.getTyp
|
|
let tc = nc.getTyp
|
|
ret = tb.kind in PtrLikeKinds and tc.kind == tb.kind
|
|
regs[ra].intVal = ord(ret)
|
|
of opcEqNimNode:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal =
|
|
ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
|
|
strictSymEquality=true))
|
|
of opcSameNodeType:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil regs[rc].node.typ)
|
|
of opcXor:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
|
|
of opcNot:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
regs[ra].intVal = 1 - regs[rb].intVal
|
|
of opcUnaryMinusInt:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
let val = regs[rb].intVal
|
|
if val != int64.low:
|
|
regs[ra].intVal = -val
|
|
else:
|
|
stackTrace(c, tos, pc, errOverOrUnderflow)
|
|
of opcUnaryMinusFloat:
|
|
decodeB(rkFloat)
|
|
assert regs[rb].kind == rkFloat
|
|
regs[ra].floatVal = -regs[rb].floatVal
|
|
of opcBitnotInt:
|
|
decodeB(rkInt)
|
|
assert regs[rb].kind == rkInt
|
|
regs[ra].intVal = not regs[rb].intVal
|
|
of opcEqStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
|
|
of opcLeStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
|
|
of opcLtStr:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
|
|
of opcLeSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
|
|
of opcEqSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
|
|
of opcLtSet:
|
|
decodeBC(rkInt)
|
|
let a = regs[rb].node
|
|
let b = regs[rc].node
|
|
regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
|
|
of opcMulSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcPlusSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcMinusSet:
|
|
decodeBC(rkNode)
|
|
createSet(regs[ra])
|
|
move(regs[ra].node.sons,
|
|
nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
|
|
of opcConcatStr:
|
|
decodeBC(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = getstr(regs[rb])
|
|
for i in rb+1..rb+rc-1:
|
|
regs[ra].node.strVal.add getstr(regs[i])
|
|
of opcAddStrCh:
|
|
decodeB(rkNode)
|
|
regs[ra].node.strVal.add(regs[rb].intVal.chr)
|
|
of opcAddStrStr:
|
|
decodeB(rkNode)
|
|
regs[ra].node.strVal.add(regs[rb].node.strVal)
|
|
of opcAddSeqElem:
|
|
decodeB(rkNode)
|
|
if regs[ra].node.kind == nkBracket:
|
|
regs[ra].node.add(copyValue(regs[rb].regToNode))
|
|
else:
|
|
stackTrace(c, tos, pc, errNilAccess)
|
|
of opcGetImpl:
|
|
decodeB(rkNode)
|
|
var a = regs[rb].node
|
|
if a.kind == nkVarTy: a = a[0]
|
|
if a.kind == nkSym:
|
|
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
|
|
else: copyTree(a.sym.ast)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
of opcGetImplTransf:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node =
|
|
if a.sym.ast.isNil:
|
|
newNode(nkNilLit)
|
|
else:
|
|
let ast = a.sym.ast.shallowCopy
|
|
for i in 0..<a.sym.ast.len:
|
|
ast[i] = a.sym.ast[i]
|
|
ast[bodyPos] = transformBody(c.graph, a.sym, cache=true)
|
|
ast.copyTree()
|
|
of opcSymOwner:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
|
|
else: newSymNode(a.sym.skipGenericOwner)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
of opcSymIsInstantiationOf:
|
|
decodeBC(rkInt)
|
|
let a = regs[rb].node
|
|
let b = regs[rc].node
|
|
if a.kind == nkSym and a.sym.kind in skProcKinds and
|
|
b.kind == nkSym and b.sym.kind in skProcKinds:
|
|
regs[ra].intVal =
|
|
if sfFromGeneric in a.sym.flags and a.sym.owner == b.sym: 1
|
|
else: 0
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a proc symbol")
|
|
of opcEcho:
|
|
let rb = instr.regB
|
|
if rb == 1:
|
|
msgWriteln(c.config, regs[ra].node.strVal, {msgStdout})
|
|
else:
|
|
var outp = ""
|
|
for i in ra..ra+rb-1:
|
|
#if regs[i].kind != rkNode: debug regs[i]
|
|
outp.add(regs[i].node.strVal)
|
|
msgWriteln(c.config, outp, {msgStdout})
|
|
of opcContainsSet:
|
|
decodeBC(rkInt)
|
|
regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
|
|
of opcSubStr:
|
|
decodeBC(rkNode)
|
|
inc pc
|
|
assert c.code[pc].opcode == opcSubStr
|
|
let rd = c.code[pc].regA
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = substr(regs[rb].node.strVal,
|
|
regs[rc].intVal.int, regs[rd].intVal.int)
|
|
of opcParseFloat:
|
|
decodeBC(rkInt)
|
|
inc pc
|
|
assert c.code[pc].opcode == opcParseFloat
|
|
let rd = c.code[pc].regA
|
|
var rcAddr = addr(regs[rc])
|
|
if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
|
|
elif regs[rc].kind != rkFloat:
|
|
regs[rc] = TFullReg(kind: rkFloat)
|
|
regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal,
|
|
rcAddr.floatVal, regs[rd].intVal.int)
|
|
of opcRangeChck:
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
|
|
leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
|
|
stackTrace(c, tos, pc,
|
|
errIllegalConvFromXtoY % [
|
|
$regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
|
|
of opcIndCall, opcIndCallAsgn:
|
|
# dest = call regStart, n; where regStart = fn, arg1, ...
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
let bb = regs[rb].node
|
|
let isClosure = bb.kind == nkTupleConstr
|
|
let prc = if not isClosure: bb.sym else: bb[0].sym
|
|
if prc.offset < -1:
|
|
# it's a callback:
|
|
c.callbacks[-prc.offset-2].value(
|
|
VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
|
|
currentException: c.currentExceptionA,
|
|
currentLineInfo: c.debug[pc]))
|
|
elif importcCond(prc):
|
|
if compiletimeFFI notin c.config.features:
|
|
globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
|
|
# we pass 'tos.slots' instead of 'regs' so that the compiler can keep
|
|
# 'regs' in a register:
|
|
when hasFFI:
|
|
if prc.position - 1 < 0:
|
|
globalError(c.config, c.debug[pc],
|
|
"VM call invalid: prc.position: " & $prc.position)
|
|
let prcValue = c.globals[prc.position-1]
|
|
if prcValue.kind == nkEmpty:
|
|
globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
|
|
var slots2: TNodeSeq
|
|
slots2.setLen(tos.slots.len)
|
|
for i in 0..<tos.slots.len:
|
|
slots2[i] = regToNode(tos.slots[i])
|
|
let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
|
|
rb+1, rc-1, c.debug[pc])
|
|
if newValue.kind != nkEmpty:
|
|
assert instr.opcode == opcIndCallAsgn
|
|
putIntoReg(regs[ra], newValue)
|
|
else:
|
|
globalError(c.config, c.debug[pc], "VM not built with FFI support")
|
|
elif prc.kind != skTemplate:
|
|
let newPc = compile(c, prc)
|
|
# tricky: a recursion is also a jump back, so we use the same
|
|
# logic as for loops:
|
|
if newPc < pc: handleJmpBack()
|
|
#echo "new pc ", newPc, " calling: ", prc.name.s
|
|
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
|
|
newSeq(newFrame.slots, prc.offset+ord(isClosure))
|
|
if not isEmptyType(prc.typ[0]):
|
|
putIntoReg(newFrame.slots[0], getNullValue(prc.typ[0], prc.info, c.config))
|
|
for i in 1..rc-1:
|
|
newFrame.slots[i] = regs[rb+i]
|
|
if isClosure:
|
|
newFrame.slots[rc] = TFullReg(kind: rkNode, node: regs[rb].node[1])
|
|
tos = newFrame
|
|
move(regs, newFrame.slots)
|
|
# -1 for the following 'inc pc'
|
|
pc = newPc-1
|
|
else:
|
|
# for 'getAst' support we need to support template expansion here:
|
|
let genSymOwner = if tos.next != nil and tos.next.prc != nil:
|
|
tos.next.prc
|
|
else:
|
|
c.module
|
|
var macroCall = newNodeI(nkCall, c.debug[pc])
|
|
macroCall.add(newSymNode(prc))
|
|
for i in 1..rc-1:
|
|
let node = regs[rb+i].regToNode
|
|
node.info = c.debug[pc]
|
|
macroCall.add(node)
|
|
var a = evalTemplate(macroCall, prc, genSymOwner, c.config, c.cache)
|
|
if a.kind == nkStmtList and a.len == 1: a = a[0]
|
|
a.recSetFlagIsRef
|
|
ensureKind(rkNode)
|
|
regs[ra].node = a
|
|
of opcTJmp:
|
|
# jump Bx if A != 0
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
if regs[ra].intVal != 0:
|
|
inc pc, rbx
|
|
of opcFJmp:
|
|
# jump Bx if A == 0
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
if regs[ra].intVal == 0:
|
|
inc pc, rbx
|
|
of opcJmp:
|
|
# jump Bx
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
of opcJmpBack:
|
|
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
handleJmpBack()
|
|
of opcBranch:
|
|
# we know the next instruction is a 'fjmp':
|
|
let branch = c.constants[instr.regBx-wordExcess]
|
|
var cond = false
|
|
for j in 0..<branch.len - 1:
|
|
if overlap(regs[ra].regToNode, branch[j]):
|
|
cond = true
|
|
break
|
|
assert c.code[pc+1].opcode == opcFJmp
|
|
inc pc
|
|
# we skip this instruction so that the final 'inc(pc)' skips
|
|
# the following jump
|
|
if not cond:
|
|
let instr2 = c.code[pc]
|
|
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
|
|
inc pc, rbx
|
|
of opcTry:
|
|
let rbx = instr.regBx - wordExcess
|
|
tos.pushSafePoint(pc + rbx)
|
|
assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
|
|
of opcExcept:
|
|
# This opcode is never executed, it only holds information for the
|
|
# exception handling routines.
|
|
doAssert(false)
|
|
of opcFinally:
|
|
# Pop the last safepoint introduced by a opcTry. This opcode is only
|
|
# executed _iff_ no exception was raised in the body of the `try`
|
|
# statement hence the need to pop the safepoint here.
|
|
doAssert(savedPC < 0)
|
|
tos.popSafePoint()
|
|
of opcFinallyEnd:
|
|
# The control flow may not resume at the next instruction since we may be
|
|
# raising an exception or performing a cleanup.
|
|
if savedPC >= 0:
|
|
pc = savedPC - 1
|
|
savedPC = -1
|
|
if tos != savedFrame:
|
|
tos = savedFrame
|
|
move(regs, tos.slots)
|
|
of opcRaise:
|
|
let raised =
|
|
# Empty `raise` statement - reraise current exception
|
|
if regs[ra].kind == rkNone:
|
|
c.currentExceptionA
|
|
else:
|
|
regs[ra].node
|
|
c.currentExceptionA = raised
|
|
# Set the `name` field of the exception
|
|
c.currentExceptionA[2].skipColon.strVal = c.currentExceptionA.typ.sym.name.s
|
|
c.exceptionInstr = pc
|
|
|
|
var frame = tos
|
|
var jumpTo = findExceptionHandler(c, frame, raised)
|
|
while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
|
|
frame = frame.next
|
|
jumpTo = findExceptionHandler(c, frame, raised)
|
|
|
|
case jumpTo.why:
|
|
of ExceptionGotoHandler:
|
|
# Jump to the handler, do nothing when the `finally` block ends.
|
|
savedPC = -1
|
|
pc = jumpTo.where - 1
|
|
if tos != frame:
|
|
tos = frame
|
|
move(regs, tos.slots)
|
|
of ExceptionGotoFinally:
|
|
# Jump to the `finally` block first then re-jump here to continue the
|
|
# traversal of the exception chain
|
|
savedPC = pc
|
|
savedFrame = tos
|
|
pc = jumpTo.where - 1
|
|
if tos != frame:
|
|
tos = frame
|
|
move(regs, tos.slots)
|
|
of ExceptionGotoUnhandled:
|
|
# Nobody handled this exception, error out.
|
|
bailOut(c, tos)
|
|
of opcNew:
|
|
ensureKind(rkNode)
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNewSeq:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
inc pc
|
|
ensureKind(rkNode)
|
|
let instr2 = c.code[pc]
|
|
let count = regs[instr2.regA].intVal.int
|
|
regs[ra].node = newNodeI(nkBracket, c.debug[pc])
|
|
regs[ra].node.typ = typ
|
|
newSeq(regs[ra].node.sons, count)
|
|
for i in 0..<count:
|
|
regs[ra].node[i] = getNullValue(typ[0], c.debug[pc], c.config)
|
|
of opcNewStr:
|
|
decodeB(rkNode)
|
|
regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
|
|
regs[ra].node.strVal = newString(regs[rb].intVal.int)
|
|
of opcLdImmInt:
|
|
# dest = immediate value
|
|
decodeBx(rkInt)
|
|
regs[ra].intVal = rbx
|
|
of opcLdNull:
|
|
ensureKind(rkNode)
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
regs[ra].node = getNullValue(typ, c.debug[pc], c.config)
|
|
# opcLdNull really is the gist of the VM's problems: should it load
|
|
# a fresh null to regs[ra].node or to regs[ra].node[]? This really
|
|
# depends on whether regs[ra] represents the variable itself or whether
|
|
# it holds the indirection! Due to the way registers are re-used we cannot
|
|
# say for sure here! --> The codegen has to deal with it
|
|
# via 'genAsgnPatch'.
|
|
of opcLdNullReg:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
|
|
tyFloat..tyFloat128}:
|
|
ensureKind(rkFloat)
|
|
regs[ra].floatVal = 0.0
|
|
else:
|
|
ensureKind(rkInt)
|
|
regs[ra].intVal = 0
|
|
of opcLdConst:
|
|
let rb = instr.regBx - wordExcess
|
|
let cnst = c.constants[rb]
|
|
if fitsRegister(cnst.typ):
|
|
reset(regs[ra])
|
|
putIntoReg(regs[ra], cnst)
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = cnst
|
|
of opcAsgnConst:
|
|
let rb = instr.regBx - wordExcess
|
|
let cnst = c.constants[rb]
|
|
if fitsRegister(cnst.typ):
|
|
putIntoReg(regs[ra], cnst)
|
|
else:
|
|
ensureKind(rkNode)
|
|
regs[ra].node = cnst.copyTree
|
|
of opcLdGlobal:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
ensureKind(rkNode)
|
|
regs[ra].node = c.globals[rb]
|
|
of opcLdGlobalDerefFFI:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
let node = c.globals[rb]
|
|
let typ = node.typ
|
|
doAssert node.kind == nkIntLit, $(node.kind)
|
|
if typ.kind == tyPtr:
|
|
ensureKind(rkNode)
|
|
# use nkPtrLit once this is added
|
|
let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
|
|
node2.intVal = cast[ptr int](node.intVal)[]
|
|
node2.flags.incl nfIsPtr
|
|
regs[ra].node = node2
|
|
elif not derefPtrToReg(node.intVal, typ, regs[ra], isAssign = false):
|
|
stackTrace(c, tos, pc, "opcLdDeref unsupported type: " & $(typeToString(typ), typ[0].kind))
|
|
of opcLdGlobalAddrDerefFFI:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
let node = c.globals[rb]
|
|
let typ = node.typ
|
|
var node2 = newNodeIT(nkIntLit, node.info, typ)
|
|
node2.intVal = node.intVal
|
|
node2.flags.incl nfIsPtr
|
|
ensureKind(rkNode)
|
|
regs[ra].node = node2
|
|
of opcLdGlobalAddr:
|
|
let rb = instr.regBx - wordExcess - 1
|
|
ensureKind(rkNodeAddr)
|
|
regs[ra].nodeAddr = addr(c.globals[rb])
|
|
of opcRepr:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments})
|
|
of opcQuit:
|
|
if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
|
|
message(c.config, c.debug[pc], hintQuitCalled)
|
|
msgQuit(int8(toInt(getOrdValue(regs[ra].regToNode, onError = toInt128(1)))))
|
|
else:
|
|
return TFullReg(kind: rkNone)
|
|
of opcInvalidField:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & regs[ra].node.strVal)
|
|
of opcSetLenStr:
|
|
decodeB(rkNode)
|
|
#createStrKeepNode regs[ra]
|
|
regs[ra].node.strVal.setLen(regs[rb].intVal.int)
|
|
of opcOf:
|
|
decodeBC(rkInt)
|
|
let typ = c.types[regs[rc].intVal.int]
|
|
regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
|
|
of opcIs:
|
|
decodeBC(rkInt)
|
|
let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
|
|
let t2 = c.types[regs[rc].intVal.int]
|
|
# XXX: This should use the standard isOpImpl
|
|
let match = if t2.kind == tyUserTypeClass: true
|
|
else: sameType(t1, t2)
|
|
regs[ra].intVal = ord(match)
|
|
of opcSetLenSeq:
|
|
decodeB(rkNode)
|
|
let newLen = regs[rb].intVal.int
|
|
if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
|
|
else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
|
|
of opcNarrowS:
|
|
decodeB(rkInt)
|
|
let min = -(1.BiggestInt shl (rb-1))
|
|
let max = (1.BiggestInt shl (rb-1))-1
|
|
if regs[ra].intVal < min or regs[ra].intVal > max:
|
|
stackTrace(c, tos, pc, "unhandled exception: value out of range")
|
|
of opcNarrowU:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
|
|
of opcSignExtend:
|
|
# like opcNarrowS, but no out of range possible
|
|
decodeB(rkInt)
|
|
let imm = 64 - rb
|
|
regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
|
|
of opcIsNil:
|
|
decodeB(rkInt)
|
|
let node = regs[rb].node
|
|
regs[ra].intVal = ord(
|
|
# Note that `nfIsRef` + `nkNilLit` represents an allocated
|
|
# reference with the value `nil`, so `isNil` should be false!
|
|
(node.kind == nkNilLit and nfIsRef notin node.flags) or
|
|
(not node.typ.isNil and node.typ.kind == tyProc and
|
|
node.typ.callConv == ccClosure and node[0].kind == nkNilLit and
|
|
node[1].kind == nkNilLit))
|
|
of opcNBindSym:
|
|
# cannot use this simple check
|
|
# if dynamicBindSym notin c.config.features:
|
|
|
|
# bindSym with static input
|
|
decodeBx(rkNode)
|
|
regs[ra].node = copyTree(c.constants[rbx])
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNDynBindSym:
|
|
# experimental bindSym
|
|
let
|
|
rb = instr.regB
|
|
rc = instr.regC
|
|
idx = int(regs[rb+rc-1].intVal)
|
|
callback = c.callbacks[idx].value
|
|
args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
|
|
currentException: c.currentExceptionA,
|
|
currentLineInfo: c.debug[pc])
|
|
callback(args)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNChild:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rc].intVal.int
|
|
let src = regs[rb].node
|
|
if src.kind in {nkEmpty..nkNilLit}:
|
|
stackTrace(c, tos, pc, "cannot get child of node kind: n" & $src.kind)
|
|
elif idx >=% src.len:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
|
|
else:
|
|
regs[ra].node = src[idx]
|
|
of opcNSetChild:
|
|
decodeBC(rkNode)
|
|
let idx = regs[rb].intVal.int
|
|
var dest = regs[ra].node
|
|
if nfSem in dest.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
|
|
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
|
|
elif dest.kind in {nkEmpty..nkNilLit}:
|
|
stackTrace(c, tos, pc, "cannot set child of node kind: n" & $dest.kind)
|
|
elif idx >=% dest.len:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
|
|
else:
|
|
dest[idx] = regs[rc].node
|
|
of opcNAdd:
|
|
decodeBC(rkNode)
|
|
var u = regs[rb].node
|
|
if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
|
|
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
|
|
elif u.kind in {nkEmpty..nkNilLit}:
|
|
stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
|
|
else:
|
|
u.add(regs[rc].node)
|
|
regs[ra].node = u
|
|
of opcNAddMultiple:
|
|
decodeBC(rkNode)
|
|
let x = regs[rc].node
|
|
var u = regs[rb].node
|
|
if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
|
|
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
|
|
elif u.kind in {nkEmpty..nkNilLit}:
|
|
stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
|
|
else:
|
|
for i in 0..<x.len: u.add(x[i])
|
|
regs[ra].node = u
|
|
of opcNKind:
|
|
decodeB(rkInt)
|
|
regs[ra].intVal = ord(regs[rb].node.kind)
|
|
c.comesFromHeuristic = regs[rb].node.info
|
|
of opcNSymKind:
|
|
decodeB(rkInt)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].intVal = ord(a.sym.kind)
|
|
else:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
c.comesFromHeuristic = regs[rb].node.info
|
|
of opcNIntVal:
|
|
decodeB(rkInt)
|
|
let a = regs[rb].node
|
|
if a.kind in {nkCharLit..nkUInt64Lit}:
|
|
regs[ra].intVal = a.intVal
|
|
elif a.kind == nkSym and a.sym.kind == skEnumField:
|
|
regs[ra].intVal = a.sym.position
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
|
|
of opcNFloatVal:
|
|
decodeB(rkFloat)
|
|
let a = regs[rb].node
|
|
case a.kind
|
|
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
|
|
else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
|
|
of opcNSymbol:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkSym:
|
|
regs[ra].node = copyNode(a)
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
|
|
of opcNIdent:
|
|
decodeB(rkNode)
|
|
let a = regs[rb].node
|
|
if a.kind == nkIdent:
|
|
regs[ra].node = copyNode(a)
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
|
|
of opcNodeId:
|
|
decodeB(rkInt)
|
|
when defined(useNodeIds):
|
|
regs[ra].intVal = regs[rb].node.id
|
|
else:
|
|
regs[ra].intVal = -1
|
|
of opcNGetType:
|
|
let rb = instr.regB
|
|
let rc = instr.regC
|
|
case rc
|
|
of 0:
|
|
# getType opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
of 1:
|
|
# typeKind opcode:
|
|
ensureKind(rkInt)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].intVal = ord(regs[rb].node.typ.kind)
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
|
|
#else:
|
|
# stackTrace(c, tos, pc, "node has no type")
|
|
of 2:
|
|
# getTypeInst opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
else:
|
|
# getTypeImpl opcode:
|
|
ensureKind(rkNode)
|
|
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
|
|
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc])
|
|
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
|
|
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc])
|
|
else:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
of opcNGetSize:
|
|
decodeBImm(rkInt)
|
|
let n = regs[rb].node
|
|
case imm
|
|
of 0: # size
|
|
if n.typ == nil:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
else:
|
|
regs[ra].intVal = getSize(c.config, n.typ)
|
|
of 1: # align
|
|
if n.typ == nil:
|
|
stackTrace(c, tos, pc, "node has no type")
|
|
else:
|
|
regs[ra].intVal = getAlign(c.config, n.typ)
|
|
else: # offset
|
|
if n.kind != nkSym:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
elif n.sym.kind != skField:
|
|
stackTrace(c, tos, pc, "symbol is not a field (nskField)")
|
|
else:
|
|
regs[ra].intVal = n.sym.offset
|
|
of opcNStrVal:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
let a = regs[rb].node
|
|
case a.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
regs[ra].node.strVal = a.strVal
|
|
of nkCommentStmt:
|
|
regs[ra].node.strVal = a.comment
|
|
of nkIdent:
|
|
regs[ra].node.strVal = a.ident.s
|
|
of nkSym:
|
|
regs[ra].node.strVal = a.sym.name.s
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
of opcNSigHash:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
if regs[rb].node.kind != nkSym:
|
|
stackTrace(c, tos, pc, "node is not a symbol")
|
|
else:
|
|
regs[ra].node.strVal = $sigHash(regs[rb].node.sym)
|
|
of opcSlurp:
|
|
decodeB(rkNode)
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
|
|
c.module, c.config)
|
|
of opcGorge:
|
|
decodeBC(rkNode)
|
|
inc pc
|
|
let rd = c.code[pc].regA
|
|
createStr regs[ra]
|
|
if defined(nimsuggest) or c.config.cmd == cmdCheck:
|
|
discard "don't run staticExec for 'nim suggest'"
|
|
regs[ra].node.strVal = ""
|
|
else:
|
|
when defined(nimcore):
|
|
regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
|
|
regs[rc].node.strVal, regs[rd].node.strVal,
|
|
c.debug[pc], c.config)[0]
|
|
else:
|
|
regs[ra].node.strVal = ""
|
|
globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
|
|
of opcNError, opcNWarning, opcNHint:
|
|
decodeB(rkNode)
|
|
let a = regs[ra].node
|
|
let b = regs[rb].node
|
|
let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
|
|
if instr.opcode == opcNError:
|
|
stackTrace(c, tos, pc, a.strVal, info)
|
|
elif instr.opcode == opcNWarning:
|
|
message(c.config, info, warnUser, a.strVal)
|
|
elif instr.opcode == opcNHint:
|
|
message(c.config, info, hintUser, a.strVal)
|
|
of opcParseExprToAst:
|
|
decodeB(rkNode)
|
|
# c.debug[pc].line.int - countLines(regs[rb].strVal) ?
|
|
var error: string
|
|
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
|
|
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
|
|
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
|
|
if error.len == 0 and msg <= errMax:
|
|
error = formatMsg(conf, info, msg, arg))
|
|
if error.len > 0:
|
|
c.errorFlag = error
|
|
elif ast.len != 1:
|
|
c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
|
|
"expected expression, but got multiple statements")
|
|
else:
|
|
regs[ra].node = ast[0]
|
|
of opcParseStmtToAst:
|
|
decodeB(rkNode)
|
|
var error: string
|
|
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
|
|
toFullPath(c.config, c.debug[pc]), c.debug[pc].line.int,
|
|
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
|
|
if error.len == 0 and msg <= errMax:
|
|
error = formatMsg(conf, info, msg, arg))
|
|
if error.len > 0:
|
|
c.errorFlag = error
|
|
else:
|
|
regs[ra].node = ast
|
|
of opcQueryErrorFlag:
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = c.errorFlag
|
|
c.errorFlag.setLen 0
|
|
of opcCallSite:
|
|
ensureKind(rkNode)
|
|
if c.callsite != nil: regs[ra].node = c.callsite
|
|
else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
|
|
of opcNGetLineInfo:
|
|
decodeBImm(rkNode)
|
|
let n = regs[rb].node
|
|
case imm
|
|
of 0: # getFile
|
|
regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
|
|
of 1: # getLine
|
|
regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
|
|
of 2: # getColumn
|
|
regs[ra].node = newIntNode(nkIntLit, n.info.col)
|
|
else:
|
|
internalAssert c.config, false
|
|
regs[ra].node.info = n.info
|
|
regs[ra].node.typ = n.typ
|
|
of opcNSetLineInfo:
|
|
decodeB(rkNode)
|
|
regs[ra].node.info = regs[rb].node.info
|
|
of opcEqIdent:
|
|
decodeBC(rkInt)
|
|
# aliases for shorter and easier to understand code below
|
|
var aNode = regs[rb].node
|
|
var bNode = regs[rc].node
|
|
# Skipping both, `nkPostfix` and `nkAccQuoted` for both
|
|
# arguments. `nkPostfix` exists only to tag exported symbols
|
|
# and therefor it can be safely skipped. Nim has no postfix
|
|
# operator. `nkAccQuoted` is used to quote an identifier that
|
|
# wouldn't be allowed to use in an unquoted context.
|
|
if aNode.kind == nkPostfix:
|
|
aNode = aNode[1]
|
|
if aNode.kind == nkAccQuoted:
|
|
aNode = aNode[0]
|
|
if bNode.kind == nkPostfix:
|
|
bNode = bNode[1]
|
|
if bNode.kind == nkAccQuoted:
|
|
bNode = bNode[0]
|
|
# These vars are of type `cstring` to prevent unnecessary string copy.
|
|
var aStrVal: cstring = nil
|
|
var bStrVal: cstring = nil
|
|
# extract strVal from argument ``a``
|
|
case aNode.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
aStrVal = aNode.strVal.cstring
|
|
of nkIdent:
|
|
aStrVal = aNode.ident.s.cstring
|
|
of nkSym:
|
|
aStrVal = aNode.sym.name.s.cstring
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
aStrVal = aNode[0].sym.name.s.cstring
|
|
else:
|
|
discard
|
|
# extract strVal from argument ``b``
|
|
case bNode.kind
|
|
of nkStrLit..nkTripleStrLit:
|
|
bStrVal = bNode.strVal.cstring
|
|
of nkIdent:
|
|
bStrVal = bNode.ident.s.cstring
|
|
of nkSym:
|
|
bStrVal = bNode.sym.name.s.cstring
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
bStrVal = bNode[0].sym.name.s.cstring
|
|
else:
|
|
discard
|
|
regs[ra].intVal =
|
|
if aStrVal != nil and bStrVal != nil:
|
|
ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
|
|
else:
|
|
0
|
|
|
|
of opcStrToIdent:
|
|
decodeB(rkNode)
|
|
if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
else:
|
|
regs[ra].node = newNodeI(nkIdent, c.debug[pc])
|
|
regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcSetType:
|
|
let typ = c.types[instr.regBx - wordExcess]
|
|
if regs[ra].kind != rkNode:
|
|
let temp = regToNode(regs[ra])
|
|
ensureKind(rkNode)
|
|
regs[ra].node = temp
|
|
regs[ra].node.info = c.debug[pc]
|
|
regs[ra].node.typ = typ
|
|
of opcConv:
|
|
let rb = instr.regB
|
|
inc pc
|
|
let desttyp = c.types[c.code[pc].regBx - wordExcess]
|
|
inc pc
|
|
let srctyp = c.types[c.code[pc].regBx - wordExcess]
|
|
|
|
if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
|
|
stackTrace(c, tos, pc,
|
|
errIllegalConvFromXtoY % [
|
|
typeToString(srctyp), typeToString(desttyp)])
|
|
of opcCast:
|
|
let rb = instr.regB
|
|
inc pc
|
|
let desttyp = c.types[c.code[pc].regBx - wordExcess]
|
|
inc pc
|
|
let srctyp = c.types[c.code[pc].regBx - wordExcess]
|
|
|
|
when hasFFI:
|
|
let dest = fficast(c.config, regs[rb].node, desttyp)
|
|
# todo: check whether this is correct
|
|
# asgnRef(regs[ra], dest)
|
|
putIntoReg(regs[ra], dest)
|
|
else:
|
|
globalError(c.config, c.debug[pc], "cannot evaluate cast")
|
|
of opcNSetIntVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkCharLit..nkUInt64Lit} and
|
|
regs[rb].kind in {rkInt}:
|
|
dest.intVal = regs[rb].intVal
|
|
elif dest.kind == nkSym and dest.sym.kind == skEnumField:
|
|
stackTrace(c, tos, pc, "`intVal` cannot be changed for an enum symbol.")
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
|
|
of opcNSetFloatVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkFloatLit..nkFloat64Lit} and
|
|
regs[rb].kind in {rkFloat}:
|
|
dest.floatVal = regs[rb].floatVal
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
|
|
of opcNSetSymbol:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind == nkSym and regs[rb].node.kind == nkSym:
|
|
dest.sym = regs[rb].node.sym
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
|
|
of opcNSetIdent:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
|
|
dest.ident = regs[rb].node.ident
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
|
|
of opcNSetType:
|
|
decodeB(rkNode)
|
|
let b = regs[rb].node
|
|
internalAssert c.config, b.kind == nkSym and b.sym.kind == skType
|
|
internalAssert c.config, regs[ra].node != nil
|
|
regs[ra].node.typ = b.sym.typ
|
|
of opcNSetStrVal:
|
|
decodeB(rkNode)
|
|
var dest = regs[ra].node
|
|
if dest.kind in {nkStrLit..nkTripleStrLit} and
|
|
regs[rb].kind in {rkNode}:
|
|
dest.strVal = regs[rb].node.strVal
|
|
elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
|
|
dest.comment = regs[rb].node.strVal
|
|
else:
|
|
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
|
|
of opcNNewNimNode:
|
|
decodeBC(rkNode)
|
|
var k = regs[rb].intVal
|
|
if k < 0 or k > ord(high(TNodeKind)):
|
|
internalError(c.config, c.debug[pc],
|
|
"request to create a NimNode of invalid kind")
|
|
let cc = regs[rc].node
|
|
|
|
let x = newNodeI(TNodeKind(int(k)),
|
|
if cc.kind != nkNilLit:
|
|
cc.info
|
|
elif c.comesFromHeuristic.line != 0'u16:
|
|
c.comesFromHeuristic
|
|
elif c.callsite != nil and c.callsite.safeLen > 1:
|
|
c.callsite[1].info
|
|
else:
|
|
c.debug[pc])
|
|
x.flags.incl nfIsRef
|
|
# prevent crashes in the compiler resulting from wrong macros:
|
|
if x.kind == nkIdent: x.ident = c.cache.emptyIdent
|
|
regs[ra].node = x
|
|
of opcNCopyNimNode:
|
|
decodeB(rkNode)
|
|
regs[ra].node = copyNode(regs[rb].node)
|
|
of opcNCopyNimTree:
|
|
decodeB(rkNode)
|
|
regs[ra].node = copyTree(regs[rb].node)
|
|
of opcNDel:
|
|
decodeBC(rkNode)
|
|
let bb = regs[rb].intVal.int
|
|
for i in 0..<regs[rc].intVal.int:
|
|
delSon(regs[ra].node, bb)
|
|
of opcGenSym:
|
|
decodeBC(rkNode)
|
|
let k = regs[rb].intVal
|
|
let name = if regs[rc].node.strVal.len == 0: ":tmp"
|
|
else: regs[rc].node.strVal
|
|
if k < 0 or k > ord(high(TSymKind)):
|
|
internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
|
|
var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.module.owner, c.debug[pc])
|
|
incl(sym.flags, sfGenSym)
|
|
regs[ra].node = newSymNode(sym)
|
|
regs[ra].node.flags.incl nfIsRef
|
|
of opcNccValue:
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
|
|
of opcNccInc:
|
|
let g = c.graph
|
|
declBC()
|
|
let destKey = regs[rb].node.strVal
|
|
let by = regs[rc].intVal
|
|
let v = getOrDefault(g.cacheCounters, destKey)
|
|
g.cacheCounters[destKey] = v+by
|
|
recordInc(c, c.debug[pc], destKey, by)
|
|
of opcNcsAdd:
|
|
let g = c.graph
|
|
declBC()
|
|
let destKey = regs[rb].node.strVal
|
|
let val = regs[rc].node
|
|
if not contains(g.cacheSeqs, destKey):
|
|
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
|
|
else:
|
|
g.cacheSeqs[destKey].add val
|
|
recordAdd(c, c.debug[pc], destKey, val)
|
|
of opcNcsIncl:
|
|
let g = c.graph
|
|
declBC()
|
|
let destKey = regs[rb].node.strVal
|
|
let val = regs[rc].node
|
|
if not contains(g.cacheSeqs, destKey):
|
|
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
|
|
else:
|
|
block search:
|
|
for existing in g.cacheSeqs[destKey]:
|
|
if exprStructuralEquivalent(existing, val, strictSymEquality=true):
|
|
break search
|
|
g.cacheSeqs[destKey].add val
|
|
recordIncl(c, c.debug[pc], destKey, val)
|
|
of opcNcsLen:
|
|
let g = c.graph
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
|
|
of opcNcsAt:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let idx = regs[rc].intVal
|
|
let destKey = regs[rb].node.strVal
|
|
if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
|
|
regs[ra].node = g.cacheSeqs[destKey][idx.int]
|
|
else:
|
|
stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
|
|
of opcNctPut:
|
|
let g = c.graph
|
|
let destKey = regs[ra].node.strVal
|
|
let key = regs[instr.regB].node.strVal
|
|
let val = regs[instr.regC].node
|
|
if not contains(g.cacheTables, destKey):
|
|
g.cacheTables[destKey] = initBTree[string, PNode]()
|
|
if not contains(g.cacheTables[destKey], key):
|
|
g.cacheTables[destKey].add(key, val)
|
|
recordPut(c, c.debug[pc], destKey, key, val)
|
|
else:
|
|
stackTrace(c, tos, pc, "key already exists: " & key)
|
|
of opcNctLen:
|
|
let g = c.graph
|
|
decodeB(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
|
|
of opcNctGet:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let destKey = regs[rb].node.strVal
|
|
let key = regs[rc].node.strVal
|
|
if contains(g.cacheTables, destKey):
|
|
if contains(g.cacheTables[destKey], key):
|
|
regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & key)
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & destKey)
|
|
of opcNctHasNext:
|
|
let g = c.graph
|
|
decodeBC(rkInt)
|
|
let destKey = regs[rb].node.strVal
|
|
regs[ra].intVal =
|
|
if g.cacheTables.contains(destKey):
|
|
ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
|
|
else:
|
|
0
|
|
of opcNctNext:
|
|
let g = c.graph
|
|
decodeBC(rkNode)
|
|
let destKey = regs[rb].node.strVal
|
|
let index = regs[rc].intVal
|
|
if contains(g.cacheTables, destKey):
|
|
let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
|
|
regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
|
|
newIntNode(nkIntLit, nextIndex))
|
|
else:
|
|
stackTrace(c, tos, pc, "key does not exist: " & destKey)
|
|
|
|
of opcTypeTrait:
|
|
# XXX only supports 'name' for now; we can use regC to encode the
|
|
# type trait operation
|
|
decodeB(rkNode)
|
|
var typ = regs[rb].node.typ
|
|
internalAssert c.config, typ != nil
|
|
while typ.kind == tyTypeDesc and typ.len > 0: typ = typ[0]
|
|
createStr regs[ra]
|
|
regs[ra].node.strVal = typ.typeToString(preferExported)
|
|
of opcMarshalLoad:
|
|
let ra = instr.regA
|
|
let rb = instr.regB
|
|
inc pc
|
|
let typ = c.types[c.code[pc].regBx - wordExcess]
|
|
putIntoReg(regs[ra], loadAny(regs[rb].node.strVal, typ, c.cache, c.config))
|
|
of opcMarshalStore:
|
|
decodeB(rkNode)
|
|
inc pc
|
|
let typ = c.types[c.code[pc].regBx - wordExcess]
|
|
createStrKeepNode(regs[ra])
|
|
when not defined(nimNoNilSeqs):
|
|
if regs[ra].node.strVal.isNil: regs[ra].node.strVal = newStringOfCap(1000)
|
|
storeAny(regs[ra].node.strVal, typ, regs[rb].regToNode, c.config)
|
|
|
|
inc pc
|
|
|
|
proc execute(c: PCtx, start: int): PNode =
|
|
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
|
|
newSeq(tos.slots, c.prc.maxSlots)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
|
|
proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
|
|
c.loopIterations = c.config.maxLoopIterationsVM
|
|
if sym.kind in routineKinds:
|
|
if sym.typ.len-1 != args.len:
|
|
localError(c.config, sym.info,
|
|
"NimScript: expected $# arguments, but got $#" % [
|
|
$(sym.typ.len-1), $args.len])
|
|
else:
|
|
let start = genProc(c, sym)
|
|
|
|
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
|
|
let maxSlots = sym.offset
|
|
newSeq(tos.slots, maxSlots)
|
|
|
|
# setup parameters:
|
|
if not isEmptyType(sym.typ[0]) or sym.kind == skMacro:
|
|
putIntoReg(tos.slots[0], getNullValue(sym.typ[0], sym.info, c.config))
|
|
# XXX We could perform some type checking here.
|
|
for i in 1..<sym.typ.len:
|
|
putIntoReg(tos.slots[i], args[i-1])
|
|
|
|
result = rawExecute(c, start, tos).regToNode
|
|
else:
|
|
localError(c.config, sym.info,
|
|
"NimScript: attempt to call non-routine: " & sym.name.s)
|
|
|
|
proc evalStmt*(c: PCtx, n: PNode) =
|
|
let n = transformExpr(c.graph, c.module, n)
|
|
let start = genStmt(c, n)
|
|
# execute new instructions; this redundant opcEof check saves us lots
|
|
# of allocations in 'execute':
|
|
if c.code[start].opcode != opcEof:
|
|
discard execute(c, start)
|
|
|
|
proc evalExpr*(c: PCtx, n: PNode): PNode =
|
|
let n = transformExpr(c.graph, c.module, n)
|
|
let start = genExpr(c, n)
|
|
assert c.code[start].opcode != opcEof
|
|
result = execute(c, start)
|
|
|
|
proc getGlobalValue*(c: PCtx; s: PSym): PNode =
|
|
internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
|
|
result = c.globals[s.position-1]
|
|
|
|
include vmops
|
|
|
|
proc setupGlobalCtx*(module: PSym; graph: ModuleGraph) =
|
|
if graph.vm.isNil:
|
|
graph.vm = newCtx(module, graph.cache, graph)
|
|
registerAdditionalOps(PCtx graph.vm)
|
|
else:
|
|
refresh(PCtx graph.vm, module)
|
|
|
|
proc myOpen(graph: ModuleGraph; module: PSym): PPassContext =
|
|
#var c = newEvalContext(module, emRepl)
|
|
#c.features = {allowCast, allowInfiniteLoops}
|
|
#pushStackFrame(c, newStackFrame())
|
|
|
|
# XXX produce a new 'globals' environment here:
|
|
setupGlobalCtx(module, graph)
|
|
result = PCtx graph.vm
|
|
|
|
proc myProcess(c: PPassContext, n: PNode): PNode =
|
|
let c = PCtx(c)
|
|
# don't eval errornous code:
|
|
if c.oldErrorCount == c.config.errorCounter:
|
|
evalStmt(c, n)
|
|
result = newNodeI(nkEmpty, n.info)
|
|
else:
|
|
result = n
|
|
c.oldErrorCount = c.config.errorCounter
|
|
|
|
proc myClose(graph: ModuleGraph; c: PPassContext, n: PNode): PNode =
|
|
myProcess(c, n)
|
|
|
|
const evalPass* = makePass(myOpen, myProcess, myClose)
|
|
|
|
proc evalConstExprAux(module: PSym;
|
|
g: ModuleGraph; prc: PSym, n: PNode,
|
|
mode: TEvalMode): PNode =
|
|
if g.config.errorCounter > 0: return n
|
|
let n = transformExpr(g, module, n)
|
|
setupGlobalCtx(module, g)
|
|
var c = PCtx g.vm
|
|
let oldMode = c.mode
|
|
c.mode = mode
|
|
let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
|
|
if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
|
|
assert c.code[start].opcode != opcEof
|
|
when debugEchoCode: c.echoCode start
|
|
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
|
|
newSeq(tos.slots, c.prc.maxSlots)
|
|
#for i in 0..<c.prc.maxSlots: tos.slots[i] = newNode(nkEmpty)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
if result.info.col < 0: result.info = n.info
|
|
c.mode = oldMode
|
|
|
|
proc evalConstExpr*(module: PSym; g: ModuleGraph; e: PNode): PNode =
|
|
result = evalConstExprAux(module, g, nil, e, emConst)
|
|
|
|
proc evalStaticExpr*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym): PNode =
|
|
result = evalConstExprAux(module, g, prc, e, emStaticExpr)
|
|
|
|
proc evalStaticStmt*(module: PSym; g: ModuleGraph; e: PNode, prc: PSym) =
|
|
discard evalConstExprAux(module, g, prc, e, emStaticStmt)
|
|
|
|
proc setupCompileTimeVar*(module: PSym; g: ModuleGraph; n: PNode) =
|
|
discard evalConstExprAux(module, g, nil, n, emStaticStmt)
|
|
|
|
proc prepareVMValue(arg: PNode): PNode =
|
|
## strip nkExprColonExpr from tuple values recurively. That is how
|
|
## they are expected to be stored in the VM.
|
|
|
|
# Early abort without copy. No transformation takes place.
|
|
if arg.kind in nkLiterals:
|
|
return arg
|
|
|
|
result = copyNode(arg)
|
|
if arg.kind == nkTupleConstr:
|
|
for child in arg:
|
|
if child.kind == nkExprColonExpr:
|
|
result.add prepareVMValue(child[1])
|
|
else:
|
|
result.add prepareVMValue(child)
|
|
else:
|
|
for child in arg:
|
|
result.add prepareVMValue(child)
|
|
|
|
proc setupMacroParam(x: PNode, typ: PType): TFullReg =
|
|
case typ.kind
|
|
of tyStatic:
|
|
putIntoReg(result, prepareVMValue(x))
|
|
else:
|
|
var n = x
|
|
if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n[1]
|
|
n = n.canonValue
|
|
n.flags.incl nfIsRef
|
|
n.typ = x.typ
|
|
result = TFullReg(kind: rkNode, node: n)
|
|
|
|
iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
|
|
let gp = macroSym.ast[genericParamsPos]
|
|
for i in 0..<gp.len:
|
|
let genericParam = gp[i].sym
|
|
let posInCall = macroSym.typ.len + i
|
|
if posInCall < call.len:
|
|
yield (genericParam, call[posInCall])
|
|
|
|
# to prevent endless recursion in macro instantiation
|
|
const evalMacroLimit = 1000
|
|
|
|
proc errorNode(owner: PSym, n: PNode): PNode =
|
|
result = newNodeI(nkEmpty, n.info)
|
|
result.typ = newType(tyError, owner)
|
|
result.typ.flags.incl tfCheckedForDestructor
|
|
|
|
proc evalMacroCall*(module: PSym; g: ModuleGraph;
|
|
n, nOrig: PNode, sym: PSym): PNode =
|
|
if g.config.errorCounter > 0: return errorNode(module, n)
|
|
|
|
# XXX globalError() is ugly here, but I don't know a better solution for now
|
|
inc(g.config.evalMacroCounter)
|
|
if g.config.evalMacroCounter > evalMacroLimit:
|
|
globalError(g.config, n.info, "macro instantiation too nested")
|
|
|
|
# immediate macros can bypass any type and arity checking so we check the
|
|
# arity here too:
|
|
if sym.typ.len > n.safeLen and sym.typ.len > 1:
|
|
globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
|
|
n.renderTree, $(n.safeLen-1), $(sym.typ.len-1)])
|
|
|
|
setupGlobalCtx(module, g)
|
|
var c = PCtx g.vm
|
|
let oldMode = c.mode
|
|
c.mode = emStaticStmt
|
|
c.comesFromHeuristic.line = 0'u16
|
|
c.callsite = nOrig
|
|
let start = genProc(c, sym)
|
|
|
|
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
|
|
let maxSlots = sym.offset
|
|
newSeq(tos.slots, maxSlots)
|
|
# setup arguments:
|
|
var L = n.safeLen
|
|
if L == 0: L = 1
|
|
# This is wrong for tests/reject/tind1.nim where the passed 'else' part
|
|
# doesn't end up in the parameter:
|
|
#InternalAssert tos.slots.len >= L
|
|
|
|
# return value:
|
|
tos.slots[0] = TFullReg(kind: rkNode, node: newNodeI(nkEmpty, n.info))
|
|
|
|
# setup parameters:
|
|
for i in 1..<sym.typ.len:
|
|
tos.slots[i] = setupMacroParam(n[i], sym.typ[i])
|
|
|
|
let gp = sym.ast[genericParamsPos]
|
|
for i in 0..<gp.len:
|
|
let idx = sym.typ.len + i
|
|
if idx < n.len:
|
|
tos.slots[idx] = setupMacroParam(n[idx], gp[i].sym.typ)
|
|
else:
|
|
dec(g.config.evalMacroCounter)
|
|
c.callsite = nil
|
|
localError(c.config, n.info, "expected " & $gp.len &
|
|
" generic parameter(s)")
|
|
# temporary storage:
|
|
#for i in L..<maxSlots: tos.slots[i] = newNode(nkEmpty)
|
|
result = rawExecute(c, start, tos).regToNode
|
|
if result.info.line < 0: result.info = n.info
|
|
if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
|
|
dec(g.config.evalMacroCounter)
|
|
c.callsite = nil
|
|
c.mode = oldMode
|