Files
Nim/compiler/ast.nim
ringabout 8914baae78 fixes #25007; implements setLenUninit for refc (#25022)
fixes #25007

```nim
proc setLengthSeqUninit(s: PGenericSeq, typ: PNimType, newLen: int, isTrivial: bool): PGenericSeq {.
    compilerRtl.} =
```

In this added function, only the line `zeroMem(dataPointer(result,
elemAlign, elemSize, newLen), (result.len-%newLen) *% elemSize)` is
removed from `proc setLengthSeqV2` when enlarging a sequence.

JS and VM versions simply use `setLen`.

(cherry picked from commit 611b8bbf67)
2025-11-21 13:28:13 +01:00

2171 lines
79 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# abstract syntax tree + symbol table
import
lineinfos, options, ropes, idents, int128, wordrecg
import std/[tables, hashes]
from std/strutils import toLowerAscii
when defined(nimPreviewSlimSystem):
import std/assertions
export int128
import nodekinds
export nodekinds
type
TCallingConvention* = enum
ccNimCall = "nimcall" # nimcall, also the default
ccStdCall = "stdcall" # procedure is stdcall
ccCDecl = "cdecl" # cdecl
ccSafeCall = "safecall" # safecall
ccSysCall = "syscall" # system call
ccInline = "inline" # proc should be inlined
ccNoInline = "noinline" # proc should not be inlined
ccFastCall = "fastcall" # fastcall (pass parameters in registers)
ccThisCall = "thiscall" # thiscall (parameters are pushed right-to-left)
ccClosure = "closure" # proc has a closure
ccNoConvention = "noconv" # needed for generating proper C procs sometimes
ccMember = "member" # proc is a (cpp) member
TNodeKinds* = set[TNodeKind]
type
TSymFlag* = enum # 63 flags!
sfUsed, # read access of sym (for warnings) or simply used
sfExported, # symbol is exported from module
sfFromGeneric, # symbol is instantiation of a generic; this is needed
# for symbol file generation; such symbols should always
# be written into the ROD file
sfGlobal, # symbol is at global scope
sfForward, # symbol is forward declared
sfWasForwarded, # symbol had a forward declaration
# (implies it's too dangerous to patch its type signature)
sfImportc, # symbol is external; imported
sfExportc, # symbol is exported (under a specified name)
sfMangleCpp, # mangle as cpp (combines with `sfExportc`)
sfVolatile, # variable is volatile
sfRegister, # variable should be placed in a register
sfPure, # object is "pure" that means it has no type-information
# enum is "pure", its values need qualified access
# variable is "pure"; it's an explicit "global"
sfNoSideEffect, # proc has no side effects
sfSideEffect, # proc may have side effects; cannot prove it has none
sfMainModule, # module is the main module
sfSystemModule, # module is the system module
sfNoReturn, # proc never returns (an exit proc)
sfAddrTaken, # the variable's address is taken (ex- or implicitly);
# *OR*: a proc is indirectly called (used as first class)
sfCompilerProc, # proc is a compiler proc, that is a C proc that is
# needed for the code generator
sfEscapes # param escapes
# currently unimplemented
sfDiscriminant, # field is a discriminant in a record/object
sfRequiresInit, # field must be initialized during construction
sfDeprecated, # symbol is deprecated
sfExplain, # provide more diagnostics when this symbol is used
sfError, # usage of symbol should trigger a compile-time error
sfShadowed, # a symbol that was shadowed in some inner scope
sfThread, # proc will run as a thread
# variable is a thread variable
sfCppNonPod, # tells compiler to treat such types as non-pod's, so that
# `thread_local` is used instead of `__thread` for
# {.threadvar.} + `--threads`. Only makes sense for importcpp types.
# This has a performance impact so isn't set by default.
sfCompileTime, # proc can be evaluated at compile time
sfConstructor, # proc is a C++ constructor
sfDispatcher, # copied method symbol is the dispatcher
# deprecated and unused, except for the con
sfBorrow, # proc is borrowed
sfInfixCall, # symbol needs infix call syntax in target language;
# for interfacing with C++, JS
sfNamedParamCall, # symbol needs named parameter call syntax in target
# language; for interfacing with Objective C
sfDiscardable, # returned value may be discarded implicitly
sfOverridden, # proc is overridden
sfCallsite # A flag for template symbols to tell the
# compiler it should use line information from
# the calling side of the macro, not from the
# implementation.
sfGenSym # symbol is 'gensym'ed; do not add to symbol table
sfNonReloadable # symbol will be left as-is when hot code reloading is on -
# meaning that it won't be renamed and/or changed in any way
sfGeneratedOp # proc is a generated '='; do not inject destructors in it
# variable is generated closure environment; requires early
# destruction for --newruntime.
sfTemplateParam # symbol is a template parameter
sfCursor # variable/field is a cursor, see RFC 177 for details
sfInjectDestructors # whether the proc needs the 'injectdestructors' transformation
sfNeverRaises # proc can never raise an exception, not even OverflowDefect
# or out-of-memory
sfSystemRaisesDefect # proc in the system can raise defects
sfUsedInFinallyOrExcept # symbol is used inside an 'except' or 'finally'
sfSingleUsedTemp # For temporaries that we know will only be used once
sfNoalias # 'noalias' annotation, means C's 'restrict'
# for templates and macros, means cannot be called
# as a lone symbol (cannot use alias syntax)
sfEffectsDelayed # an 'effectsDelayed' parameter
sfGeneratedType # A anonymous generic type that is generated by the compiler for
# objects that do not have generic parameters in case one of the
# object fields has one.
#
# This is disallowed but can cause the typechecking to go into
# an infinite loop, this flag is used as a sentinel to stop it.
sfVirtual # proc is a C++ virtual function
sfByCopy # param is marked as pass bycopy
sfMember # proc is a C++ member of a type
sfCodegenDecl # type, proc, global or proc param is marked as codegenDecl
sfWasGenSym # symbol was 'gensym'ed
sfForceLift # variable has to be lifted into closure environment
sfDirty # template is not hygienic (old styled template) module,
# compiled from a dirty-buffer
sfCustomPragma # symbol is custom pragma template
sfBase, # a base method
sfGoto # var is used for 'goto' code generation
sfAnon, # symbol name that was generated by the compiler
# the compiler will avoid printing such names
# in user messages.
sfAllUntyped # macro or template is immediately expanded in a generic context
sfTemplateRedefinition # symbol is a redefinition of an earlier template
TSymFlags* = set[TSymFlag]
const
sfNoInit* = sfMainModule # don't generate code to init the variable
sfNoForward* = sfRegister
# forward declarations are not required (per module)
sfReorder* = sfForward
# reordering pass is enabled
sfCompileToCpp* = sfInfixCall # compile the module as C++ code
sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code
sfExperimental* = sfOverridden # module uses the .experimental switch
sfWrittenTo* = sfBorrow # param is assigned to
# currently unimplemented
sfCppMember* = { sfVirtual, sfMember, sfConstructor } # proc is a C++ member, meaning it will be attached to the type definition
const
# getting ready for the future expr/stmt merge
nkWhen* = nkWhenStmt
nkWhenExpr* = nkWhenStmt
nkEffectList* = nkArgList
# hacks ahead: an nkEffectList is a node with 4 children:
exceptionEffects* = 0 # exceptions at position 0
requiresEffects* = 1 # 'requires' annotation
ensuresEffects* = 2 # 'ensures' annotation
tagEffects* = 3 # user defined tag ('gc', 'time' etc.)
pragmasEffects* = 4 # not an effect, but a slot for pragmas in proc type
forbiddenEffects* = 5 # list of illegal effects
effectListLen* = 6 # list of effects list
nkLastBlockStmts* = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
# these must be last statements in a block
type
TTypeKind* = enum # order is important!
# Don't forget to change hti.nim if you make a change here
# XXX put this into an include file to avoid this issue!
# several types are no longer used (guess which), but a
# spot in the sequence is kept for backwards compatibility
# (apparently something with bootstrapping)
# if you need to add a type, they can apparently be reused
tyNone, tyBool, tyChar,
tyEmpty, tyAlias, tyNil, tyUntyped, tyTyped, tyTypeDesc,
tyGenericInvocation, # ``T[a, b]`` for types to invoke
tyGenericBody, # ``T[a, b, body]`` last parameter is the body
tyGenericInst, # ``T[a, b, realInstance]`` instantiated generic type
# realInstance will be a concrete type like tyObject
# unless this is an instance of a generic alias type.
# then realInstance will be the tyGenericInst of the
# completely (recursively) resolved alias.
tyGenericParam, # ``a`` in the above patterns
tyDistinct,
tyEnum,
tyOrdinal, # integer types (including enums and boolean)
tyArray,
tyObject,
tyTuple,
tySet,
tyRange,
tyPtr, tyRef,
tyVar,
tySequence,
tyProc,
tyPointer, tyOpenArray,
tyString, tyCstring, tyForward,
tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
tyFloat, tyFloat32, tyFloat64, tyFloat128,
tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
tyOwned, tySink, tyLent,
tyVarargs,
tyUncheckedArray
# An array with boundaries [0,+∞]
tyError # used as erroneous type (for idetools)
# as an erroneous node should match everything
tyBuiltInTypeClass
# Type such as the catch-all object, tuple, seq, etc
tyUserTypeClass
# the body of a user-defined type class
tyUserTypeClassInst
# Instance of a parametric user-defined type class.
# Structured similarly to tyGenericInst.
# tyGenericInst represents concrete types, while
# this is still a "generic param" that will bind types
# and resolves them during sigmatch and instantiation.
tyCompositeTypeClass
# Type such as seq[Number]
# The notes for tyUserTypeClassInst apply here as well
# sons[0]: the original expression used by the user.
# sons[1]: fully expanded and instantiated meta type
# (potentially following aliases)
tyInferred
# In the initial state `base` stores a type class constraining
# the types that can be inferred. After a candidate type is
# selected, it's stored in `last`. Between `base` and `last`
# there may be 0, 2 or more types that were also considered as
# possible candidates in the inference process (i.e. last will
# be updated to store a type best conforming to all candidates)
tyAnd, tyOr, tyNot
# boolean type classes such as `string|int`,`not seq`,
# `Sortable and Enumable`, etc
tyAnything
# a type class matching any type
tyStatic
# a value known at compile type (the underlying type is .base)
tyFromExpr
# This is a type representing an expression that depends
# on generic parameters (the expression is stored in t.n)
# It will be converted to a real type only during generic
# instantiation and prior to this it has the potential to
# be any type.
tyConcept
# new style concept.
tyVoid
# now different from tyEmpty, hurray!
tyIterable
static:
# remind us when TTypeKind stops to fit in a single 64-bit word
# assert TTypeKind.high.ord <= 63
discard
const
tyPureObject* = tyTuple
GcTypeKinds* = {tyRef, tySequence, tyString}
tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass,
tyUserTypeClass, tyUserTypeClassInst, tyConcept,
tyAnd, tyOr, tyNot, tyAnything}
tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyUntyped} + tyTypeClasses
tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst}
# consider renaming as `tyAbstractVarRange`
abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned}
abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
tyInferred, tySink, tyOwned} # xxx what about tyStatic?
type
TTypeKinds* = set[TTypeKind]
TNodeFlag* = enum
nfNone,
nfBase2, # nfBase10 is default, so not needed
nfBase8,
nfBase16,
nfAllConst, # used to mark complex expressions constant; easy to get rid of
# but unfortunately it has measurable impact for compilation
# efficiency
nfTransf, # node has been transformed
nfNoRewrite # node should not be transformed anymore
nfSem # node has been checked for semantics
nfLL # node has gone through lambda lifting
nfDotField # the call can use a dot operator
nfDotSetter # the call can use a setter dot operarator
nfExplicitCall # x.y() was used instead of x.y
nfExprCall # this is an attempt to call a regular expression
nfIsRef # this node is a 'ref' node; used for the VM
nfIsPtr # this node is a 'ptr' node; used for the VM
nfPreventCg # this node should be ignored by the codegen
nfBlockArg # this a stmtlist appearing in a call (e.g. a do block)
nfFromTemplate # a top-level node returned from a template
nfDefaultParam # an automatically inserter default parameter
nfDefaultRefsParam # a default param value references another parameter
# the flag is applied to proc default values and to calls
nfExecuteOnReload # A top-level statement that will be executed during reloads
nfLastRead # this node is a last read
nfFirstWrite # this node is a first write
nfHasComment # node has a comment
nfSkipFieldChecking # node skips field visable checking
nfDisabledOpenSym # temporary: node should be nkOpenSym but cannot
# because openSym experimental switch is disabled
# gives warning instead
TNodeFlags* = set[TNodeFlag]
TTypeFlag* = enum # keep below 32 for efficiency reasons (now: 47)
tfVarargs, # procedure has C styled varargs
# tyArray type represeting a varargs list
tfNoSideEffect, # procedure type does not allow side effects
tfFinal, # is the object final?
tfInheritable, # is the object inheritable?
tfHasOwned, # type contains an 'owned' type and must be moved
tfEnumHasHoles, # enum cannot be mapped into a range
tfShallow, # type can be shallow copied on assignment
tfThread, # proc type is marked as ``thread``; alias for ``gcsafe``
tfFromGeneric, # type is an instantiation of a generic; this is needed
# because for instantiations of objects, structural
# type equality has to be used
tfUnresolved, # marks unresolved typedesc/static params: e.g.
# proc foo(T: typedesc, list: seq[T]): var T
# proc foo(L: static[int]): array[L, int]
# can be attached to ranges to indicate that the range
# can be attached to generic procs with free standing
# type parameters: e.g. proc foo[T]()
# depends on unresolved static params.
tfResolved # marks a user type class, after it has been bound to a
# concrete type (lastSon becomes the concrete type)
tfRetType, # marks return types in proc (used to detect type classes
# used as return types for return type inference)
tfCapturesEnv, # whether proc really captures some environment
tfByCopy, # pass object/tuple by copy (C backend)
tfByRef, # pass object/tuple by reference (C backend)
tfIterator, # type is really an iterator, not a tyProc
tfPartial, # type is declared as 'partial'
tfNotNil, # type cannot be 'nil'
tfRequiresInit, # type contains a "not nil" constraint somewhere or
# a `requiresInit` field, so the default zero init
# is not appropriate
tfNeedsFullInit, # object type marked with {.requiresInit.}
# all fields must be initialized
tfVarIsPtr, # 'var' type is translated like 'ptr' even in C++ mode
tfHasMeta, # type contains "wildcard" sub-types such as generic params
# or other type classes
tfHasGCedMem, # type contains GC'ed memory
tfPacked
tfHasStatic
tfGenericTypeParam
tfImplicitTypeParam
tfInferrableStatic
tfConceptMatchedTypeSym
tfExplicit # for typedescs, marks types explicitly prefixed with the
# `type` operator (e.g. type int)
tfWildcard # consider a proc like foo[T, I](x: Type[T, I])
# T and I here can bind to both typedesc and static types
# before this is determined, we'll consider them to be a
# wildcard type.
tfHasAsgn # type has overloaded assignment operator
tfBorrowDot # distinct type borrows '.'
tfTriggersCompileTime # uses the NimNode type which make the proc
# implicitly '.compiletime'
tfRefsAnonObj # used for 'ref object' and 'ptr object'
tfCovariant # covariant generic param mimicking a ptr type
tfWeakCovariant # covariant generic param mimicking a seq/array type
tfContravariant # contravariant generic param
tfCheckedForDestructor # type was checked for having a destructor.
# If it has one, t.destructor is not nil.
tfAcyclic # object type was annotated as .acyclic
tfIncompleteStruct # treat this type as if it had sizeof(pointer)
tfCompleteStruct
# (for importc types); type is fully specified, allowing to compute
# sizeof, alignof, offsetof at CT
tfExplicitCallConv
tfIsConstructor
tfEffectSystemWorkaround
tfIsOutParam
tfSendable
tfImplicitStatic
TTypeFlags* = set[TTypeFlag]
TSymKind* = enum # the different symbols (start with the prefix sk);
# order is important for the documentation generator!
skUnknown, # unknown symbol: used for parsing assembler blocks
# and first phase symbol lookup in generics
skConditional, # symbol for the preprocessor (may become obsolete)
skDynLib, # symbol represents a dynamic library; this is used
# internally; it does not exist in Nim code
skParam, # a parameter
skGenericParam, # a generic parameter; eq in ``proc x[eq=`==`]()``
skTemp, # a temporary variable (introduced by compiler)
skModule, # module identifier
skType, # a type
skVar, # a variable
skLet, # a 'let' symbol
skConst, # a constant
skResult, # special 'result' variable
skProc, # a proc
skFunc, # a func
skMethod, # a method
skIterator, # an iterator
skConverter, # a type converter
skMacro, # a macro
skTemplate, # a template; currently also misused for user-defined
# pragmas
skField, # a field in a record or object
skEnumField, # an identifier in an enum
skForVar, # a for loop variable
skLabel, # a label (for block statement)
skStub, # symbol is a stub and not yet loaded from the ROD
# file (it is loaded on demand, which may
# mean: never)
skPackage, # symbol is a package (used for canonicalization)
TSymKinds* = set[TSymKind]
const
routineKinds* = {skProc, skFunc, skMethod, skIterator,
skConverter, skMacro, skTemplate}
ExportableSymKinds* = {skVar, skLet, skConst, skType, skEnumField, skStub} + routineKinds
tfUnion* = tfNoSideEffect
tfGcSafe* = tfThread
tfObjHasKids* = tfEnumHasHoles
tfReturnsNew* = tfInheritable
tfNonConstExpr* = tfExplicitCallConv
## tyFromExpr where the expression shouldn't be evaluated as a static value
tfGenericHasDestructor* = tfExplicitCallConv
## tyGenericBody where an instance has a generated destructor
skError* = skUnknown
var
eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr, tfGcSafe, tfNoSideEffect, tfIsOutParam}
## type flags that are essential for type equality.
## This is now a variable because for emulation of version:1.0 we
## might exclude {tfGcSafe, tfNoSideEffect}.
type
TMagic* = enum # symbols that require compiler magic:
mNone,
mDefined, mDeclared, mDeclaredInScope, mCompiles, mArrGet, mArrPut, mAsgn,
mLow, mHigh, mSizeOf, mAlignOf, mOffsetOf, mTypeTrait,
mIs, mOf, mAddr, mType, mTypeOf,
mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mStatic,
mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst,
mInc, mDec, mOrd,
mNew, mNewFinalize, mNewSeq, mNewSeqOfCap,
mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
mIncl, mExcl, mCard, mChr,
mGCref, mGCunref,
mAddI, mSubI, mMulI, mDivI, mModI,
mSucc, mPred,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mAshrI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mLePtr, mLtPtr,
mXor, mEqCString, mEqProc,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot,
mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mImplies, mIff, mExists, mForall, mOld,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet,
mConStrStr, mSlice,
mDotDot, # this one is only necessary to give nice compile time warnings
mFields, mFieldPairs, mOmpParFor,
mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mExit,
mSetLengthStr, mSetLengthSeq,
mSetLengthSeqUninit,
mIsPartOf, mAstToStr, mParallel,
mSwap, mIsNil, mArrToSeq, mOpenArrayToSeq,
mNewString, mNewStringOfCap, mParseBiggestFloat,
mMove, mEnsureMove, mWasMoved, mDup, mDestroy, mTrace,
mDefault, mUnown, mFinished, mIsolate, mAccessEnv, mAccessTypeField,
mArray, mOpenArray, mRange, mSet, mSeq, mVarargs,
mRef, mPtr, mVar, mDistinct, mVoid, mTuple,
mOrdinal, mIterableType,
mInt, mInt8, mInt16, mInt32, mInt64,
mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
mFloat, mFloat32, mFloat64, mFloat128,
mBool, mChar, mString, mCstring,
mPointer, mNil, mExpr, mStmt, mTypeDesc,
mVoidType, mPNimrodNode, mSpawn, mDeepCopy,
mIsMainModule, mCompileDate, mCompileTime, mProcCall,
mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType,
mCompileOption, mCompileOptionArg,
mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel,
mNKind, mNSymKind,
mNccValue, mNccInc, mNcsAdd, mNcsIncl, mNcsLen, mNcsAt,
mNctPut, mNctLen, mNctGet, mNctHasNext, mNctNext,
mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal,
mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetStrVal, mNLineInfo,
mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mNSigHash, mNSizeOf,
mNBindSym, mNCallSite,
mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNGenSym,
mNHint, mNWarning, mNError,
mInstantiationInfo, mGetTypeInfo, mGetTypeInfoV2,
mNimvm, mIntDefine, mStrDefine, mBoolDefine, mGenericDefine, mRunnableExamples,
mException, mBuiltinType, mSymOwner, mUncheckedArray, mGetImplTransf,
mSymIsInstantiationOf, mNodeId, mPrivateAccess, mZeroDefault
const
# things that we can evaluate safely at compile time, even if not asked for it:
ctfeWhitelist* = {mNone, mSucc,
mPred, mInc, mDec, mOrd, mLengthOpenArray,
mLengthStr, mLengthArray, mLengthSeq,
mArrGet, mArrPut, mAsgn, mDestroy,
mIncl, mExcl, mCard, mChr,
mAddI, mSubI, mMulI, mDivI, mModI,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mEqProc, mLePtr, mLtPtr, mEqCString, mXor,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet, mXorSet,
mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mOpenArrayToSeq}
generatedMagics* = {mNone, mIsolate, mFinished, mOpenArrayToSeq}
## magics that are generated as normal procs in the backend
type
ItemId* = object
module*: int32
item*: int32
proc `$`*(x: ItemId): string =
"(module: " & $x.module & ", item: " & $x.item & ")"
proc `==`*(a, b: ItemId): bool {.inline.} =
a.item == b.item and a.module == b.module
proc hash*(x: ItemId): Hash =
var h: Hash = hash(x.module)
h = h !& hash(x.item)
result = !$h
type
PNode* = ref TNode
TNodeSeq* = seq[PNode]
PType* = ref TType
PSym* = ref TSym
TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes
when defined(useNodeIds):
id*: int
typField: PType
info*: TLineInfo
flags*: TNodeFlags
case kind*: TNodeKind
of nkCharLit..nkUInt64Lit:
intVal*: BiggestInt
of nkFloatLit..nkFloat128Lit:
floatVal*: BiggestFloat
of nkStrLit..nkTripleStrLit:
strVal*: string
of nkSym:
sym*: PSym
of nkIdent:
ident*: PIdent
else:
sons*: TNodeSeq
when defined(nimsuggest):
endInfo*: TLineInfo
TStrTable* = object # a table[PIdent] of PSym
counter*: int
data*: seq[PSym]
# -------------- backend information -------------------------------
TLocKind* = enum
locNone, # no location
locTemp, # temporary location
locLocalVar, # location is a local variable
locGlobalVar, # location is a global variable
locParam, # location is a parameter
locField, # location is a record field
locExpr, # "location" is really an expression
locProc, # location is a proc (an address of a procedure)
locData, # location is a constant
locCall, # location is a call expression
locOther # location is something other
TLocFlag* = enum
lfIndirect, # backend introduced a pointer
lfNoDeepCopy, # no need for a deep copy
lfNoDecl, # do not declare it in C
lfDynamicLib, # link symbol to dynamic library
lfExportLib, # export symbol for dynamic library generation
lfHeader, # include header file for symbol
lfImportCompilerProc, # ``importc`` of a compilerproc
lfSingleUse # no location yet and will only be used once
lfEnforceDeref # a copyMem is required to dereference if this a
# ptr array due to C array limitations.
# See #1181, #6422, #11171
lfPrepareForMutation # string location is about to be mutated (V2)
TStorageLoc* = enum
OnUnknown, # location is unknown (stack, heap or static)
OnStatic, # in a static section
OnStack, # location is on hardware stack
OnHeap # location is on heap or global
# (reference counting needed)
TLocFlags* = set[TLocFlag]
TLoc* = object
k*: TLocKind # kind of location
storage*: TStorageLoc
flags*: TLocFlags # location's flags
lode*: PNode # Node where the location came from; can be faked
snippet*: Rope # C code snippet of location (code generators)
# ---------------- end of backend information ------------------------------
TLibKind* = enum
libHeader, libDynamic
TLib* = object # also misused for headers!
# keep in sync with PackedLib
kind*: TLibKind
generated*: bool # needed for the backends:
isOverridden*: bool
name*: Rope
path*: PNode # can be a string literal!
CompilesId* = int ## id that is used for the caching logic within
## ``system.compiles``. See the seminst module.
TInstantiation* = object
sym*: PSym
concreteTypes*: seq[PType]
compilesId*: CompilesId
PInstantiation* = ref TInstantiation
TScope* {.acyclic.} = object
depthLevel*: int
symbols*: TStrTable
parent*: PScope
allowPrivateAccess*: seq[PSym] # # enable access to private fields
optionStackLen*: int
PScope* = ref TScope
PLib* = ref TLib
TSym* {.acyclic.} = object # Keep in sync with PackedSym
itemId*: ItemId
# proc and type instantiations are cached in the generic symbol
case kind*: TSymKind
of routineKinds:
#procInstCache*: seq[PInstantiation]
gcUnsafetyReason*: PSym # for better error messages regarding gcsafe
transformedBody*: PNode # cached body after transf pass
of skLet, skVar, skField, skForVar:
guard*: PSym
bitsize*: int
alignment*: int # for alignment
else: nil
magic*: TMagic
typ*: PType
name*: PIdent
info*: TLineInfo
when defined(nimsuggest):
endInfo*: TLineInfo
hasUserSpecifiedType*: bool # used for determining whether to display inlay type hints
ownerField: PSym
flags*: TSymFlags
ast*: PNode # syntax tree of proc, iterator, etc.:
# the whole proc including header; this is used
# for easy generation of proper error messages
# for variant record fields the discriminant
# expression
# for modules, it's a placeholder for compiler
# generated code that will be appended to the
# module after the sem pass (see appendToModule)
options*: TOptions
position*: int # used for many different things:
# for enum fields its position;
# for fields its offset
# for parameters its position (starting with 0)
# for a conditional:
# 1 iff the symbol is defined, else 0
# (or not in symbol table)
# for modules, an unique index corresponding
# to the module's fileIdx
# for variables a slot index for the evaluator
offset*: int32 # offset of record field
disamb*: int32 # disambiguation number; the basic idea is that
# `<procname>__<module>_<disamb>` is unique
loc*: TLoc
annex*: PLib # additional fields (seldom used, so we use a
# reference to another object to save space)
when hasFFI:
cname*: string # resolved C declaration name in importc decl, e.g.:
# proc fun() {.importc: "$1aux".} => cname = funaux
constraint*: PNode # additional constraints like 'lit|result'; also
# misused for the codegenDecl and virtual pragmas in the hope
# it won't cause problems
# for skModule the string literal to output for
# deprecated modules.
instantiatedFrom*: PSym # for instances, the generic symbol where it came from.
when defined(nimsuggest):
allUsages*: seq[TLineInfo]
TTypeSeq* = seq[PType]
TTypeAttachedOp* = enum ## as usual, order is important here
attachedWasMoved,
attachedDestructor,
attachedAsgn,
attachedDup,
attachedSink,
attachedTrace,
attachedDeepCopy
TType* {.acyclic.} = object # \
# types are identical iff they have the
# same id; there may be multiple copies of a type
# in memory!
# Keep in sync with PackedType
itemId*: ItemId
kind*: TTypeKind # kind of type
callConv*: TCallingConvention # for procs
flags*: TTypeFlags # flags of the type
sons: TTypeSeq # base types, etc.
n*: PNode # node for types:
# for range types a nkRange node
# for record types a nkRecord node
# for enum types a list of symbols
# if kind == tyInt: it is an 'int literal(x)' type
# for procs and tyGenericBody, it's the
# formal param list
# for concepts, the concept body
# else: unused
ownerField: PSym # the 'owner' of the type
sym*: PSym # types have the sym associated with them
# it is used for converting types to strings
size*: BiggestInt # the size of the type in bytes
# -1 means that the size is unkwown
align*: int16 # the type's alignment requirements
paddingAtEnd*: int16 #
loc*: TLoc
typeInst*: PType # for generic instantiations the tyGenericInst that led to this
# type.
uniqueId*: ItemId # due to a design mistake, we need to keep the real ID here as it
# is required by the --incremental:on mode.
TPair* = object
key*, val*: RootRef
TPairSeq* = seq[TPair]
TIdPair*[T] = object
key*: ItemId
val*: T
TIdPairSeq*[T] = seq[TIdPair[T]]
TIdTable*[T] = object
counter*: int
data*: TIdPairSeq[T]
TNodePair* = object
h*: Hash # because it is expensive to compute!
key*: PNode
val*: int
TNodePairSeq* = seq[TNodePair]
TNodeTable* = object # the same as table[PNode] of int;
# nodes are compared by structure!
counter*: int
data*: TNodePairSeq
ignoreTypes*: bool
TObjectSeq* = seq[RootRef]
TObjectSet* = object
counter*: int
data*: TObjectSeq
TImplication* = enum
impUnknown, impNo, impYes
template nodeId(n: PNode): int = cast[int](n)
template typ*(n: PNode): PType =
n.typField
proc owner*(s: PSym|PType): PSym {.inline.} =
result = s.ownerField
proc setOwner*(s: PSym|PType, owner: PSym) {.inline.} =
s.ownerField = owner
type Gconfig = object
# we put comments in a side channel to avoid increasing `sizeof(TNode)`, which
# reduces memory usage given that `PNode` is the most allocated type by far.
comments: Table[int, string] # nodeId => comment
useIc*: bool
var gconfig {.threadvar.}: Gconfig
proc setUseIc*(useIc: bool) = gconfig.useIc = useIc
proc comment*(n: PNode): string =
if nfHasComment in n.flags and not gconfig.useIc:
# IC doesn't track comments, see `packed_ast`, so this could fail
result = gconfig.comments[n.nodeId]
else:
result = ""
proc `comment=`*(n: PNode, a: string) =
let id = n.nodeId
if a.len > 0:
# if needed, we could periodically cleanup gconfig.comments when its size increases,
# to ensure only live nodes (and with nfHasComment) have an entry in gconfig.comments;
# for compiling compiler, the waste is very small:
# num calls to newNodeImpl: 14984160 (num of PNode allocations)
# size of gconfig.comments: 33585
# num of nodes with comments that were deleted and hence wasted: 3081
n.flags.incl nfHasComment
gconfig.comments[id] = a
elif nfHasComment in n.flags:
n.flags.excl nfHasComment
gconfig.comments.del(id)
# BUGFIX: a module is overloadable so that a proc can have the
# same name as an imported module. This is necessary because of
# the poor naming choices in the standard library.
const
OverloadableSyms* = {skProc, skFunc, skMethod, skIterator,
skConverter, skModule, skTemplate, skMacro, skEnumField}
GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody,
tyGenericParam}
StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray,
tySet, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyOpenArray,
tyVarargs}
ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
# var x = expr
tyBool, tyChar, tyEnum, tyArray, tyObject,
tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc,
tyPointer,
tyOpenArray, tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64}
IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
tyFloat..tyFloat128, tyUInt..tyUInt64} # weird name because it contains tyFloat
ConstantDataTypes*: TTypeKinds = {tyArray, tySet,
tyTuple, tySequence}
NilableTypes*: TTypeKinds = {tyPointer, tyCstring, tyRef, tyPtr,
tyProc, tyError} # TODO
PtrLikeKinds*: TTypeKinds = {tyPointer, tyPtr} # for VM
PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16,
nfDotSetter, nfDotField,
nfIsRef, nfIsPtr, nfPreventCg, nfLL,
nfFromTemplate, nfDefaultRefsParam,
nfExecuteOnReload, nfLastRead,
nfFirstWrite, nfSkipFieldChecking,
nfDisabledOpenSym}
namePos* = 0
patternPos* = 1 # empty except for term rewriting macros
genericParamsPos* = 2
paramsPos* = 3
pragmasPos* = 4
miscPos* = 5 # used for undocumented and hacky stuff
bodyPos* = 6 # position of body; use rodread.getBody() instead!
resultPos* = 7
dispatcherPos* = 8
nfAllFieldsSet* = nfBase2
nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice,
nkClosedSymChoice, nkOpenSym}
nkPragmaCallKinds* = {nkExprColonExpr, nkCall, nkCallStrLit}
nkLiterals* = {nkCharLit..nkTripleStrLit}
nkFloatLiterals* = {nkFloatLit..nkFloat128Lit}
nkLambdaKinds* = {nkLambda, nkDo}
declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef}
routineDefs* = declarativeDefs + {nkMacroDef, nkTemplateDef}
procDefs* = nkLambdaKinds + declarativeDefs
callableDefs* = nkLambdaKinds + routineDefs
nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice}
nkStrKinds* = {nkStrLit..nkTripleStrLit}
skLocalVars* = {skVar, skLet, skForVar, skParam, skResult}
skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator,
skMethod, skConverter}
defaultSize = -1
defaultAlignment = -1
defaultOffset* = -1
proc getPIdent*(a: PNode): PIdent {.inline.} =
## Returns underlying `PIdent` for `{nkSym, nkIdent}`, or `nil`.
case a.kind
of nkSym: a.sym.name
of nkIdent: a.ident
of nkOpenSymChoice, nkClosedSymChoice, nkOpenSym: a.sons[0].sym.name
else: nil
const
moduleShift = when defined(cpu32): 20 else: 24
template toId*(a: ItemId): int =
let x = a
(x.module.int shl moduleShift) + x.item.int
template id*(a: PType | PSym): int = toId(a.itemId)
type
IdGenerator* = ref object # unfortunately, we really need the 'shared mutable' aspect here.
module*: int32
symId*: int32
typeId*: int32
sealed*: bool
disambTable*: CountTable[PIdent]
const
PackageModuleId* = -3'i32
proc idGeneratorFromModule*(m: PSym): IdGenerator =
assert m.kind == skModule
result = IdGenerator(module: m.itemId.module, symId: m.itemId.item, typeId: 0, disambTable: initCountTable[PIdent]())
proc idGeneratorForPackage*(nextIdWillBe: int32): IdGenerator =
result = IdGenerator(module: PackageModuleId, symId: nextIdWillBe - 1'i32, typeId: 0, disambTable: initCountTable[PIdent]())
proc nextSymId(x: IdGenerator): ItemId {.inline.} =
assert(not x.sealed)
inc x.symId
result = ItemId(module: x.module, item: x.symId)
proc nextTypeId*(x: IdGenerator): ItemId {.inline.} =
assert(not x.sealed)
inc x.typeId
result = ItemId(module: x.module, item: x.typeId)
when false:
proc nextId*(x: IdGenerator): ItemId {.inline.} =
inc x.item
result = x[]
when false:
proc storeBack*(dest: var IdGenerator; src: IdGenerator) {.inline.} =
assert dest.ItemId.module == src.ItemId.module
if dest.ItemId.item > src.ItemId.item:
echo dest.ItemId.item, " ", src.ItemId.item, " ", src.ItemId.module
assert dest.ItemId.item <= src.ItemId.item
dest = src
var ggDebug* {.deprecated.}: bool ## convenience switch for trying out things
proc isCallExpr*(n: PNode): bool =
result = n.kind in nkCallKinds
proc discardSons*(father: PNode)
proc len*(n: PNode): int {.inline.} =
result = n.sons.len
proc safeLen*(n: PNode): int {.inline.} =
## works even for leaves.
if n.kind in {nkNone..nkNilLit}: result = 0
else: result = n.len
proc safeArrLen*(n: PNode): int {.inline.} =
## works for array-like objects (strings passed as openArray in VM).
if n.kind in {nkStrLit..nkTripleStrLit}: result = n.strVal.len
elif n.kind in {nkNone..nkFloat128Lit}: result = 0
else: result = n.len
proc add*(father, son: PNode) =
assert son != nil
father.sons.add(son)
proc addAllowNil*(father, son: PNode) {.inline.} =
father.sons.add(son)
template `[]`*(n: PNode, i: int): PNode = n.sons[i]
template `[]=`*(n: PNode, i: int; x: PNode) = n.sons[i] = x
template `[]`*(n: PNode, i: BackwardsIndex): PNode = n[n.len - i.int]
template `[]=`*(n: PNode, i: BackwardsIndex; x: PNode) = n[n.len - i.int] = x
proc add*(father, son: PType) =
assert son != nil
father.sons.add(son)
proc addAllowNil*(father, son: PType) {.inline.} =
father.sons.add(son)
template `[]`*(n: PType, i: int): PType = n.sons[i]
template `[]=`*(n: PType, i: int; x: PType) = n.sons[i] = x
template `[]`*(n: PType, i: BackwardsIndex): PType = n[n.len - i.int]
template `[]=`*(n: PType, i: BackwardsIndex; x: PType) = n[n.len - i.int] = x
proc getDeclPragma*(n: PNode): PNode =
## return the `nkPragma` node for declaration `n`, or `nil` if no pragma was found.
## Currently only supports routineDefs + {nkTypeDef}.
case n.kind
of routineDefs:
if n[pragmasPos].kind != nkEmpty: result = n[pragmasPos]
else: result = nil
of nkTypeDef:
#[
type F3*{.deprecated: "x3".} = int
TypeSection
TypeDef
PragmaExpr
Postfix
Ident "*"
Ident "F3"
Pragma
ExprColonExpr
Ident "deprecated"
StrLit "x3"
Empty
Ident "int"
]#
if n[0].kind == nkPragmaExpr:
result = n[0][1]
else:
result = nil
else:
# support as needed for `nkIdentDefs` etc.
result = nil
if result != nil:
assert result.kind == nkPragma, $(result.kind, n.kind)
proc extractPragma*(s: PSym): PNode =
## gets the pragma node of routine/type/var/let/const symbol `s`
if s.kind in routineKinds: # bug #24167
if s.ast[pragmasPos] != nil and s.ast[pragmasPos].kind != nkEmpty:
result = s.ast[pragmasPos]
else:
result = nil
elif s.kind in {skType, skVar, skLet, skConst}:
if s.ast != nil and s.ast.len > 0:
if s.ast[0].kind == nkPragmaExpr and s.ast[0].len > 1:
# s.ast = nkTypedef / nkPragmaExpr / [nkSym, nkPragma]
result = s.ast[0][1]
else:
result = nil
else:
result = nil
else:
result = nil
assert result == nil or result.kind == nkPragma
proc skipPragmaExpr*(n: PNode): PNode =
## if pragma expr, give the node the pragmas are applied to,
## otherwise give node itself
if n.kind == nkPragmaExpr:
result = n[0]
else:
result = n
proc setInfoRecursive*(n: PNode, info: TLineInfo) =
## set line info recursively
if n != nil:
for i in 0..<n.safeLen: setInfoRecursive(n[i], info)
n.info = info
when defined(useNodeIds):
const nodeIdToDebug* = -1 # 2322968
var gNodeId: int
template newNodeImpl(info2) =
result = PNode(kind: kind, info: info2)
when false:
# this would add overhead, so we skip it; it results in a small amount of leaked entries
# for old PNode that gets re-allocated at the same address as a PNode that
# has `nfHasComment` set (and an entry in that table). Only `nfHasComment`
# should be used to test whether a PNode has a comment; gconfig.comments
# can contain extra entries for deleted PNode's with comments.
gconfig.comments.del(cast[int](result))
template setIdMaybe() =
when defined(useNodeIds):
result.id = gNodeId
if result.id == nodeIdToDebug:
echo "KIND ", result.kind
writeStackTrace()
inc gNodeId
proc newNode*(kind: TNodeKind): PNode =
## new node with unknown line info, no type, and no children
newNodeImpl(unknownLineInfo)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode =
## new node with line info, type, and children
newNodeImpl(info)
if children > 0:
newSeq(result.sons, children)
setIdMaybe()
proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode =
## new node with line info, type, and no children
result = newNode(kind)
result.info = info
result.typ() = typ
proc newNode*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newAtom*(ident: PIdent, info: TLineInfo): PNode =
result = newNode(nkIdent, info)
result.ident = ident
proc newAtom*(kind: TNodeKind, intVal: BiggestInt, info: TLineInfo): PNode =
result = newNode(kind, info)
result.intVal = intVal
proc newAtom*(kind: TNodeKind, floatVal: BiggestFloat, info: TLineInfo): PNode =
result = newNode(kind, info)
result.floatVal = floatVal
proc newAtom*(kind: TNodeKind; strVal: sink string; info: TLineInfo): PNode =
result = newNode(kind, info)
result.strVal = strVal
proc newTree*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
result = newNodeI(kind, info)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTree*(kind: TNodeKind; children: varargs[PNode]): PNode =
result = newNode(kind)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTreeI*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
result = newNodeI(kind, info)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTreeIT*(kind: TNodeKind; info: TLineInfo; typ: PType; children: varargs[PNode]): PNode =
result = newNodeIT(kind, info, typ)
if children.len > 0:
result.info = children[0].info
result.sons = @children
template previouslyInferred*(t: PType): PType =
if t.sons.len > 1: t.last else: nil
when false:
import tables, strutils
var x: CountTable[string]
addQuitProc proc () {.noconv.} =
for k, v in pairs(x):
echo k
echo v
proc newSym*(symKind: TSymKind, name: PIdent, idgen: IdGenerator; owner: PSym,
info: TLineInfo; options: TOptions = {}): PSym =
# generates a symbol and initializes the hash field too
assert not name.isNil
let id = nextSymId idgen
result = PSym(name: name, kind: symKind, flags: {}, info: info, itemId: id,
options: options, ownerField: owner, offset: defaultOffset,
disamb: getOrDefault(idgen.disambTable, name).int32)
idgen.disambTable.inc name
when false:
if id.module == 48 and id.item == 39:
writeStackTrace()
echo "kind ", symKind, " ", name.s
if owner != nil: echo owner.name.s
proc astdef*(s: PSym): PNode =
# get only the definition (initializer) portion of the ast
if s.ast != nil and s.ast.kind in {nkIdentDefs, nkConstDef}:
s.ast[2]
else:
s.ast
proc isMetaType*(t: PType): bool =
return t.kind in tyMetaTypes or
(t.kind == tyStatic and t.n == nil) or
tfHasMeta in t.flags
proc isUnresolvedStatic*(t: PType): bool =
return t.kind == tyStatic and t.n == nil
proc linkTo*(t: PType, s: PSym): PType {.discardable.} =
t.sym = s
s.typ = t
result = t
proc linkTo*(s: PSym, t: PType): PSym {.discardable.} =
t.sym = s
s.typ = t
result = s
template fileIdx*(c: PSym): FileIndex =
# XXX: this should be used only on module symbols
c.position.FileIndex
template filename*(c: PSym): string =
# XXX: this should be used only on module symbols
c.position.FileIndex.toFilename
proc appendToModule*(m: PSym, n: PNode) =
## The compiler will use this internally to add nodes that will be
## appended to the module after the sem pass
if m.ast == nil:
m.ast = newNode(nkStmtList)
m.ast.sons = @[n]
else:
assert m.ast.kind == nkStmtList
m.ast.sons.add(n)
const # for all kind of hash tables:
GrowthFactor* = 2 # must be power of 2, > 0
StartSize* = 8 # must be power of 2, > 0
proc copyStrTable*(dest: var TStrTable, src: TStrTable) =
dest.counter = src.counter
setLen(dest.data, src.data.len)
for i in 0..high(src.data): dest.data[i] = src.data[i]
proc copyIdTable*[T](dest: var TIdTable[T], src: TIdTable[T]) =
dest.counter = src.counter
newSeq(dest.data, src.data.len)
for i in 0..high(src.data): dest.data[i] = src.data[i]
proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet) =
dest.counter = src.counter
setLen(dest.data, src.data.len)
for i in 0..high(src.data): dest.data[i] = src.data[i]
proc discardSons*(father: PNode) =
father.sons = @[]
proc withInfo*(n: PNode, info: TLineInfo): PNode =
n.info = info
return n
proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode =
result = newNode(nkIdent)
result.ident = ident
result.info = info
proc newSymNode*(sym: PSym): PNode =
result = newNode(nkSym)
result.sym = sym
result.typ() = sym.typ
result.info = sym.info
proc newSymNode*(sym: PSym, info: TLineInfo): PNode =
result = newNode(nkSym)
result.sym = sym
result.typ() = sym.typ
result.info = info
proc newOpenSym*(n: PNode): PNode {.inline.} =
result = newTreeI(nkOpenSym, n.info, n)
proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode =
result = newNode(kind)
result.intVal = intVal
proc newIntNode*(kind: TNodeKind, intVal: Int128): PNode =
result = newNode(kind)
result.intVal = castToInt64(intVal)
proc lastSon*(n: PNode): PNode {.inline.} = n.sons[^1]
template setLastSon*(n: PNode, s: PNode) = n.sons[^1] = s
template firstSon*(n: PNode): PNode = n.sons[0]
template secondSon*(n: PNode): PNode = n.sons[1]
template hasSon*(n: PNode): bool = n.len > 0
template has2Sons*(n: PNode): bool = n.len > 1
proc replaceFirstSon*(n, newson: PNode) {.inline.} =
n.sons[0] = newson
proc replaceSon*(n: PNode; i: int; newson: PNode) {.inline.} =
n.sons[i] = newson
proc last*(n: PType): PType {.inline.} = n.sons[^1]
proc elementType*(n: PType): PType {.inline.} = n.sons[^1]
proc skipModifier*(n: PType): PType {.inline.} = n.sons[^1]
proc indexType*(n: PType): PType {.inline.} = n.sons[0]
proc baseClass*(n: PType): PType {.inline.} = n.sons[0]
proc base*(t: PType): PType {.inline.} =
result = t.sons[0]
proc returnType*(n: PType): PType {.inline.} = n.sons[0]
proc setReturnType*(n, r: PType) {.inline.} = n.sons[0] = r
proc setIndexType*(n, idx: PType) {.inline.} = n.sons[0] = idx
proc firstParamType*(n: PType): PType {.inline.} = n.sons[1]
proc firstGenericParam*(n: PType): PType {.inline.} = n.sons[1]
proc typeBodyImpl*(n: PType): PType {.inline.} = n.sons[^1]
proc genericHead*(n: PType): PType {.inline.} = n.sons[0]
proc skipTypes*(t: PType, kinds: TTypeKinds): PType =
## Used throughout the compiler code to test whether a type tree contains or
## doesn't contain a specific type/types - it is often the case that only the
## last child nodes of a type tree need to be searched. This is a really hot
## path within the compiler!
result = t
while result.kind in kinds: result = last(result)
proc newIntTypeNode*(intVal: BiggestInt, typ: PType): PNode =
let kind = skipTypes(typ, abstractVarRange).kind
case kind
of tyInt: result = newNode(nkIntLit)
of tyInt8: result = newNode(nkInt8Lit)
of tyInt16: result = newNode(nkInt16Lit)
of tyInt32: result = newNode(nkInt32Lit)
of tyInt64: result = newNode(nkInt64Lit)
of tyChar: result = newNode(nkCharLit)
of tyUInt: result = newNode(nkUIntLit)
of tyUInt8: result = newNode(nkUInt8Lit)
of tyUInt16: result = newNode(nkUInt16Lit)
of tyUInt32: result = newNode(nkUInt32Lit)
of tyUInt64: result = newNode(nkUInt64Lit)
of tyBool, tyEnum:
# XXX: does this really need to be the kind nkIntLit?
result = newNode(nkIntLit)
of tyStatic: # that's a pre-existing bug, will fix in another PR
result = newNode(nkIntLit)
else: raiseAssert $kind
result.intVal = intVal
result.typ() = typ
proc newIntTypeNode*(intVal: Int128, typ: PType): PNode =
# XXX: introduce range check
newIntTypeNode(castToInt64(intVal), typ)
proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode =
result = newNode(kind)
result.floatVal = floatVal
proc newStrNode*(kind: TNodeKind, strVal: string): PNode =
result = newNode(kind)
result.strVal = strVal
proc newStrNode*(strVal: string; info: TLineInfo): PNode =
result = newNodeI(nkStrLit, info)
result.strVal = strVal
proc newProcNode*(kind: TNodeKind, info: TLineInfo, body: PNode,
params,
name, pattern, genericParams,
pragmas, exceptions: PNode): PNode =
result = newNodeI(kind, info)
result.sons = @[name, pattern, genericParams, params,
pragmas, exceptions, body]
const
AttachedOpToStr*: array[TTypeAttachedOp, string] = [
"=wasMoved", "=destroy", "=copy", "=dup", "=sink", "=trace", "=deepcopy"]
proc `$`*(s: PSym): string =
if s != nil:
result = s.name.s & "@" & $s.id
else:
result = "<nil>"
when false:
iterator items*(t: PType): PType =
for i in 0..<t.sons.len: yield t.sons[i]
iterator pairs*(n: PType): tuple[i: int, n: PType] =
for i in 0..<n.sons.len: yield (i, n.sons[i])
when true:
proc len*(n: PType): int {.inline.} =
result = n.sons.len
proc sameTupleLengths*(a, b: PType): bool {.inline.} =
result = a.sons.len == b.sons.len
iterator tupleTypePairs*(a, b: PType): (int, PType, PType) =
for i in 0 ..< a.sons.len:
yield (i, a.sons[i], b.sons[i])
iterator underspecifiedPairs*(a, b: PType; start = 0; without = 0): (PType, PType) =
# XXX Figure out with what typekinds this is called.
for i in start ..< min(a.sons.len, b.sons.len) + without:
yield (a.sons[i], b.sons[i])
proc signatureLen*(t: PType): int {.inline.} =
result = t.sons.len
proc paramsLen*(t: PType): int {.inline.} =
result = t.sons.len - 1
proc genericParamsLen*(t: PType): int {.inline.} =
assert t.kind == tyGenericInst
result = t.sons.len - 2 # without 'head' and 'body'
proc genericInvocationParamsLen*(t: PType): int {.inline.} =
assert t.kind == tyGenericInvocation
result = t.sons.len - 1 # without 'head'
proc kidsLen*(t: PType): int {.inline.} =
result = t.sons.len
proc genericParamHasConstraints*(t: PType): bool {.inline.} = t.sons.len > 0
proc hasElementType*(t: PType): bool {.inline.} = t.sons.len > 0
proc isEmptyTupleType*(t: PType): bool {.inline.} = t.sons.len == 0
proc isSingletonTupleType*(t: PType): bool {.inline.} = t.sons.len == 1
proc genericConstraint*(t: PType): PType {.inline.} = t.sons[0]
iterator genericInstParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len-1:
yield (i!=1, t.sons[i])
iterator genericInstParamPairs*(a, b: PType): (int, PType, PType) =
for i in 1..<min(a.sons.len, b.sons.len)-1:
yield (i-1, a.sons[i], b.sons[i])
iterator genericInvocationParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len:
yield (i!=1, t.sons[i])
iterator genericInvocationAndBodyElements*(a, b: PType): (PType, PType) =
for i in 1..<a.sons.len:
yield (a.sons[i], b.sons[i-1])
iterator genericInvocationParamPairs*(a, b: PType): (bool, PType, PType) =
for i in 1..<a.sons.len:
if i >= b.sons.len:
yield (false, nil, nil)
else:
yield (true, a.sons[i], b.sons[i])
iterator genericBodyParams*(t: PType): (int, PType) =
for i in 0..<t.sons.len-1:
yield (i, t.sons[i])
iterator userTypeClassInstParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len-1:
yield (i!=1, t.sons[i])
iterator ikids*(t: PType): (int, PType) =
for i in 0..<t.sons.len: yield (i, t.sons[i])
const
FirstParamAt* = 1
FirstGenericParamAt* = 1
iterator paramTypes*(t: PType): (int, PType) =
for i in FirstParamAt..<t.sons.len: yield (i, t.sons[i])
iterator paramTypePairs*(a, b: PType): (PType, PType) =
for i in FirstParamAt..<a.sons.len: yield (a.sons[i], b.sons[i])
template paramTypeToNodeIndex*(x: int): int = x
iterator kids*(t: PType): PType =
for i in 0..<t.sons.len: yield t.sons[i]
iterator signature*(t: PType): PType =
# yields return type + parameter types
for i in 0..<t.sons.len: yield t.sons[i]
proc newType*(kind: TTypeKind; idgen: IdGenerator; owner: PSym; son: sink PType = nil): PType =
let id = nextTypeId idgen
result = PType(kind: kind, ownerField: owner, size: defaultSize,
align: defaultAlignment, itemId: id,
uniqueId: id, sons: @[])
if son != nil: result.sons.add son
when false:
if result.itemId.module == 55 and result.itemId.item == 2:
echo "KNID ", kind
writeStackTrace()
proc setSons*(dest: PType; sons: sink seq[PType]) {.inline.} = dest.sons = sons
proc setSon*(dest: PType; son: sink PType) {.inline.} = dest.sons = @[son]
proc setSonsLen*(dest: PType; len: int) {.inline.} = setLen(dest.sons, len)
proc mergeLoc(a: var TLoc, b: TLoc) =
if a.k == low(typeof(a.k)): a.k = b.k
if a.storage == low(typeof(a.storage)): a.storage = b.storage
a.flags.incl b.flags
if a.lode == nil: a.lode = b.lode
if a.snippet == "": a.snippet = b.snippet
proc newSons*(father: PNode, length: int) =
setLen(father.sons, length)
proc newSons*(father: PType, length: int) =
setLen(father.sons, length)
proc truncateInferredTypeCandidates*(t: PType) {.inline.} =
assert t.kind == tyInferred
if t.sons.len > 1:
setLen(t.sons, 1)
proc assignType*(dest, src: PType) =
dest.kind = src.kind
dest.flags = src.flags
dest.callConv = src.callConv
dest.n = src.n
dest.size = src.size
dest.align = src.align
# this fixes 'type TLock = TSysLock':
if src.sym != nil:
if dest.sym != nil:
dest.sym.flags.incl src.sym.flags-{sfUsed, sfExported}
if dest.sym.annex == nil: dest.sym.annex = src.sym.annex
mergeLoc(dest.sym.loc, src.sym.loc)
else:
dest.sym = src.sym
newSons(dest, src.sons.len)
for i in 0..<src.sons.len: dest[i] = src[i]
proc copyType*(t: PType, idgen: IdGenerator, owner: PSym): PType =
result = newType(t.kind, idgen, owner)
assignType(result, t)
result.sym = t.sym # backend-info should not be copied
proc exactReplica*(t: PType): PType =
result = PType(kind: t.kind, ownerField: t.owner, size: defaultSize,
align: defaultAlignment, itemId: t.itemId,
uniqueId: t.uniqueId)
assignType(result, t)
result.sym = t.sym # backend-info should not be copied
proc copySym*(s: PSym; idgen: IdGenerator): PSym =
result = newSym(s.kind, s.name, idgen, s.owner, s.info, s.options)
#result.ast = nil # BUGFIX; was: s.ast which made problems
result.typ = s.typ
result.flags = s.flags
result.magic = s.magic
result.options = s.options
result.position = s.position
result.loc = s.loc
result.annex = s.annex # BUGFIX
result.constraint = s.constraint
if result.kind in {skVar, skLet, skField}:
result.guard = s.guard
result.bitsize = s.bitsize
result.alignment = s.alignment
proc createModuleAlias*(s: PSym, idgen: IdGenerator, newIdent: PIdent, info: TLineInfo;
options: TOptions): PSym =
result = newSym(s.kind, newIdent, idgen, s.owner, info, options)
# keep ID!
result.ast = s.ast
#result.id = s.id # XXX figure out what to do with the ID.
result.flags = s.flags
result.options = s.options
result.position = s.position
result.loc = s.loc
result.annex = s.annex
proc initStrTable*(): TStrTable =
result = TStrTable(counter: 0)
newSeq(result.data, StartSize)
proc initIdTable*[T](): TIdTable[T] =
result = TIdTable[T](counter: 0)
newSeq(result.data, StartSize)
proc resetIdTable*[T](x: var TIdTable[T]) =
x.counter = 0
# clear and set to old initial size:
setLen(x.data, 0)
setLen(x.data, StartSize)
proc initObjectSet*(): TObjectSet =
result = TObjectSet(counter: 0)
newSeq(result.data, StartSize)
proc initNodeTable*(ignoreTypes=false): TNodeTable =
result = TNodeTable(counter: 0, ignoreTypes: ignoreTypes)
newSeq(result.data, StartSize)
proc skipTypes*(t: PType, kinds: TTypeKinds; maxIters: int): PType =
result = t
var i = maxIters
while result.kind in kinds:
result = last(result)
dec i
if i == 0: return nil
proc skipTypesOrNil*(t: PType, kinds: TTypeKinds): PType =
## same as skipTypes but handles 'nil'
result = t
while result != nil and result.kind in kinds:
if result.sons.len == 0: return nil
result = last(result)
proc isGCedMem*(t: PType): bool {.inline.} =
result = t.kind in {tyString, tyRef, tySequence} or
t.kind == tyProc and t.callConv == ccClosure
proc propagateToOwner*(owner, elem: PType; propagateHasAsgn = true) =
owner.flags.incl elem.flags * {tfHasMeta, tfTriggersCompileTime}
if tfNotNil in elem.flags:
if owner.kind in {tyGenericInst, tyGenericBody, tyGenericInvocation}:
owner.flags.incl tfNotNil
if elem.isMetaType:
owner.flags.incl tfHasMeta
let mask = elem.flags * {tfHasAsgn, tfHasOwned}
if mask != {} and propagateHasAsgn:
let o2 = owner.skipTypes({tyGenericInst, tyAlias, tySink})
if o2.kind in {tyTuple, tyObject, tyArray,
tySequence, tyString, tySet, tyDistinct}:
o2.flags.incl mask
owner.flags.incl mask
if owner.kind notin {tyProc, tyGenericInst, tyGenericBody,
tyGenericInvocation, tyPtr}:
let elemB = elem.skipTypes({tyGenericInst, tyAlias, tySink})
if elemB.isGCedMem or tfHasGCedMem in elemB.flags:
# for simplicity, we propagate this flag even to generics. We then
# ensure this doesn't bite us in sempass2.
owner.flags.incl tfHasGCedMem
proc rawAddSon*(father, son: PType; propagateHasAsgn = true) =
father.sons.add(son)
if not son.isNil: propagateToOwner(father, son, propagateHasAsgn)
proc addSonNilAllowed*(father, son: PNode) =
father.sons.add(son)
proc delSon*(father: PNode, idx: int) =
if father.len == 0: return
for i in idx..<father.len - 1: father[i] = father[i + 1]
father.sons.setLen(father.len - 1)
proc copyNode*(src: PNode): PNode =
# does not copy its sons!
if src == nil:
return nil
result = newNode(src.kind)
result.info = src.info
result.typ() = src.typ
result.flags = src.flags * PersistentNodeFlags
result.comment = src.comment
when defined(useNodeIds):
if result.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
of nkFloatLiterals: result.floatVal = src.floatVal
of nkSym: result.sym = src.sym
of nkIdent: result.ident = src.ident
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
else: discard
when defined(nimsuggest):
result.endInfo = src.endInfo
template transitionNodeKindCommon(k: TNodeKind) =
let obj {.inject.} = n[]
n[] = TNode(kind: k, typField: n.typ, info: obj.info, flags: obj.flags)
# n.comment = obj.comment # shouldn't be needed, the address doesnt' change
when defined(useNodeIds):
n.id = obj.id
proc transitionSonsKind*(n: PNode, kind: range[nkComesFrom..nkTupleConstr]) =
transitionNodeKindCommon(kind)
n.sons = obj.sons
proc transitionIntKind*(n: PNode, kind: range[nkCharLit..nkUInt64Lit]) =
transitionNodeKindCommon(kind)
n.intVal = obj.intVal
proc transitionIntToFloatKind*(n: PNode, kind: range[nkFloatLit..nkFloat128Lit]) =
transitionNodeKindCommon(kind)
n.floatVal = BiggestFloat(obj.intVal)
proc transitionNoneToSym*(n: PNode) =
transitionNodeKindCommon(nkSym)
template transitionSymKindCommon*(k: TSymKind) =
let obj {.inject.} = s[]
s[] = TSym(kind: k, itemId: obj.itemId, magic: obj.magic, typ: obj.typ, name: obj.name,
info: obj.info, ownerField: obj.ownerField, flags: obj.flags, ast: obj.ast,
options: obj.options, position: obj.position, offset: obj.offset,
loc: obj.loc, annex: obj.annex, constraint: obj.constraint)
when hasFFI:
s.cname = obj.cname
when defined(nimsuggest):
s.allUsages = obj.allUsages
proc transitionGenericParamToType*(s: PSym) =
transitionSymKindCommon(skType)
proc transitionRoutineSymKind*(s: PSym, kind: range[skProc..skTemplate]) =
transitionSymKindCommon(kind)
s.gcUnsafetyReason = obj.gcUnsafetyReason
s.transformedBody = obj.transformedBody
proc transitionToLet*(s: PSym) =
transitionSymKindCommon(skLet)
s.guard = obj.guard
s.bitsize = obj.bitsize
s.alignment = obj.alignment
template copyNodeImpl(dst, src, processSonsStmt) =
if src == nil: return
dst = newNode(src.kind)
dst.info = src.info
when defined(nimsuggest):
result.endInfo = src.endInfo
dst.typ() = src.typ
dst.flags = src.flags * PersistentNodeFlags
dst.comment = src.comment
when defined(useNodeIds):
if dst.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: dst.intVal = src.intVal
of nkFloatLiterals: dst.floatVal = src.floatVal
of nkSym: dst.sym = src.sym
of nkIdent: dst.ident = src.ident
of nkStrLit..nkTripleStrLit: dst.strVal = src.strVal
else: processSonsStmt
proc shallowCopy*(src: PNode): PNode =
# does not copy its sons, but provides space for them:
copyNodeImpl(result, src):
newSeq(result.sons, src.len)
proc copyTree*(src: PNode): PNode =
# copy a whole syntax tree; performs deep copying
copyNodeImpl(result, src):
newSeq(result.sons, src.len)
for i in 0..<src.len:
result[i] = copyTree(src[i])
proc copyTreeWithoutNode*(src, skippedNode: PNode): PNode =
copyNodeImpl(result, src):
result.sons = newSeqOfCap[PNode](src.len)
for n in src.sons:
if n != skippedNode:
result.sons.add copyTreeWithoutNode(n, skippedNode)
proc hasSonWith*(n: PNode, kind: TNodeKind): bool =
for i in 0..<n.len:
if n[i].kind == kind:
return true
result = false
proc hasNilSon*(n: PNode): bool =
for i in 0..<n.safeLen:
if n[i] == nil:
return true
elif hasNilSon(n[i]):
return true
result = false
proc containsNode*(n: PNode, kinds: TNodeKinds): bool =
result = false
if n == nil: return
case n.kind
of nkEmpty..nkNilLit: result = n.kind in kinds
else:
for i in 0..<n.len:
if n.kind in kinds or containsNode(n[i], kinds): return true
proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool =
case n.kind
of nkEmpty..nkNilLit, nkFormalParams: result = n.kind == kind
else:
for i in 0..<n.len:
if (n[i].kind == kind) or hasSubnodeWith(n[i], kind):
return true
result = false
proc getInt*(a: PNode): Int128 =
case a.kind
of nkCharLit, nkUIntLit..nkUInt64Lit:
result = toInt128(cast[uint64](a.intVal))
of nkInt8Lit..nkInt64Lit:
result = toInt128(a.intVal)
of nkIntLit:
# XXX: enable this assert
# assert a.typ.kind notin {tyChar, tyUint..tyUInt64}
result = toInt128(a.intVal)
else:
raiseRecoverableError("cannot extract number from invalid AST node")
proc getInt64*(a: PNode): int64 {.deprecated: "use getInt".} =
case a.kind
of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
result = a.intVal
else:
raiseRecoverableError("cannot extract number from invalid AST node")
proc getFloat*(a: PNode): BiggestFloat =
case a.kind
of nkFloatLiterals: result = a.floatVal
of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
result = BiggestFloat a.intVal
else:
raiseRecoverableError("cannot extract number from invalid AST node")
#doAssert false, "getFloat"
#internalError(a.info, "getFloat")
#result = 0.0
proc getStr*(a: PNode): string =
case a.kind
of nkStrLit..nkTripleStrLit: result = a.strVal
of nkNilLit:
# let's hope this fixes more problems than it creates:
result = ""
else:
raiseRecoverableError("cannot extract string from invalid AST node")
#doAssert false, "getStr"
#internalError(a.info, "getStr")
#result = ""
proc getStrOrChar*(a: PNode): string =
case a.kind
of nkStrLit..nkTripleStrLit: result = a.strVal
of nkCharLit..nkUInt64Lit: result = $chr(int(a.intVal))
else:
raiseRecoverableError("cannot extract string from invalid AST node")
#doAssert false, "getStrOrChar"
#internalError(a.info, "getStrOrChar")
#result = ""
proc isGenericParams*(n: PNode): bool {.inline.} =
## used to judge whether a node is generic params.
n != nil and n.kind == nkGenericParams
proc isGenericRoutine*(n: PNode): bool {.inline.} =
n != nil and n.kind in callableDefs and n[genericParamsPos].isGenericParams
proc isGenericRoutineStrict*(s: PSym): bool {.inline.} =
## determines if this symbol represents a generic routine
## the unusual name is so it doesn't collide and eventually replaces
## `isGenericRoutine`
s.kind in skProcKinds and s.ast.isGenericRoutine
proc isGenericRoutine*(s: PSym): bool {.inline.} =
## determines if this symbol represents a generic routine or an instance of
## one. This should be renamed accordingly and `isGenericRoutineStrict`
## should take this name instead.
##
## Warning/XXX: Unfortunately, it considers a proc kind symbol flagged with
## sfFromGeneric as a generic routine. Instead this should likely not be the
## case and the concepts should be teased apart:
## - generic definition
## - generic instance
## - either generic definition or instance
s.kind in skProcKinds and (sfFromGeneric in s.flags or
s.ast.isGenericRoutine)
proc skipGenericOwner*(s: PSym): PSym =
## Generic instantiations are owned by their originating generic
## symbol. This proc skips such owners and goes straight to the owner
## of the generic itself (the module or the enclosing proc).
result = if s.kind == skModule:
s
elif s.kind in skProcKinds and sfFromGeneric in s.flags and s.owner.kind != skModule:
s.owner.owner
else:
s.owner
proc originatingModule*(s: PSym): PSym =
result = s
while result.kind != skModule: result = result.owner
proc isRoutine*(s: PSym): bool {.inline.} =
result = s.kind in skProcKinds
proc isCompileTimeProc*(s: PSym): bool {.inline.} =
result = s.kind == skMacro or
s.kind in {skProc, skFunc} and sfCompileTime in s.flags
proc hasPattern*(s: PSym): bool {.inline.} =
result = isRoutine(s) and s.ast[patternPos].kind != nkEmpty
iterator items*(n: PNode): PNode =
for i in 0..<n.safeLen: yield n[i]
iterator pairs*(n: PNode): tuple[i: int, n: PNode] =
for i in 0..<n.safeLen: yield (i, n[i])
proc isAtom*(n: PNode): bool {.inline.} =
result = n.kind >= nkNone and n.kind <= nkNilLit
proc isEmptyType*(t: PType): bool {.inline.} =
## 'void' and 'typed' types are often equivalent to 'nil' these days:
result = t == nil or t.kind in {tyVoid, tyTyped}
proc makeStmtList*(n: PNode): PNode =
if n.kind == nkStmtList:
result = n
else:
result = newNodeI(nkStmtList, n.info)
result.add n
proc skipStmtList*(n: PNode): PNode =
if n.kind in {nkStmtList, nkStmtListExpr}:
for i in 0..<n.len-1:
if n[i].kind notin {nkEmpty, nkCommentStmt}: return n
result = n.lastSon
else:
result = n
proc toVar*(typ: PType; kind: TTypeKind; idgen: IdGenerator): PType =
## If ``typ`` is not a tyVar then it is converted into a `var <typ>` and
## returned. Otherwise ``typ`` is simply returned as-is.
result = typ
if typ.kind != kind:
result = newType(kind, idgen, typ.owner, typ)
proc toRef*(typ: PType; idgen: IdGenerator): PType =
## If ``typ`` is a tyObject then it is converted into a `ref <typ>` and
## returned. Otherwise ``typ`` is simply returned as-is.
result = typ
if typ.skipTypes({tyAlias, tyGenericInst}).kind == tyObject:
result = newType(tyRef, idgen, typ.owner, typ)
proc toObject*(typ: PType): PType =
## If ``typ`` is a tyRef then its immediate son is returned (which in many
## cases should be a ``tyObject``).
## Otherwise ``typ`` is simply returned as-is.
let t = typ.skipTypes({tyAlias, tyGenericInst})
if t.kind == tyRef: t.elementType
else: typ
proc toObjectFromRefPtrGeneric*(typ: PType): PType =
#[
See also `toObject`.
Finds the underlying `object`, even in cases like these:
type
B[T] = object f0: int
A1[T] = ref B[T]
A2[T] = ref object f1: int
A3 = ref object f2: int
A4 = object f3: int
]#
result = typ
while true:
case result.kind
of tyGenericBody: result = result.last
of tyRef, tyPtr, tyGenericInst, tyGenericInvocation, tyAlias: result = result[0]
# automatic dereferencing is deep, refs #18298.
else: break
# result does not have to be object type
proc isImportedException*(t: PType; conf: ConfigRef): bool =
assert t != nil
if conf.exc != excCpp:
return false
let base = t.skipTypes({tyAlias, tyPtr, tyDistinct, tyGenericInst})
result = base.sym != nil and {sfCompileToCpp, sfImportc} * base.sym.flags != {}
proc isInfixAs*(n: PNode): bool =
return n.kind == nkInfix and n[0].kind == nkIdent and n[0].ident.id == ord(wAs)
proc skipColon*(n: PNode): PNode =
result = n
if n.kind == nkExprColonExpr:
result = n[1]
proc findUnresolvedStatic*(n: PNode): PNode =
if n.kind == nkSym and n.typ != nil and n.typ.kind == tyStatic and n.typ.n == nil:
return n
if n.typ != nil and n.typ.kind == tyTypeDesc:
let t = skipTypes(n.typ, {tyTypeDesc})
if t.kind == tyGenericParam and not t.genericParamHasConstraints:
return n
for son in n:
let n = son.findUnresolvedStatic
if n != nil: return n
return nil
when false:
proc containsNil*(n: PNode): bool =
# only for debugging
if n.isNil: return true
for i in 0..<n.safeLen:
if n[i].containsNil: return true
template hasDestructor*(t: PType): bool = {tfHasAsgn, tfHasOwned} * t.flags != {}
template incompleteType*(t: PType): bool =
t.sym != nil and {sfForward, sfNoForward} * t.sym.flags == {sfForward}
template typeCompleted*(s: PSym) =
incl s.flags, sfNoForward
template detailedInfo*(sym: PSym): string =
sym.name.s
proc isInlineIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags and typ.callConv != ccClosure
proc isIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags
proc isClosureIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags and typ.callConv == ccClosure
proc isClosure*(typ: PType): bool {.inline.} =
typ.kind == tyProc and typ.callConv == ccClosure
proc isNimcall*(s: PSym): bool {.inline.} =
s.typ.callConv == ccNimCall
proc isExplicitCallConv*(s: PSym): bool {.inline.} =
tfExplicitCallConv in s.typ.flags
proc isSinkParam*(s: PSym): bool {.inline.} =
s.kind == skParam and (s.typ.kind == tySink or tfHasOwned in s.typ.flags)
proc isSinkType*(t: PType): bool {.inline.} =
t.kind == tySink or tfHasOwned in t.flags
proc newProcType*(info: TLineInfo; idgen: IdGenerator; owner: PSym): PType =
result = newType(tyProc, idgen, owner)
result.n = newNodeI(nkFormalParams, info)
rawAddSon(result, nil) # return type
# result.n[0] used to be `nkType`, but now it's `nkEffectList` because
# the effects are now stored in there too ... this is a bit hacky, but as
# usual we desperately try to save memory:
result.n.add newNodeI(nkEffectList, info)
proc addParam*(procType: PType; param: PSym) =
param.position = procType.sons.len-1
procType.n.add newSymNode(param)
rawAddSon(procType, param.typ)
const magicsThatCanRaise = {
mNone, mSlurp, mStaticExec, mParseExprToAst, mParseStmtToAst, mEcho}
proc canRaiseConservative*(fn: PNode): bool =
if fn.kind == nkSym and fn.sym.magic notin magicsThatCanRaise:
result = false
else:
result = true
proc canRaise*(fn: PNode): bool =
if fn.kind == nkSym and (fn.sym.magic notin magicsThatCanRaise or
{sfImportc, sfInfixCall} * fn.sym.flags == {sfImportc} or
sfGeneratedOp in fn.sym.flags):
result = false
elif fn.kind == nkSym and fn.sym.magic == mEcho:
result = true
elif fn.typ != nil and fn.typ.kind == tyProc and fn.typ.n != nil:
# TODO check for n having sons? or just return false for now if not
if fn.typ.n[0].kind == nkSym:
result = false
else:
result = ((fn.typ.n[0].len < effectListLen) or
(fn.typ.n[0][exceptionEffects] != nil and
fn.typ.n[0][exceptionEffects].safeLen > 0))
else:
result = false
proc toHumanStrImpl[T](kind: T, num: static int): string =
result = $kind
result = result[num..^1]
result[0] = result[0].toLowerAscii
proc toHumanStr*(kind: TSymKind): string =
## strips leading `sk`
result = toHumanStrImpl(kind, 2)
proc toHumanStr*(kind: TTypeKind): string =
## strips leading `tk`
result = toHumanStrImpl(kind, 2)
proc skipHiddenAddr*(n: PNode): PNode {.inline.} =
(if n.kind == nkHiddenAddr: n[0] else: n)
proc isNewStyleConcept*(n: PNode): bool {.inline.} =
assert n.kind == nkTypeClassTy
result = n[0].kind == nkEmpty
proc isOutParam*(t: PType): bool {.inline.} = tfIsOutParam in t.flags
const
nodesToIgnoreSet* = {nkNone..pred(nkSym), succ(nkSym)..nkNilLit,
nkTypeSection, nkProcDef, nkConverterDef,
nkMethodDef, nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo,
nkFuncDef, nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt,
nkExportStmt, nkPragma, nkCommentStmt, nkBreakState,
nkTypeOfExpr, nkMixinStmt, nkBindStmt}
proc isTrue*(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
type
TypeMapping* = TIdTable[PType]
SymMapping* = TIdTable[PSym]
template initSymMapping*(): SymMapping = initIdTable[PSym]()
template initTypeMapping*(): TypeMapping = initIdTable[PType]()