Files
Nim/lib/pure/bitops.nim
chmod222 31d3606fe8 fixes #21564; std/bitops: Add explicit type masking for the JS target (#21598)
* std/bitops: Add explicit type masking for the JS target

Typecasts on the JavaScript backend do not function the same way as they
do on C and C++ backends, so for bitwise operations we may need to mask them
back down into their allowed range when they get shifted outside it.

Since they do work as expected on the other backends, a default bitmask
of all 1's is casted down into the target type as an easily optimizable
"& 0xFF" operation for these backends.

* Fixup: this should still be a func

* Run test case on js target

* Adapt testcase to contributor guide and best practices

* Simplify constrain logic and turn into actual no-op for the C side
2023-04-03 05:22:31 +02:00

884 lines
34 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2017 Nim Authors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements a series of low level methods for bit manipulation.
##
## By default, compiler intrinsics are used where possible to improve performance
## on supported compilers: `GCC`, `LLVM_GCC`, `CLANG`, `VCC`, `ICC`.
##
## The module will fallback to pure nim procs in case the backend is not supported.
## You can also use the flag `noIntrinsicsBitOpts` to disable compiler intrinsics.
##
## This module is also compatible with other backends: `JavaScript`, `NimScript`
## as well as the `compiletime VM`.
##
## As a result of using optimized functions/intrinsics, some functions can return
## undefined results if the input is invalid. You can use the flag `noUndefinedBitOpts`
## to force predictable behaviour for all input, causing a small performance hit.
##
## At this time only `fastLog2`, `firstSetBit`, `countLeadingZeroBits` and `countTrailingZeroBits`
## may return undefined and/or platform dependent values if given invalid input.
import macros
import std/private/since
from std/private/bitops_utils import forwardImpl, castToUnsigned
func bitnot*[T: SomeInteger](x: T): T {.magic: "BitnotI".}
## Computes the `bitwise complement` of the integer `x`.
func internalBitand[T: SomeInteger](x, y: T): T {.magic: "BitandI".}
func internalBitor[T: SomeInteger](x, y: T): T {.magic: "BitorI".}
func internalBitxor[T: SomeInteger](x, y: T): T {.magic: "BitxorI".}
macro bitand*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise and` of all arguments collectively.
let fn = bindSym("internalBitand")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
macro bitor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise or` of all arguments collectively.
let fn = bindSym("internalBitor")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
macro bitxor*[T: SomeInteger](x, y: T; z: varargs[T]): T =
## Computes the `bitwise xor` of all arguments collectively.
let fn = bindSym("internalBitxor")
result = newCall(fn, x, y)
for extra in z:
result = newCall(fn, result, extra)
type BitsRange*[T] = range[0..sizeof(T)*8-1]
## A range with all bit positions for type `T`.
template typeMasked[T: SomeInteger](x: T): T =
when defined(js):
x and ((0xffffffff_ffffffff'u shr (64 - sizeof(T) * 8)))
else:
x
func bitsliced*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns an extracted (and shifted) slice of bits from `v`.
runnableExamples:
doAssert 0b10111.bitsliced(2 .. 4) == 0b101
doAssert 0b11100.bitsliced(0 .. 2) == 0b100
doAssert 0b11100.bitsliced(0 ..< 3) == 0b100
let
upmost = sizeof(T) * 8 - 1
uv = v.castToUnsigned
((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T
proc bitslice*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v` into an extracted (and shifted) slice of bits from `v`.
runnableExamples:
var x = 0b101110
x.bitslice(2 .. 4)
doAssert x == 0b011
let
upmost = sizeof(T) * 8 - 1
uv = v.castToUnsigned
v = ((uv shl (upmost - slice.b)).typeMasked shr (upmost - slice.b + slice.a)).T
func toMask*[T: SomeInteger](slice: Slice[int]): T {.inline, since: (1, 3).} =
## Creates a bitmask based on a slice of bits.
runnableExamples:
doAssert toMask[int32](1 .. 3) == 0b1110'i32
doAssert toMask[int32](0 .. 3) == 0b1111'i32
let
upmost = sizeof(T) * 8 - 1
bitmask = bitnot(0.T).castToUnsigned
((bitmask shl (upmost - slice.b + slice.a)).typeMasked shr (upmost - slice.b)).T
proc masked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with only the `1` bits from `mask` matching those of
## `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.masked(0b0000_1010'u8) == 0b0000_0010'u8
bitand(v, mask)
func masked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with only the `1` bits in the range of `slice`
## matching those of `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_1011'u8
doAssert v.masked(1 .. 3) == 0b0000_1010'u8
bitand(v, toMask[T](slice))
proc mask*[T: SomeInteger](v: var T; mask: T) {.inline, since: (1, 3).} =
## Mutates `v`, with only the `1` bits from `mask` matching those of
## `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.mask(0b0000_1010'u8)
doAssert v == 0b0000_0010'u8
v = bitand(v, mask)
proc mask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with only the `1` bits in the range of `slice`
## matching those of `v` set to 1.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_1011'u8
v.mask(1 .. 3)
doAssert v == 0b0000_1010'u8
v = bitand(v, toMask[T](slice))
func setMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.setMasked(0b0000_1010'u8) == 0b0000_1011'u8
bitor(v, mask)
func setMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.setMasked(2 .. 3) == 0b0000_1111'u8
bitor(v, toMask[T](slice))
proc setMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.setMask(0b0000_1010'u8)
doAssert v == 0b0000_1011'u8
v = bitor(v, mask)
proc setMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` set to 1.
##
## Effectively maps to a `bitor <#bitor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.setMask(2 .. 3)
doAssert v == 0b0000_1111'u8
v = bitor(v, toMask[T](slice))
func clearMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.clearMasked(0b0000_1010'u8) == 0b0000_0001'u8
bitand(v, bitnot(mask))
func clearMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.clearMasked(1 .. 3) == 0b0000_0001'u8
bitand(v, bitnot(toMask[T](slice)))
proc clearMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
var v = 0b0000_0011'u8
v.clearMask(0b0000_1010'u8)
doAssert v == 0b0000_0001'u8
v = bitand(v, bitnot(mask))
proc clearMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` set to 0.
##
## Effectively maps to a `bitand <#bitand.m,T,T,varargs[T]>`_ operation
## with an *inverted mask*.
runnableExamples:
var v = 0b0000_0011'u8
v.clearMask(1 .. 3)
doAssert v == 0b0000_0001'u8
v = bitand(v, bitnot(toMask[T](slice)))
func flipMasked*[T: SomeInteger](v, mask :T): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits from `mask` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.flipMasked(0b0000_1010'u8) == 0b0000_1001'u8
bitxor(v, mask)
func flipMasked*[T: SomeInteger](v: T; slice: Slice[int]): T {.inline, since: (1, 3).} =
## Returns `v`, with all the `1` bits in the range of `slice` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
let v = 0b0000_0011'u8
doAssert v.flipMasked(1 .. 3) == 0b0000_1101'u8
bitxor(v, toMask[T](slice))
proc flipMask*[T: SomeInteger](v: var T; mask: T) {.inline.} =
## Mutates `v`, with all the `1` bits from `mask` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.flipMask(0b0000_1010'u8)
doAssert v == 0b0000_1001'u8
v = bitxor(v, mask)
proc flipMask*[T: SomeInteger](v: var T; slice: Slice[int]) {.inline, since: (1, 3).} =
## Mutates `v`, with all the `1` bits in the range of `slice` flipped.
##
## Effectively maps to a `bitxor <#bitxor.m,T,T,varargs[T]>`_ operation.
runnableExamples:
var v = 0b0000_0011'u8
v.flipMask(1 .. 3)
doAssert v == 0b0000_1101'u8
v = bitxor(v, toMask[T](slice))
proc setBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` set to 1.
runnableExamples:
var v = 0b0000_0011'u8
v.setBit(5'u8)
doAssert v == 0b0010_0011'u8
v.setMask(1.T shl bit)
proc clearBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` set to 0.
runnableExamples:
var v = 0b0000_0011'u8
v.clearBit(1'u8)
doAssert v == 0b0000_0001'u8
v.clearMask(1.T shl bit)
proc flipBit*[T: SomeInteger](v: var T; bit: BitsRange[T]) {.inline.} =
## Mutates `v`, with the bit at position `bit` flipped.
runnableExamples:
var v = 0b0000_0011'u8
v.flipBit(1'u8)
doAssert v == 0b0000_0001'u8
v = 0b0000_0011'u8
v.flipBit(2'u8)
doAssert v == 0b0000_0111'u8
v.flipMask(1.T shl bit)
macro setBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 1.
runnableExamples:
var v = 0b0000_0011'u8
v.setBits(3, 5, 7)
doAssert v == 0b1010_1011'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("setBit", v, bit)
macro clearBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 0.
runnableExamples:
var v = 0b1111_1111'u8
v.clearBits(1, 3, 5, 7)
doAssert v == 0b0101_0101'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("clearBit", v, bit)
macro flipBits*(v: typed; bits: varargs[typed]): untyped =
## Mutates `v`, with the bits at positions `bits` set to 0.
runnableExamples:
var v = 0b0000_1111'u8
v.flipBits(1, 3, 5, 7)
doAssert v == 0b1010_0101'u8
bits.expectKind(nnkBracket)
result = newStmtList()
for bit in bits:
result.add newCall("flipBit", v, bit)
proc testBit*[T: SomeInteger](v: T; bit: BitsRange[T]): bool {.inline.} =
## Returns true if the bit in `v` at positions `bit` is set to 1.
runnableExamples:
let v = 0b0000_1111'u8
doAssert v.testBit(0)
doAssert not v.testBit(7)
let mask = 1.T shl bit
return (v and mask) == mask
# #### Pure Nim version ####
func firstSetBitNim(x: uint32): int {.inline.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
const lookup: array[32, uint8] = [0'u8, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15,
25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9]
let v = x.uint32
let k = not v + 1 # get two's complement # cast[uint32](-cast[int32](v))
result = 1 + lookup[uint32((v and k) * 0x077CB531'u32) shr 27].int
func firstSetBitNim(x: uint64): int {.inline.} =
## Returns the 1-based index of the least significant set bit of x, or if x is zero, returns zero.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#ZerosOnRightMultLookup
let v = uint64(x)
var k = uint32(v and 0xFFFFFFFF'u32)
if k == 0:
k = uint32(v shr 32'u32) and 0xFFFFFFFF'u32
result = 32
else:
result = 0
result += firstSetBitNim(k)
func fastlog2Nim(x: uint32): int {.inline.} =
## Quickly find the log base 2 of a 32-bit or less integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[32, uint8] = [0'u8, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18,
22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31]
var v = x.uint32
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
result = lookup[uint32(v * 0x07C4ACDD'u32) shr 27].int
func fastlog2Nim(x: uint64): int {.inline.} =
## Quickly find the log base 2 of a 64-bit integer.
# https://graphics.stanford.edu/%7Eseander/bithacks.html#IntegerLogDeBruijn
# https://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
const lookup: array[64, uint8] = [0'u8, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54,
33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62,
57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31,
35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5, 63]
var v = x.uint64
v = v or v shr 1 # first round down to one less than a power of 2
v = v or v shr 2
v = v or v shr 4
v = v or v shr 8
v = v or v shr 16
v = v or v shr 32
result = lookup[(v * 0x03F6EAF2CD271461'u64) shr 58].int
import system/countbits_impl
const useBuiltinsRotate = (defined(amd64) or defined(i386)) and
(defined(gcc) or defined(clang) or defined(vcc) or
(defined(icl) and not defined(cpp))) and useBuiltins
template parityImpl[T](value: T): int =
# formula id from: https://graphics.stanford.edu/%7Eseander/bithacks.html#ParityParallel
var v = value
when sizeof(T) == 8:
v = v xor (v shr 32)
when sizeof(T) >= 4:
v = v xor (v shr 16)
when sizeof(T) >= 2:
v = v xor (v shr 8)
v = v xor (v shr 4)
v = v and 0xf
((0x6996'u shr v) and 1).int
when useGCC_builtins:
# Returns the bit parity in value
proc builtin_parity(x: cuint): cint {.importc: "__builtin_parity", cdecl.}
proc builtin_parityll(x: culonglong): cint {.importc: "__builtin_parityll", cdecl.}
# Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.
proc builtin_ffs(x: cint): cint {.importc: "__builtin_ffs", cdecl.}
proc builtin_ffsll(x: clonglong): cint {.importc: "__builtin_ffsll", cdecl.}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
proc builtin_clz(x: cuint): cint {.importc: "__builtin_clz", cdecl.}
proc builtin_clzll(x: culonglong): cint {.importc: "__builtin_clzll", cdecl.}
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
proc builtin_ctz(x: cuint): cint {.importc: "__builtin_ctz", cdecl.}
proc builtin_ctzll(x: culonglong): cint {.importc: "__builtin_ctzll", cdecl.}
elif useVCC_builtins:
# Search the mask data from most significant bit (MSB) to least significant bit (LSB) for a set bit (1).
func bitScanReverse(index: ptr culong, mask: culong): uint8 {.
importc: "_BitScanReverse", header: "<intrin.h>".}
func bitScanReverse64(index: ptr culong, mask: uint64): uint8 {.
importc: "_BitScanReverse64", header: "<intrin.h>".}
# Search the mask data from least significant bit (LSB) to the most significant bit (MSB) for a set bit (1).
func bitScanForward(index: ptr culong, mask: culong): uint8 {.
importc: "_BitScanForward", header: "<intrin.h>".}
func bitScanForward64(index: ptr culong, mask: uint64): uint8 {.
importc: "_BitScanForward64", header: "<intrin.h>".}
template vcc_scan_impl(fnc: untyped; v: untyped): int =
var index: culong
discard fnc(index.addr, v)
index.int
elif useICC_builtins:
# Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
func bitScanForward(p: ptr uint32, b: uint32): uint8 {.
importc: "_BitScanForward", header: "<immintrin.h>".}
func bitScanForward64(p: ptr uint32, b: uint64): uint8 {.
importc: "_BitScanForward64", header: "<immintrin.h>".}
# Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
func bitScanReverse(p: ptr uint32, b: uint32): uint8 {.
importc: "_BitScanReverse", header: "<immintrin.h>".}
func bitScanReverse64(p: ptr uint32, b: uint64): uint8 {.
importc: "_BitScanReverse64", header: "<immintrin.h>".}
template icc_scan_impl(fnc: untyped; v: untyped): int =
var index: uint32
discard fnc(index.addr, v)
index.int
func countSetBits*(x: SomeInteger): int {.inline.} =
## Counts the set bits in an integer (also called `Hamming weight`:idx:).
runnableExamples:
doAssert countSetBits(0b0000_0011'u8) == 2
doAssert countSetBits(0b1010_1010'u8) == 4
result = countSetBitsImpl(x)
func popcount*(x: SomeInteger): int {.inline.} =
## Alias for `countSetBits <#countSetBits,SomeInteger>`_ (Hamming weight).
result = countSetBits(x)
func parityBits*(x: SomeInteger): int {.inline.} =
## Calculate the bit parity in an integer. If the number of 1-bits
## is odd, the parity is 1, otherwise 0.
runnableExamples:
doAssert parityBits(0b0000_0000'u8) == 0
doAssert parityBits(0b0101_0001'u8) == 1
doAssert parityBits(0b0110_1001'u8) == 0
doAssert parityBits(0b0111_1111'u8) == 1
# Can be used a base if creating ASM version.
# https://stackoverflow.com/questions/21617970/how-to-check-if-value-has-even-parity-of-bits-or-odd
let x = x.castToUnsigned
when nimvm:
result = forwardImpl(parityImpl, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_parity(x.uint32).int
else: result = builtin_parityll(x.uint64).int
else:
when sizeof(x) <= 4: result = parityImpl(x.uint32)
else: result = parityImpl(x.uint64)
func firstSetBit*(x: SomeInteger): int {.inline.} =
## Returns the 1-based index of the least significant set bit of `x`.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
runnableExamples:
doAssert firstSetBit(0b0000_0001'u8) == 1
doAssert firstSetBit(0b0000_0010'u8) == 2
doAssert firstSetBit(0b0000_0100'u8) == 3
doAssert firstSetBit(0b0000_1000'u8) == 4
doAssert firstSetBit(0b0000_1111'u8) == 1
# GCC builtin 'builtin_ffs' already handle zero input.
let x = x.castToUnsigned
when nimvm:
when noUndefined:
if x == 0:
return 0
result = forwardImpl(firstSetBitNim, x)
else:
when noUndefined and not useGCC_builtins:
if x == 0:
return 0
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ffs(cast[cint](x.cuint)).int
else: result = builtin_ffsll(cast[clonglong](x.culonglong)).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = 1 + vcc_scan_impl(bitScanForward, x.culong)
elif arch64:
result = 1 + vcc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBitNim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = 1 + icc_scan_impl(bitScanForward, x.uint32)
elif arch64:
result = 1 + icc_scan_impl(bitScanForward64, x.uint64)
else:
result = firstSetBitNim(x.uint64)
else:
when sizeof(x) <= 4: result = firstSetBitNim(x.uint32)
else: result = firstSetBitNim(x.uint64)
func fastLog2*(x: SomeInteger): int {.inline.} =
## Quickly find the log base 2 of an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is -1,
## otherwise the result is undefined.
runnableExamples:
doAssert fastLog2(0b0000_0001'u8) == 0
doAssert fastLog2(0b0000_0010'u8) == 1
doAssert fastLog2(0b0000_0100'u8) == 2
doAssert fastLog2(0b0000_1000'u8) == 3
doAssert fastLog2(0b0000_1111'u8) == 3
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return -1
when nimvm:
result = forwardImpl(fastlog2Nim, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = 31 - builtin_clz(x.uint32).int
else: result = 63 - builtin_clzll(x.uint64).int
elif useVCC_builtins:
when sizeof(x) <= 4:
result = vcc_scan_impl(bitScanReverse, x.culong)
elif arch64:
result = vcc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2Nim(x.uint64)
elif useICC_builtins:
when sizeof(x) <= 4:
result = icc_scan_impl(bitScanReverse, x.uint32)
elif arch64:
result = icc_scan_impl(bitScanReverse64, x.uint64)
else:
result = fastlog2Nim(x.uint64)
else:
when sizeof(x) <= 4: result = fastlog2Nim(x.uint32)
else: result = fastlog2Nim(x.uint64)
func countLeadingZeroBits*(x: SomeInteger): int {.inline.} =
## Returns the number of leading zero bits in an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
##
## **See also:**
## * `countTrailingZeroBits proc <#countTrailingZeroBits,SomeInteger>`_
runnableExamples:
doAssert countLeadingZeroBits(0b0000_0001'u8) == 7
doAssert countLeadingZeroBits(0b0000_0010'u8) == 6
doAssert countLeadingZeroBits(0b0000_0100'u8) == 5
doAssert countLeadingZeroBits(0b0000_1000'u8) == 4
doAssert countLeadingZeroBits(0b0000_1111'u8) == 4
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return 0
when nimvm:
result = sizeof(x)*8 - 1 - forwardImpl(fastlog2Nim, x)
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_clz(x.uint32).int - (32 - sizeof(x)*8)
else: result = builtin_clzll(x.uint64).int
else:
when sizeof(x) <= 4: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint32)
else: result = sizeof(x)*8 - 1 - fastlog2Nim(x.uint64)
func countTrailingZeroBits*(x: SomeInteger): int {.inline.} =
## Returns the number of trailing zeros in an integer.
## If `x` is zero, when `noUndefinedBitOpts` is set, the result is 0,
## otherwise the result is undefined.
##
## **See also:**
## * `countLeadingZeroBits proc <#countLeadingZeroBits,SomeInteger>`_
runnableExamples:
doAssert countTrailingZeroBits(0b0000_0001'u8) == 0
doAssert countTrailingZeroBits(0b0000_0010'u8) == 1
doAssert countTrailingZeroBits(0b0000_0100'u8) == 2
doAssert countTrailingZeroBits(0b0000_1000'u8) == 3
doAssert countTrailingZeroBits(0b0000_1111'u8) == 0
let x = x.castToUnsigned
when noUndefined:
if x == 0:
return 0
when nimvm:
result = firstSetBit(x) - 1
else:
when useGCC_builtins:
when sizeof(x) <= 4: result = builtin_ctz(x.uint32).int
else: result = builtin_ctzll(x.uint64).int
else:
result = firstSetBit(x) - 1
when useBuiltinsRotate:
when defined(gcc):
# GCC was tested until version 4.8.1 and intrinsics were present. Not tested
# in previous versions.
func builtin_rotl8(value: uint8, shift: cint): uint8
{.importc: "__rolb", header: "<x86intrin.h>".}
func builtin_rotl16(value: cushort, shift: cint): cushort
{.importc: "__rolw", header: "<x86intrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "__rold", header: "<x86intrin.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "__rolq", header: "<x86intrin.h>".}
func builtin_rotr8(value: uint8, shift: cint): uint8
{.importc: "__rorb", header: "<x86intrin.h>".}
func builtin_rotr16(value: cushort, shift: cint): cushort
{.importc: "__rorw", header: "<x86intrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "__rord", header: "<x86intrin.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "__rorq", header: "<x86intrin.h>".}
elif defined(clang):
# In CLANG, builtins have been present since version 8.0.0 and intrinsics
# since version 9.0.0. This implementation chose the builtins, as they have
# been around for longer.
# https://releases.llvm.org/8.0.0/tools/clang/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
# https://releases.llvm.org/8.0.0/tools/clang/docs/LanguageExtensions.html#builtin-rotateleft
# source for correct declarations: https://github.com/llvm/llvm-project/blob/main/clang/include/clang/Basic/Builtins.def
func builtin_rotl8(value: uint8, shift: uint8): uint8
{.importc: "__builtin_rotateleft8", nodecl.}
func builtin_rotl16(value: cushort, shift: cushort): cushort
{.importc: "__builtin_rotateleft16", nodecl.}
func builtin_rotl32(value: cuint, shift: cuint): cuint
{.importc: "__builtin_rotateleft32", nodecl.}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: culonglong): culonglong
{.importc: "__builtin_rotateleft64", nodecl.}
func builtin_rotr8(value: uint8, shift: uint8): uint8
{.importc: "__builtin_rotateright8", nodecl.}
func builtin_rotr16(value: cushort, shift: cushort): cushort
{.importc: "__builtin_rotateright16", nodecl.}
func builtin_rotr32(value: cuint, shift: cuint): cuint
{.importc: "__builtin_rotateright32", nodecl.}
when defined(amd64):
# shift is unsigned, refs https://github.com/llvm-mirror/clang/commit/892de415b7fde609dafc4e6c1643b7eaa0150a4d
func builtin_rotr64(value: culonglong, shift: culonglong): culonglong
{.importc: "__builtin_rotateright64", nodecl.}
elif defined(vcc):
# Tested on Microsoft (R) C/C++ Optimizing Compiler 19.28.29335 x64 and x86.
# Not tested in previous versions.
# https://docs.microsoft.com/en-us/cpp/intrinsics/rotl8-rotl16?view=msvc-160
# https://docs.microsoft.com/en-us/cpp/intrinsics/rotr8-rotr16?view=msvc-160
# https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/rotl-rotl64-rotr-rotr64?view=msvc-160
func builtin_rotl8(value: uint8, shift: uint8): uint8
{.importc: "_rotl8", header: "<intrin.h>".}
func builtin_rotl16(value: cushort, shift: uint8): cushort
{.importc: "_rotl16", header: "<intrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "_rotl", header: "<stdlib.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "_rotl64", header: "<stdlib.h>".}
func builtin_rotr8(value: uint8, shift: uint8): uint8
{.importc: "_rotr8", header: "<intrin.h>".}
func builtin_rotr16(value: cushort, shift: uint8): cushort
{.importc: "_rotr16", header: "<intrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "_rotr", header: "<stdlib.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "_rotr64", header: "<stdlib.h>".}
elif defined(icl):
# Tested on Intel(R) C++ Intel(R) 64 Compiler Classic Version 2021.1.2 Build
# 20201208_000000 x64 and x86. Not tested in previous versions.
func builtin_rotl8(value: uint8, shift: cint): uint8
{.importc: "__rolb", header: "<immintrin.h>".}
func builtin_rotl16(value: cushort, shift: cint): cushort
{.importc: "__rolw", header: "<immintrin.h>".}
func builtin_rotl32(value: cuint, shift: cint): cuint
{.importc: "__rold", header: "<immintrin.h>".}
when defined(amd64):
func builtin_rotl64(value: culonglong, shift: cint): culonglong
{.importc: "__rolq", header: "<immintrin.h>".}
func builtin_rotr8(value: uint8, shift: cint): uint8
{.importc: "__rorb", header: "<immintrin.h>".}
func builtin_rotr16(value: cushort, shift: cint): cushort
{.importc: "__rorw", header: "<immintrin.h>".}
func builtin_rotr32(value: cuint, shift: cint): cuint
{.importc: "__rord", header: "<immintrin.h>".}
when defined(amd64):
func builtin_rotr64(value: culonglong, shift: cint): culonglong
{.importc: "__rorq", header: "<immintrin.h>".}
func rotl[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
## Left-rotate bits in a `value`.
# https://stackoverflow.com/a/776523
const mask = 8 * sizeof(value) - 1
let rot = rot and mask
(value shl rot) or (value shr ((-rot) and mask))
func rotr[T: SomeUnsignedInt](value: T, rot: int32): T {.inline.} =
## Right-rotate bits in a `value`.
const mask = 8 * sizeof(value) - 1
let rot = rot and mask
(value shr rot) or (value shl ((-rot) and mask))
func shiftTypeTo(size: static int, shift: int): auto {.inline.} =
## Returns the `shift` for the rotation according to the compiler and the
## `size`.
when (defined(vcc) and (size in [4, 8])) or defined(gcc) or defined(icl):
cint(shift)
elif (defined(vcc) and (size in [1, 2])) or (defined(clang) and size == 1):
uint8(shift)
elif defined(clang):
when size == 2:
cushort(shift)
elif size == 4:
cuint(shift)
elif size == 8:
culonglong(shift)
func rotateLeftBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
## Left-rotate bits in a `value`.
runnableExamples:
doAssert rotateLeftBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
doAssert rotateLeftBits(0b00111100_11000011'u16, 8) ==
0b11000011_00111100'u16
doAssert rotateLeftBits(0b0000111111110000_1111000000001111'u32, 16) ==
0b1111000000001111_0000111111110000'u32
doAssert rotateLeftBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
0b11111111000000000000000011111111_00000000111111111111111100000000'u64
when nimvm:
rotl(value, shift.int32)
else:
when useBuiltinsRotate:
const size = sizeof(T)
when size == 1:
builtin_rotl8(value.uint8, shiftTypeTo(size, shift)).T
elif size == 2:
builtin_rotl16(value.cushort, shiftTypeTo(size, shift)).T
elif size == 4:
builtin_rotl32(value.cuint, shiftTypeTo(size, shift)).T
elif size == 8 and arch64:
builtin_rotl64(value.culonglong, shiftTypeTo(size, shift)).T
else:
rotl(value, shift.int32)
else:
rotl(value, shift.int32)
func rotateRightBits*[T: SomeUnsignedInt](value: T, shift: range[0..(sizeof(T) * 8)]): T {.inline.} =
## Right-rotate bits in a `value`.
runnableExamples:
doAssert rotateRightBits(0b0110_1001'u8, 4) == 0b1001_0110'u8
doAssert rotateRightBits(0b00111100_11000011'u16, 8) ==
0b11000011_00111100'u16
doAssert rotateRightBits(0b0000111111110000_1111000000001111'u32, 16) ==
0b1111000000001111_0000111111110000'u32
doAssert rotateRightBits(0b00000000111111111111111100000000_11111111000000000000000011111111'u64, 32) ==
0b11111111000000000000000011111111_00000000111111111111111100000000'u64
when nimvm:
rotr(value, shift.int32)
else:
when useBuiltinsRotate:
const size = sizeof(T)
when size == 1:
builtin_rotr8(value.uint8, shiftTypeTo(size, shift)).T
elif size == 2:
builtin_rotr16(value.cushort, shiftTypeTo(size, shift)).T
elif size == 4:
builtin_rotr32(value.cuint, shiftTypeTo(size, shift)).T
elif size == 8 and arch64:
builtin_rotr64(value.culonglong, shiftTypeTo(size, shift)).T
else:
rotr(value, shift.int32)
else:
rotr(value, shift.int32)
func repeatBits[T: SomeUnsignedInt](x: SomeUnsignedInt; retType: type[T]): T =
result = x
var i = 1
while i != (sizeof(T) div sizeof(x)):
result = (result shl (sizeof(x)*8*i)) or result
i *= 2
func reverseBits*[T: SomeUnsignedInt](x: T): T =
## Return the bit reversal of x.
runnableExamples:
doAssert reverseBits(0b10100100'u8) == 0b00100101'u8
doAssert reverseBits(0xdd'u8) == 0xbb'u8
doAssert reverseBits(0xddbb'u16) == 0xddbb'u16
doAssert reverseBits(0xdeadbeef'u32) == 0xf77db57b'u32
template repeat(x: SomeUnsignedInt): T = repeatBits(x, T)
result = x
result =
((repeat(0x55u8) and result) shl 1) or
((repeat(0xaau8) and result) shr 1)
result =
((repeat(0x33u8) and result) shl 2) or
((repeat(0xccu8) and result) shr 2)
when sizeof(T) == 1:
result = (result shl 4) or (result shr 4)
when sizeof(T) >= 2:
result =
((repeat(0x0fu8) and result) shl 4) or
((repeat(0xf0u8) and result) shr 4)
when sizeof(T) == 2:
result = (result shl 8) or (result shr 8)
when sizeof(T) >= 4:
result =
((repeat(0x00ffu16) and result) shl 8) or
((repeat(0xff00u16) and result) shr 8)
when sizeof(T) == 4:
result = (result shl 16) or (result shr 16)
when sizeof(T) == 8:
result =
((repeat(0x0000ffffu32) and result) shl 16) or
((repeat(0xffff0000u32) and result) shr 16)
result = (result shl 32) or (result shr 32)