mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
* move tests to testament
* minor
* fix random
* disable test random
(cherry picked from commit cbc793b30b)
648 lines
23 KiB
Nim
648 lines
23 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2017 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## Nim's standard random number generator.
|
|
##
|
|
## Its implementation is based on the ``xoroshiro128+``
|
|
## (xor/rotate/shift/rotate) library.
|
|
## * More information: http://xoroshiro.di.unimi.it/
|
|
## * C implementation: http://xoroshiro.di.unimi.it/xoroshiro128plus.c
|
|
##
|
|
## **Do not use this module for cryptographic purposes!**
|
|
##
|
|
## Basic usage
|
|
## ===========
|
|
##
|
|
## To get started, here are some examples:
|
|
##
|
|
## .. code-block::
|
|
##
|
|
## import random
|
|
##
|
|
## # Call randomize() once to initialize the default random number generator
|
|
## # If this is not called, the same results will occur every time these
|
|
## # examples are run
|
|
## randomize()
|
|
##
|
|
## # Pick a number between 0 and 100
|
|
## let num = rand(100)
|
|
## echo num
|
|
##
|
|
## # Roll a six-sided die
|
|
## let roll = rand(1..6)
|
|
## echo roll
|
|
##
|
|
## # Pick a marble from a bag
|
|
## let marbles = ["red", "blue", "green", "yellow", "purple"]
|
|
## let pick = sample(marbles)
|
|
## echo pick
|
|
##
|
|
## # Shuffle some cards
|
|
## var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
|
|
## shuffle(cards)
|
|
## echo cards
|
|
##
|
|
## These examples all use the default random number generator. The
|
|
## `Rand type<#Rand>`_ represents the state of a random number generator.
|
|
## For convenience, this module contains a default Rand state that corresponds
|
|
## to the default random number generator. Most procs in this module which do
|
|
## not take in a Rand parameter, including those called in the above examples,
|
|
## use the default generator. Those procs are **not** thread-safe.
|
|
##
|
|
## Note that the default generator always starts in the same state.
|
|
## The `randomize proc<#randomize>`_ can be called to initialize the default
|
|
## generator with a seed based on the current time, and it only needs to be
|
|
## called once before the first usage of procs from this module. If
|
|
## ``randomize`` is not called, then the default generator will always produce
|
|
## the same results.
|
|
##
|
|
## Generators that are independent of the default one can be created with the
|
|
## `initRand proc<#initRand,int64>`_.
|
|
##
|
|
## Again, it is important to remember that this module must **not** be used for
|
|
## cryptographic applications.
|
|
##
|
|
## See also
|
|
## ========
|
|
## * `math module<math.html>`_ for basic math routines
|
|
## * `mersenne module<mersenne.html>`_ for the Mersenne Twister random number
|
|
## generator
|
|
## * `stats module<stats.html>`_ for statistical analysis
|
|
## * `list of cryptographic and hashing modules
|
|
## <lib.html#pure-libraries-hashing>`_
|
|
## in the standard library
|
|
|
|
import algorithm, math
|
|
import std/private/since
|
|
|
|
include "system/inclrtl"
|
|
{.push debugger: off.}
|
|
|
|
when defined(js):
|
|
type Ui = uint32
|
|
|
|
const randMax = 4_294_967_295u32
|
|
else:
|
|
type Ui = uint64
|
|
|
|
const randMax = 18_446_744_073_709_551_615u64
|
|
|
|
type
|
|
Rand* = object ## State of a random number generator.
|
|
##
|
|
## Create a new Rand state using the `initRand proc<#initRand,int64>`_.
|
|
##
|
|
## The module contains a default Rand state for convenience.
|
|
## It corresponds to the default random number generator's state.
|
|
## The default Rand state always starts with the same values, but the
|
|
## `randomize proc<#randomize>`_ can be used to seed the default generator
|
|
## with a value based on the current time.
|
|
##
|
|
## Many procs have two variations: one that takes in a Rand parameter and
|
|
## another that uses the default generator. The procs that use the default
|
|
## generator are **not** thread-safe!
|
|
a0, a1: Ui
|
|
|
|
when defined(js):
|
|
var state = Rand(
|
|
a0: 0x69B4C98Cu32,
|
|
a1: 0xFED1DD30u32) # global for backwards compatibility
|
|
else:
|
|
# racy for multi-threading but good enough for now:
|
|
var state = Rand(
|
|
a0: 0x69B4C98CB8530805u64,
|
|
a1: 0xFED1DD3004688D67CAu64) # global for backwards compatibility
|
|
|
|
proc rotl(x, k: Ui): Ui =
|
|
result = (x shl k) or (x shr (Ui(64) - k))
|
|
|
|
proc next*(r: var Rand): uint64 =
|
|
## Computes a random ``uint64`` number using the given state.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer between zero and
|
|
## a given upper bound
|
|
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
|
|
## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
## * `skipRandomNumbers proc<#skipRandomNumbers,Rand>`_
|
|
runnableExamples:
|
|
var r = initRand(2019)
|
|
doAssert r.next() == 138_744_656_611_299'u64
|
|
doAssert r.next() == 979_810_537_855_049_344'u64
|
|
doAssert r.next() == 3_628_232_584_225_300_704'u64
|
|
let s0 = r.a0
|
|
var s1 = r.a1
|
|
result = s0 + s1
|
|
s1 = s1 xor s0
|
|
r.a0 = rotl(s0, 55) xor s1 xor (s1 shl 14) # a, b
|
|
r.a1 = rotl(s1, 36) # c
|
|
|
|
proc skipRandomNumbers*(s: var Rand) =
|
|
## The jump function for the generator.
|
|
##
|
|
## This proc is equivalent to 2^64 calls to `next<#next,Rand>`_, and it can
|
|
## be used to generate 2^64 non-overlapping subsequences for parallel
|
|
## computations.
|
|
##
|
|
## When multiple threads are generating random numbers, each thread must
|
|
## own the `Rand<#Rand>`_ state it is using so that the thread can safely
|
|
## obtain random numbers. However, if each thread creates its own Rand state,
|
|
## the subsequences of random numbers that each thread generates may overlap,
|
|
## even if the provided seeds are unique. This is more likely to happen as the
|
|
## number of threads and amount of random numbers generated increases.
|
|
##
|
|
## If many threads will generate random numbers concurrently, it is better to
|
|
## create a single Rand state and pass it to each thread. After passing the
|
|
## Rand state to a thread, call this proc before passing it to the next one.
|
|
## By using the Rand state this way, the subsequences of random numbers
|
|
## generated in each thread will never overlap as long as no thread generates
|
|
## more than 2^64 random numbers.
|
|
##
|
|
## The following example below demonstrates this pattern:
|
|
##
|
|
## .. code-block::
|
|
## # Compile this example with --threads:on
|
|
## import random
|
|
## import threadpool
|
|
##
|
|
## const spawns = 4
|
|
## const numbers = 100000
|
|
##
|
|
## proc randomSum(rand: Rand): int =
|
|
## var r = rand
|
|
## for i in 1..numbers:
|
|
## result += rand(1..10)
|
|
##
|
|
## var r = initRand(2019)
|
|
## var vals: array[spawns, FlowVar[int]]
|
|
## for val in vals.mitems:
|
|
## val = spawn(randomSum(r))
|
|
## r.skipRandomNumbers()
|
|
##
|
|
## for val in vals:
|
|
## echo ^val
|
|
##
|
|
## See also:
|
|
## * `next proc<#next,Rand>`_
|
|
when defined(js):
|
|
const helper = [0xbeac0467u32, 0xd86b048bu32]
|
|
else:
|
|
const helper = [0xbeac0467eba5facbu64, 0xd86b048b86aa9922u64]
|
|
var
|
|
s0 = Ui 0
|
|
s1 = Ui 0
|
|
for i in 0..high(helper):
|
|
for b in 0 ..< 64:
|
|
if (helper[i] and (Ui(1) shl Ui(b))) != 0:
|
|
s0 = s0 xor s.a0
|
|
s1 = s1 xor s.a1
|
|
discard next(s)
|
|
s.a0 = s0
|
|
s.a1 = s1
|
|
|
|
proc rand*(r: var Rand; max: Natural): int {.benign.} =
|
|
## Returns a random integer in the range `0..max` using the given state.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,int>`_ that returns an integer using the default
|
|
## random number generator
|
|
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
|
|
## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
var r = initRand(123)
|
|
doAssert r.rand(100) == 0
|
|
doAssert r.rand(100) == 96
|
|
doAssert r.rand(100) == 66
|
|
if max == 0: return
|
|
while true:
|
|
let x = next(r)
|
|
if x <= randMax - (randMax mod Ui(max)):
|
|
return int(x mod (uint64(max)+1u64))
|
|
|
|
proc rand*(max: int): int {.benign.} =
|
|
## Returns a random integer in the range `0..max`.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the sequence of random
|
|
## numbers returned from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer using a
|
|
## provided state
|
|
## * `rand proc<#rand,float>`_ that returns a float
|
|
## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
randomize(123)
|
|
doAssert rand(100) == 0
|
|
doAssert rand(100) == 96
|
|
doAssert rand(100) == 66
|
|
rand(state, max)
|
|
|
|
proc rand*(r: var Rand; max: range[0.0 .. high(float)]): float {.benign.} =
|
|
## Returns a random floating point number in the range `0.0..max`
|
|
## using the given state.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,float>`_ that returns a float using the default
|
|
## random number generator
|
|
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
|
|
## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
var r = initRand(234)
|
|
let f = r.rand(1.0)
|
|
## f = 8.717181376738381e-07
|
|
let x = next(r)
|
|
when defined(js):
|
|
result = (float(x) / float(high(uint32))) * max
|
|
else:
|
|
let u = (0x3FFu64 shl 52u64) or (x shr 12u64)
|
|
result = (cast[float](u) - 1.0) * max
|
|
|
|
proc rand*(max: float): float {.benign.} =
|
|
## Returns a random floating point number in the range `0.0..max`.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the sequence of random
|
|
## numbers returned from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,Rand,range[]>`_ that returns a float using a
|
|
## provided state
|
|
## * `rand proc<#rand,int>`_ that returns an integer
|
|
## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
randomize(234)
|
|
let f = rand(1.0)
|
|
## f = 8.717181376738381e-07
|
|
rand(state, max)
|
|
|
|
proc rand*[T: Ordinal or SomeFloat](r: var Rand; x: HSlice[T, T]): T =
|
|
## For a slice `a..b`, returns a value in the range `a..b` using the given
|
|
## state.
|
|
##
|
|
## Allowed types for `T` are integers, floats, and enums without holes.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice and uses the
|
|
## default random number generator
|
|
## * `rand proc<#rand,Rand,Natural>`_ that returns an integer
|
|
## * `rand proc<#rand,Rand,range[]>`_ that returns a float
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
var r = initRand(345)
|
|
doAssert r.rand(1..6) == 4
|
|
doAssert r.rand(1..6) == 4
|
|
doAssert r.rand(1..6) == 6
|
|
let f = r.rand(-1.0 .. 1.0)
|
|
## f = 0.8741183448756229
|
|
when T is SomeFloat:
|
|
result = rand(r, x.b - x.a) + x.a
|
|
else: # Integers and Enum types
|
|
result = T(rand(r, int(x.b) - int(x.a)) + int(x.a))
|
|
|
|
proc rand*[T: Ordinal or SomeFloat](x: HSlice[T, T]): T =
|
|
## For a slice `a..b`, returns a value in the range `a..b`.
|
|
##
|
|
## Allowed types for `T` are integers, floats, and enums without holes.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the sequence of random
|
|
## numbers returned from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,Rand,HSlice[T,T]>`_ that accepts a slice and uses
|
|
## a provided state
|
|
## * `rand proc<#rand,int>`_ that returns an integer
|
|
## * `rand proc<#rand,float>`_ that returns a floating point number
|
|
## * `rand proc<#rand,typedesc[T]>`_ that accepts an integer or range type
|
|
runnableExamples:
|
|
randomize(345)
|
|
doAssert rand(1..6) == 4
|
|
doAssert rand(1..6) == 4
|
|
doAssert rand(1..6) == 6
|
|
result = rand(state, x)
|
|
|
|
proc rand*[T: SomeInteger](t: typedesc[T]): T =
|
|
## Returns a random integer in the range `low(T)..high(T)`.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the sequence of random
|
|
## numbers returned from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `rand proc<#rand,int>`_ that returns an integer
|
|
## * `rand proc<#rand,float>`_ that returns a floating point number
|
|
## * `rand proc<#rand,HSlice[T,T]>`_ that accepts a slice
|
|
runnableExamples:
|
|
randomize(567)
|
|
doAssert rand(int8) == 55
|
|
doAssert rand(int8) == -42
|
|
doAssert rand(int8) == 43
|
|
doAssert rand(uint32) == 578980729'u32
|
|
doAssert rand(uint32) == 4052940463'u32
|
|
doAssert rand(uint32) == 2163872389'u32
|
|
doAssert rand(range[1..16]) == 11
|
|
doAssert rand(range[1..16]) == 4
|
|
doAssert rand(range[1..16]) == 16
|
|
when T is range:
|
|
result = rand(state, low(T)..high(T))
|
|
else:
|
|
result = cast[T](state.next)
|
|
|
|
proc sample*[T](r: var Rand; s: set[T]): T =
|
|
## Returns a random element from the set ``s`` using the given state.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,set[T]>`_ that uses the default random number
|
|
## generator
|
|
## * `sample proc<#sample,Rand,openArray[T]>`_ for openarrays
|
|
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
|
|
## cumulative distribution function
|
|
runnableExamples:
|
|
var r = initRand(987)
|
|
let s = {1, 3, 5, 7, 9}
|
|
doAssert r.sample(s) == 5
|
|
doAssert r.sample(s) == 7
|
|
doAssert r.sample(s) == 1
|
|
assert card(s) != 0
|
|
var i = rand(r, card(s) - 1)
|
|
for e in s:
|
|
if i == 0: return e
|
|
dec(i)
|
|
|
|
proc sample*[T](s: set[T]): T =
|
|
## Returns a random element from the set ``s``.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the order of outcomes
|
|
## from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,Rand,set[T]>`_ that uses a provided state
|
|
## * `sample proc<#sample,openArray[T]>`_ for openarrays
|
|
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
|
|
## cumulative distribution function
|
|
runnableExamples:
|
|
randomize(987)
|
|
let s = {1, 3, 5, 7, 9}
|
|
doAssert sample(s) == 5
|
|
doAssert sample(s) == 7
|
|
doAssert sample(s) == 1
|
|
sample(state, s)
|
|
|
|
proc sample*[T](r: var Rand; a: openArray[T]): T =
|
|
## Returns a random element from ``a`` using the given state.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,openArray[T]>`_ that uses the default
|
|
## random number generator
|
|
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that uses a
|
|
## cumulative distribution function
|
|
## * `sample proc<#sample,Rand,set[T]>`_ for sets
|
|
runnableExamples:
|
|
let marbles = ["red", "blue", "green", "yellow", "purple"]
|
|
var r = initRand(456)
|
|
doAssert r.sample(marbles) == "blue"
|
|
doAssert r.sample(marbles) == "yellow"
|
|
doAssert r.sample(marbles) == "red"
|
|
result = a[r.rand(a.low..a.high)]
|
|
|
|
proc sample*[T](a: openArray[T]): T =
|
|
## Returns a random element from ``a``.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the order of outcomes
|
|
## from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,Rand,openArray[T]>`_ that uses a provided state
|
|
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that uses a
|
|
## cumulative distribution function
|
|
## * `sample proc<#sample,set[T]>`_ for sets
|
|
runnableExamples:
|
|
let marbles = ["red", "blue", "green", "yellow", "purple"]
|
|
randomize(456)
|
|
doAssert sample(marbles) == "blue"
|
|
doAssert sample(marbles) == "yellow"
|
|
doAssert sample(marbles) == "red"
|
|
result = a[rand(a.low..a.high)]
|
|
|
|
proc sample*[T, U](r: var Rand; a: openArray[T]; cdf: openArray[U]): T =
|
|
## Returns an element from ``a`` using a cumulative distribution function
|
|
## (CDF) and the given state.
|
|
##
|
|
## The ``cdf`` argument does not have to be normalized, and it could contain
|
|
## any type of elements that can be converted to a ``float``. It must be
|
|
## the same length as ``a``. Each element in ``cdf`` should be greater than
|
|
## or equal to the previous element.
|
|
##
|
|
## The outcome of the `cumsum<math.html#cumsum,openArray[T]>`_ proc and the
|
|
## return value of the `cumsummed<math.html#cumsummed,openArray[T]>`_ proc,
|
|
## which are both in the math module, can be used as the ``cdf`` argument.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,openArray[T],openArray[U]>`_ that also utilizes
|
|
## a CDF but uses the default random number generator
|
|
## * `sample proc<#sample,Rand,openArray[T]>`_ that does not use a CDF
|
|
## * `sample proc<#sample,Rand,set[T]>`_ for sets
|
|
runnableExamples:
|
|
from math import cumsummed
|
|
|
|
let marbles = ["red", "blue", "green", "yellow", "purple"]
|
|
let count = [1, 6, 8, 3, 4]
|
|
let cdf = count.cumsummed
|
|
var r = initRand(789)
|
|
doAssert r.sample(marbles, cdf) == "red"
|
|
doAssert r.sample(marbles, cdf) == "green"
|
|
doAssert r.sample(marbles, cdf) == "blue"
|
|
assert(cdf.len == a.len) # Two basic sanity checks.
|
|
assert(float(cdf[^1]) > 0.0)
|
|
#While we could check cdf[i-1] <= cdf[i] for i in 1..cdf.len, that could get
|
|
#awfully expensive even in debugging modes.
|
|
let u = r.rand(float(cdf[^1]))
|
|
a[cdf.upperBound(U(u))]
|
|
|
|
proc sample*[T, U](a: openArray[T]; cdf: openArray[U]): T =
|
|
## Returns an element from ``a`` using a cumulative distribution function
|
|
## (CDF).
|
|
##
|
|
## This proc works similarly to
|
|
## `sample[T, U](Rand, openArray[T], openArray[U])
|
|
## <#sample,Rand,openArray[T],openArray[U]>`_.
|
|
## See that proc's documentation for more details.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the order of outcomes
|
|
## from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `sample proc<#sample,Rand,openArray[T],openArray[U]>`_ that also utilizes
|
|
## a CDF but uses a provided state
|
|
## * `sample proc<#sample,openArray[T]>`_ that does not use a CDF
|
|
## * `sample proc<#sample,set[T]>`_ for sets
|
|
runnableExamples:
|
|
from math import cumsummed
|
|
|
|
let marbles = ["red", "blue", "green", "yellow", "purple"]
|
|
let count = [1, 6, 8, 3, 4]
|
|
let cdf = count.cumsummed
|
|
randomize(789)
|
|
doAssert sample(marbles, cdf) == "red"
|
|
doAssert sample(marbles, cdf) == "green"
|
|
doAssert sample(marbles, cdf) == "blue"
|
|
state.sample(a, cdf)
|
|
|
|
proc gauss*(r: var Rand; mu = 0.0; sigma = 1.0): float {.since: (1, 3).} =
|
|
## Returns a Gaussian random variate,
|
|
## with mean ``mu`` and standard deviation ``sigma``
|
|
## using the given state.
|
|
# Ratio of uniforms method for normal
|
|
# http://www2.econ.osaka-u.ac.jp/~tanizaki/class/2013/econome3/13.pdf
|
|
const K = sqrt(2 / E)
|
|
var
|
|
a = 0.0
|
|
b = 0.0
|
|
while true:
|
|
a = rand(r, 1.0)
|
|
b = (2.0 * rand(r, 1.0) - 1.0) * K
|
|
if b * b <= -4.0 * a * a * ln(a): break
|
|
result = mu + sigma * (b / a)
|
|
|
|
proc gauss*(mu = 0.0, sigma = 1.0): float {.since: (1, 3).} =
|
|
## Returns a Gaussian random variate,
|
|
## with mean ``mu`` and standard deviation ``sigma``.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the order of outcomes
|
|
## from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
result = gauss(state, mu, sigma)
|
|
|
|
proc initRand*(seed: int64): Rand =
|
|
## Initializes a new `Rand<#Rand>`_ state using the given seed.
|
|
##
|
|
## `seed` must not be zero. Providing a specific seed will produce
|
|
## the same results for that seed each time.
|
|
##
|
|
## The resulting state is independent of the default random number
|
|
## generator's state.
|
|
##
|
|
## See also:
|
|
## * `randomize proc<#randomize,int64>`_ that accepts a seed for the default
|
|
## random number generator
|
|
## * `randomize proc<#randomize>`_ that initializes the default random
|
|
## number generator using the current time
|
|
runnableExamples:
|
|
from times import getTime, toUnix, nanosecond
|
|
|
|
var r1 = initRand(123)
|
|
|
|
let now = getTime()
|
|
var r2 = initRand(now.toUnix * 1_000_000_000 + now.nanosecond)
|
|
doAssert seed != 0 # 0 causes `rand(int)` to always return 0 for example.
|
|
result.a0 = Ui(seed shr 16)
|
|
result.a1 = Ui(seed and 0xffff)
|
|
discard next(result)
|
|
|
|
proc randomize*(seed: int64) {.benign.} =
|
|
## Initializes the default random number generator with the given seed.
|
|
##
|
|
## `seed` must not be zero. Providing a specific seed will produce
|
|
## the same results for that seed each time.
|
|
##
|
|
## See also:
|
|
## * `initRand proc<#initRand,int64>`_
|
|
## * `randomize proc<#randomize>`_ that uses the current time instead
|
|
runnableExamples:
|
|
from times import getTime, toUnix, nanosecond
|
|
|
|
randomize(123)
|
|
|
|
let now = getTime()
|
|
randomize(now.toUnix * 1_000_000_000 + now.nanosecond)
|
|
state = initRand(seed)
|
|
|
|
proc shuffle*[T](r: var Rand; x: var openArray[T]) =
|
|
## Shuffles a sequence of elements in-place using the given state.
|
|
##
|
|
## See also:
|
|
## * `shuffle proc<#shuffle,openArray[T]>`_ that uses the default
|
|
## random number generator
|
|
runnableExamples:
|
|
var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
|
|
var r = initRand(678)
|
|
r.shuffle(cards)
|
|
doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"]
|
|
for i in countdown(x.high, 1):
|
|
let j = r.rand(i)
|
|
swap(x[i], x[j])
|
|
|
|
proc shuffle*[T](x: var openArray[T]) =
|
|
## Shuffles a sequence of elements in-place.
|
|
##
|
|
## If `randomize<#randomize>`_ has not been called, the order of outcomes
|
|
## from this proc will always be the same.
|
|
##
|
|
## This proc uses the default random number generator. Thus, it is **not**
|
|
## thread-safe.
|
|
##
|
|
## See also:
|
|
## * `shuffle proc<#shuffle,Rand,openArray[T]>`_ that uses a provided state
|
|
runnableExamples:
|
|
var cards = ["Ace", "King", "Queen", "Jack", "Ten"]
|
|
randomize(678)
|
|
shuffle(cards)
|
|
doAssert cards == ["King", "Ace", "Queen", "Ten", "Jack"]
|
|
shuffle(state, x)
|
|
|
|
when not defined(nimscript) and not defined(standalone):
|
|
import times
|
|
|
|
proc randomize*() {.benign.} =
|
|
## Initializes the default random number generator with a value based on
|
|
## the current time.
|
|
##
|
|
## This proc only needs to be called once, and it should be called before
|
|
## the first usage of procs from this module that use the default random
|
|
## number generator.
|
|
##
|
|
## **Note:** Does not work for NimScript.
|
|
##
|
|
## See also:
|
|
## * `randomize proc<#randomize,int64>`_ that accepts a seed
|
|
## * `initRand proc<#initRand,int64>`_
|
|
when defined(js):
|
|
let time = int64(times.epochTime() * 1000) and 0x7fff_ffff
|
|
randomize(time)
|
|
else:
|
|
let now = times.getTime()
|
|
randomize(convert(Seconds, Nanoseconds, now.toUnix) + now.nanosecond)
|
|
|
|
{.pop.}
|