Files
Nim/compiler/astalgo.nim
metagn c385fcb6be bring back id table algorithm instead of std table [backport:2.2] (#24930)
refs #24929, partially reverts #23403

Instead of using `Table[ItemId, T]`, the old algorithm is brought back
into `TIdTable[T]` to prevent a performance regression. The inheritance
removal from #23403 still holds, only `ItemId`s are stored.

(cherry picked from commit 82553384d1)
2025-05-06 16:04:43 +02:00

836 lines
23 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Algorithms for the abstract syntax tree: hash tables, lists
# and sets of nodes are supported. Efficiency is important as
# the data structures here are used in various places of the compiler.
import
ast, astyaml, options, lineinfos, idents, rodutils,
msgs
import std/[hashes, intsets]
import std/strutils except addf
export astyaml.treeToYaml, astyaml.typeToYaml, astyaml.symToYaml, astyaml.lineInfoToStr
when defined(nimPreviewSlimSystem):
import std/assertions
proc hashNode*(p: RootRef): Hash
# these are for debugging only: They are not really deprecated, but I want
# the warning so that release versions do not contain debugging statements:
proc debug*(n: PSym; conf: ConfigRef = nil) {.exportc: "debugSym", deprecated.}
proc debug*(n: PType; conf: ConfigRef = nil) {.exportc: "debugType", deprecated.}
proc debug*(n: PNode; conf: ConfigRef = nil) {.exportc: "debugNode", deprecated.}
template debug*(x: PSym|PType|PNode) {.deprecated.} =
when compiles(c.config):
debug(c.config, x)
elif compiles(c.graph.config):
debug(c.graph.config, x)
else:
error()
template debug*(x: auto) {.deprecated.} =
echo x
template mdbg*: bool {.deprecated.} =
when compiles(c.graph):
c.module.fileIdx == c.graph.config.projectMainIdx
elif compiles(c.module):
c.module.fileIdx == c.config.projectMainIdx
elif compiles(c.c.module):
c.c.module.fileIdx == c.c.config.projectMainIdx
elif compiles(m.c.module):
m.c.module.fileIdx == m.c.config.projectMainIdx
elif compiles(cl.c.module):
cl.c.module.fileIdx == cl.c.config.projectMainIdx
elif compiles(p):
when compiles(p.lex):
p.lex.fileIdx == p.lex.config.projectMainIdx
else:
p.module.module.fileIdx == p.config.projectMainIdx
elif compiles(m.module.fileIdx):
m.module.fileIdx == m.config.projectMainIdx
elif compiles(L.fileIdx):
L.fileIdx == L.config.projectMainIdx
else:
error()
# ---------------------------------------------------------------------------
proc lookupInRecord*(n: PNode, field: PIdent): PSym
proc mustRehash*(length, counter: int): bool
proc nextTry*(h, maxHash: Hash): Hash {.inline.}
# ------------- table[int, int] ---------------------------------------------
const
InvalidKey* = low(int)
type
TIIPair*{.final.} = object
key*, val*: int
TIIPairSeq* = seq[TIIPair]
TIITable*{.final.} = object # table[int, int]
counter*: int
data*: TIIPairSeq
proc initIITable*(x: var TIITable)
proc iiTableGet*(t: TIITable, key: int): int
proc iiTablePut*(t: var TIITable, key, val: int)
# implementation
proc skipConvCastAndClosure*(n: PNode): PNode =
result = n
while true:
case result.kind
of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64,
nkClosure:
result = result[0]
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkCast:
result = result[1]
else: break
proc sameValue*(a, b: PNode): bool =
result = false
case a.kind
of nkCharLit..nkUInt64Lit:
if b.kind in {nkCharLit..nkUInt64Lit}: result = getInt(a) == getInt(b)
of nkFloatLit..nkFloat64Lit:
if b.kind in {nkFloatLit..nkFloat64Lit}: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit:
if b.kind in {nkStrLit..nkTripleStrLit}: result = a.strVal == b.strVal
else:
# don't raise an internal error for 'nim check':
#InternalError(a.info, "SameValue")
discard
proc leValue*(a, b: PNode): bool =
# a <= b?
result = false
case a.kind
of nkCharLit..nkUInt64Lit:
if b.kind in {nkCharLit..nkUInt64Lit}: result = getInt(a) <= getInt(b)
of nkFloatLit..nkFloat64Lit:
if b.kind in {nkFloatLit..nkFloat64Lit}: result = a.floatVal <= b.floatVal
of nkStrLit..nkTripleStrLit:
if b.kind in {nkStrLit..nkTripleStrLit}: result = a.strVal <= b.strVal
else:
# don't raise an internal error for 'nim check':
#InternalError(a.info, "leValue")
discard
proc weakLeValue*(a, b: PNode): TImplication =
if a.kind notin nkLiterals or b.kind notin nkLiterals:
result = impUnknown
else:
result = if leValue(a, b): impYes else: impNo
proc lookupInRecord(n: PNode, field: PIdent): PSym =
result = nil
case n.kind
of nkRecList:
for i in 0..<n.len:
result = lookupInRecord(n[i], field)
if result != nil: return
of nkRecCase:
if (n[0].kind != nkSym): return nil
result = lookupInRecord(n[0], field)
if result != nil: return
for i in 1..<n.len:
case n[i].kind
of nkOfBranch, nkElse:
result = lookupInRecord(lastSon(n[i]), field)
if result != nil: return
else: return nil
of nkSym:
if n.sym.name.id == field.id: result = n.sym
else: return nil
proc getModule*(s: PSym): PSym =
result = s
assert((result.kind == skModule) or (result.owner != result))
while result != nil and result.kind != skModule: result = result.owner
proc fromSystem*(op: PSym): bool {.inline.} = sfSystemModule in getModule(op).flags
proc getSymFromList*(list: PNode, ident: PIdent, start: int = 0): PSym =
for i in start..<list.len:
if list[i].kind == nkSym:
result = list[i].sym
if result.name.id == ident.id: return
else: return nil
result = nil
proc sameIgnoreBacktickGensymInfo(a, b: string): bool =
result = false
if a[0] != b[0]: return false
var alen = a.len - 1
while alen > 0 and a[alen] != '`': dec(alen)
if alen <= 0: alen = a.len
var i = 1
var j = 1
while true:
while i < alen and a[i] == '_': inc i
while j < b.len and b[j] == '_': inc j
var aa = if i < alen: toLowerAscii(a[i]) else: '\0'
var bb = if j < b.len: toLowerAscii(b[j]) else: '\0'
if aa != bb: return false
# the characters are identical:
if i >= alen:
# both cursors at the end:
if j >= b.len: return true
# not yet at the end of 'b':
return false
elif j >= b.len:
return false
inc i
inc j
proc getNamedParamFromList*(list: PNode, ident: PIdent): PSym =
## Named parameters are special because a named parameter can be
## gensym'ed and then they have '\`<number>' suffix that we need to
## ignore, see compiler / evaltempl.nim, snippet:
## ```nim
## result.add newIdentNode(getIdent(c.ic, x.name.s & "\`gensym" & $x.id),
## if c.instLines: actual.info else: templ.info)
## ```
result = nil
for i in 1..<list.len:
let it = list[i].sym
if it.name.id == ident.id or
sameIgnoreBacktickGensymInfo(it.name.s, ident.s): return it
proc hashNode(p: RootRef): Hash =
result = hash(cast[pointer](p))
proc mustRehash(length, counter: int): bool =
assert(length > counter)
result = (length * 2 < counter * 3) or (length - counter < 4)
import std/tables
const backrefStyle = "\e[90m"
const enumStyle = "\e[34m"
const numberStyle = "\e[33m"
const stringStyle = "\e[32m"
const resetStyle = "\e[0m"
type
DebugPrinter = object
conf: ConfigRef
visited: Table[pointer, int]
renderSymType: bool
indent: int
currentLine: int
firstItem: bool
useColor: bool
res: string
proc indentMore(this: var DebugPrinter) =
this.indent += 2
proc indentLess(this: var DebugPrinter) =
this.indent -= 2
proc newlineAndIndent(this: var DebugPrinter) =
this.res.add "\n"
this.currentLine += 1
for i in 0..<this.indent:
this.res.add ' '
proc openCurly(this: var DebugPrinter) =
this.res.add "{"
this.indentMore
this.firstItem = true
proc closeCurly(this: var DebugPrinter) =
this.indentLess
this.newlineAndIndent
this.res.add "}"
proc comma(this: var DebugPrinter) =
this.res.add ", "
proc openBracket(this: var DebugPrinter) =
this.res.add "["
#this.indentMore
proc closeBracket(this: var DebugPrinter) =
#this.indentLess
this.res.add "]"
proc key(this: var DebugPrinter; key: string) =
if not this.firstItem:
this.res.add ","
this.firstItem = false
this.newlineAndIndent
this.res.add "\""
this.res.add key
this.res.add "\": "
proc value(this: var DebugPrinter; value: string) =
if this.useColor:
this.res.add stringStyle
this.res.add "\""
this.res.add value
this.res.add "\""
if this.useColor:
this.res.add resetStyle
proc value(this: var DebugPrinter; value: BiggestInt) =
if this.useColor:
this.res.add numberStyle
this.res.addInt value
if this.useColor:
this.res.add resetStyle
proc value[T: enum](this: var DebugPrinter; value: T) =
if this.useColor:
this.res.add enumStyle
this.res.add "\""
this.res.add $value
this.res.add "\""
if this.useColor:
this.res.add resetStyle
proc value[T: enum](this: var DebugPrinter; value: set[T]) =
this.openBracket
let high = card(value)-1
var i = 0
for v in value:
this.value v
if i != high:
this.comma
inc i
this.closeBracket
template earlyExit(this: var DebugPrinter; n: PType | PNode | PSym) =
if n == nil:
this.res.add "null"
return
let index = this.visited.getOrDefault(cast[pointer](n), -1)
if index < 0:
this.visited[cast[pointer](n)] = this.currentLine
else:
if this.useColor:
this.res.add backrefStyle
this.res.add "<defined "
this.res.addInt(this.currentLine - index)
this.res.add " lines upwards>"
if this.useColor:
this.res.add resetStyle
return
proc value(this: var DebugPrinter; value: PType)
proc value(this: var DebugPrinter; value: PNode)
proc value(this: var DebugPrinter; value: PSym) =
earlyExit(this, value)
this.openCurly
this.key("kind")
this.value(value.kind)
this.key("name")
this.value(value.name.s)
this.key("id")
this.value(value.id)
if value.kind in {skField, skEnumField, skParam}:
this.key("position")
this.value(value.position)
if card(value.flags) > 0:
this.key("flags")
this.value(value.flags)
if this.renderSymType and value.typ != nil:
this.key "typ"
this.value(value.typ)
this.closeCurly
proc value(this: var DebugPrinter; value: PType) =
earlyExit(this, value)
this.openCurly
this.key "kind"
this.value value.kind
this.key "id"
this.value value.id
if value.sym != nil:
this.key "sym"
this.value value.sym
#this.value value.sym.name.s
if card(value.flags) > 0:
this.key "flags"
this.value value.flags
if value.kind in IntegralTypes and value.n != nil:
this.key "n"
this.value value.n
this.key "sons"
this.openBracket
for i, a in value.ikids:
if i > 0: this.comma
this.value a
this.closeBracket
if value.n != nil:
this.key "n"
this.value value.n
this.closeCurly
proc value(this: var DebugPrinter; value: PNode) =
earlyExit(this, value)
this.openCurly
this.key "kind"
this.value value.kind
if value.comment.len > 0:
this.key "comment"
this.value value.comment
when defined(useNodeIds):
this.key "id"
this.value value.id
if this.conf != nil:
this.key "info"
this.value $lineInfoToStr(this.conf, value.info)
if value.flags != {}:
this.key "flags"
this.value value.flags
if value.typ != nil:
this.key "typ"
this.value value.typ.kind
else:
this.key "typ"
this.value "nil"
case value.kind
of nkCharLit..nkUInt64Lit:
this.key "intVal"
this.value value.intVal
of nkFloatLit, nkFloat32Lit, nkFloat64Lit:
this.key "floatVal"
this.value value.floatVal.toStrMaxPrecision
of nkStrLit..nkTripleStrLit:
this.key "strVal"
this.value value.strVal
of nkSym:
this.key "sym"
this.value value.sym
#this.value value.sym.name.s
of nkIdent:
if value.ident != nil:
this.key "ident"
this.value value.ident.s
else:
if this.renderSymType and value.typ != nil:
this.key "typ"
this.value value.typ
if value.len > 0:
this.key "sons"
this.openBracket
for i in 0..<value.len:
this.value value[i]
if i != value.len - 1:
this.comma
this.closeBracket
this.closeCurly
proc debug(n: PSym; conf: ConfigRef) =
var this = DebugPrinter(
visited: initTable[pointer, int](),
renderSymType: true,
useColor: not defined(windows)
)
this.value(n)
echo($this.res)
proc debug(n: PType; conf: ConfigRef) =
var this = DebugPrinter(
visited: initTable[pointer, int](),
renderSymType: true,
useColor: not defined(windows)
)
this.value(n)
echo($this.res)
proc debug(n: PNode; conf: ConfigRef) =
var this = DebugPrinter(
visited: initTable[pointer, int](),
renderSymType: false,
useColor: not defined(windows)
)
this.value(n)
echo($this.res)
proc nextTry(h, maxHash: Hash): Hash {.inline.} =
result = ((5 * h) + 1) and maxHash
# For any initial h in range(maxHash), repeating that maxHash times
# generates each int in range(maxHash) exactly once (see any text on
# random-number generation for proof).
proc objectSetContains*(t: TObjectSet, obj: RootRef): bool =
# returns true whether n is in t
var h: Hash = hashNode(obj) and high(t.data) # start with real hash value
while t.data[h] != nil:
if t.data[h] == obj:
return true
h = nextTry(h, high(t.data))
result = false
proc objectSetRawInsert(data: var TObjectSeq, obj: RootRef) =
var h: Hash = hashNode(obj) and high(data)
while data[h] != nil:
assert(data[h] != obj)
h = nextTry(h, high(data))
assert(data[h] == nil)
data[h] = obj
proc objectSetEnlarge(t: var TObjectSet) =
var n: TObjectSeq
newSeq(n, t.data.len * GrowthFactor)
for i in 0..high(t.data):
if t.data[i] != nil: objectSetRawInsert(n, t.data[i])
swap(t.data, n)
proc objectSetIncl*(t: var TObjectSet, obj: RootRef) =
if mustRehash(t.data.len, t.counter): objectSetEnlarge(t)
objectSetRawInsert(t.data, obj)
inc(t.counter)
proc objectSetContainsOrIncl*(t: var TObjectSet, obj: RootRef): bool =
# returns true if obj is already in the string table:
var h: Hash = hashNode(obj) and high(t.data)
while true:
var it = t.data[h]
if it == nil: break
if it == obj:
return true # found it
h = nextTry(h, high(t.data))
if mustRehash(t.data.len, t.counter):
objectSetEnlarge(t)
objectSetRawInsert(t.data, obj)
else:
assert(t.data[h] == nil)
t.data[h] = obj
inc(t.counter)
result = false
proc strTableContains*(t: TStrTable, n: PSym): bool =
var h: Hash = n.name.h and high(t.data) # start with real hash value
while t.data[h] != nil:
if (t.data[h] == n):
return true
h = nextTry(h, high(t.data))
result = false
proc strTableRawInsert(data: var seq[PSym], n: PSym) =
var h: Hash = n.name.h and high(data)
while data[h] != nil:
if data[h] == n:
# allowed for 'export' feature:
#InternalError(n.info, "StrTableRawInsert: " & n.name.s)
return
h = nextTry(h, high(data))
assert(data[h] == nil)
data[h] = n
proc symTabReplaceRaw(data: var seq[PSym], prevSym: PSym, newSym: PSym) =
assert prevSym.name.h == newSym.name.h
var h: Hash = prevSym.name.h and high(data)
while data[h] != nil:
if data[h] == prevSym:
data[h] = newSym
return
h = nextTry(h, high(data))
assert false
proc symTabReplace*(t: var TStrTable, prevSym: PSym, newSym: PSym) =
symTabReplaceRaw(t.data, prevSym, newSym)
proc strTableEnlarge(t: var TStrTable) =
var n: seq[PSym]
newSeq(n, t.data.len * GrowthFactor)
for i in 0..high(t.data):
if t.data[i] != nil: strTableRawInsert(n, t.data[i])
swap(t.data, n)
proc strTableAdd*(t: var TStrTable, n: PSym) =
if mustRehash(t.data.len, t.counter): strTableEnlarge(t)
strTableRawInsert(t.data, n)
inc(t.counter)
proc strTableInclReportConflict*(t: var TStrTable, n: PSym;
onConflictKeepOld = false): PSym =
# if `t` has a conflicting symbol (same identifier as `n`), return it
# otherwise return `nil`. Incl `n` to `t` unless `onConflictKeepOld = true`
# and a conflict was found.
assert n.name != nil
var h: Hash = n.name.h and high(t.data)
var replaceSlot = -1
while true:
var it = t.data[h]
if it == nil: break
# Semantic checking can happen multiple times thanks to templates
# and overloading: (var x=@[]; x).mapIt(it).
# So it is possible the very same sym is added multiple
# times to the symbol table which we allow here with the 'it == n' check.
if it.name.id == n.name.id:
if it == n: return nil
replaceSlot = h
h = nextTry(h, high(t.data))
if replaceSlot >= 0:
result = t.data[replaceSlot] # found it
if not onConflictKeepOld:
t.data[replaceSlot] = n # overwrite it with newer definition!
return result # but return the old one
elif mustRehash(t.data.len, t.counter):
strTableEnlarge(t)
strTableRawInsert(t.data, n)
else:
assert(t.data[h] == nil)
t.data[h] = n
inc(t.counter)
result = nil
proc strTableIncl*(t: var TStrTable, n: PSym;
onConflictKeepOld = false): bool {.discardable.} =
result = strTableInclReportConflict(t, n, onConflictKeepOld) != nil
proc strTableGet*(t: TStrTable, name: PIdent): PSym =
var h: Hash = name.h and high(t.data)
while true:
result = t.data[h]
if result == nil: break
if result.name.id == name.id: break
h = nextTry(h, high(t.data))
type
TIdentIter* = object # iterator over all syms with same identifier
h*: Hash # current hash
name*: PIdent
proc nextIdentIter*(ti: var TIdentIter, tab: TStrTable): PSym =
# hot spots
var h = ti.h and high(tab.data)
var start = h
var p {.cursor.} = tab.data[h]
while p != nil:
if p.name.id == ti.name.id: break
h = nextTry(h, high(tab.data))
if h == start:
p = nil
break
p = tab.data[h]
if p != nil:
result = p # increase the count
else:
result = nil
ti.h = nextTry(h, high(tab.data))
proc initIdentIter*(ti: var TIdentIter, tab: TStrTable, s: PIdent): PSym =
ti.h = s.h
ti.name = s
if tab.counter == 0: result = nil
else: result = nextIdentIter(ti, tab)
proc nextIdentExcluding*(ti: var TIdentIter, tab: TStrTable,
excluding: IntSet): PSym =
var h: Hash = ti.h and high(tab.data)
var start = h
result = tab.data[h]
while result != nil:
if result.name.id == ti.name.id and not contains(excluding, result.id):
break
h = nextTry(h, high(tab.data))
if h == start:
result = nil
break
result = tab.data[h]
ti.h = nextTry(h, high(tab.data))
if result != nil and contains(excluding, result.id): result = nil
proc firstIdentExcluding*(ti: var TIdentIter, tab: TStrTable, s: PIdent,
excluding: IntSet): PSym =
ti.h = s.h
ti.name = s
if tab.counter == 0: result = nil
else: result = nextIdentExcluding(ti, tab, excluding)
type
TTabIter* = object
h: Hash
proc nextIter*(ti: var TTabIter, tab: TStrTable): PSym =
# usage:
# var
# i: TTabIter
# s: PSym
# s = InitTabIter(i, table)
# while s != nil:
# ...
# s = NextIter(i, table)
#
result = nil
while (ti.h <= high(tab.data)):
result = tab.data[ti.h]
inc(ti.h) # ... and increment by one always
if result != nil: break
proc initTabIter*(ti: var TTabIter, tab: TStrTable): PSym =
ti.h = 0
if tab.counter == 0:
result = nil
else:
result = nextIter(ti, tab)
iterator items*(tab: TStrTable): PSym =
var it: TTabIter = default(TTabIter)
var s = initTabIter(it, tab)
while s != nil:
yield s
s = nextIter(it, tab)
proc isNil(x: ItemId): bool {.inline.} =
x.module == 0 and x.item == 0
proc hasEmptySlot[T](data: TIdPairSeq[T]): bool =
for h in 0..high(data):
if isNil(data[h].key):
return true
result = false
proc idTableRawGet[T](t: TIdTable[T], key: int): int =
var h: Hash
h = key and high(t.data) # start with real hash value
while not isNil(t.data[h].key):
if toId(t.data[h].key) == key:
return h
h = nextTry(h, high(t.data))
result = - 1
proc getOrDefault*[T](t: TIdTable[T], key: ItemId): T =
var index = idTableRawGet(t, toId(key))
if index >= 0: result = t.data[index].val
else: result = default(T)
template idTableGet*[T](t: TIdTable[T], key: PType | PSym): T =
getOrDefault(t, key.itemId)
proc idTableRawInsert[T](data: var TIdPairSeq[T], key: ItemId, val: T) =
var h: Hash
let keyId = toId(key)
h = keyId and high(data)
while not isNil(data[h].key):
assert(toId(data[h].key) != keyId)
h = nextTry(h, high(data))
assert(isNil(data[h].key))
data[h].key = key
data[h].val = val
proc `[]=`*[T](t: var TIdTable[T], key: ItemId, val: T) =
var
index: int
n: TIdPairSeq[T]
index = idTableRawGet(t, toId(key))
if index >= 0:
assert(not isNil(t.data[index].key))
t.data[index].val = val
else:
if mustRehash(t.data.len, t.counter):
newSeq(n, t.data.len * GrowthFactor)
for i in 0..high(t.data):
if not isNil(t.data[i].key):
idTableRawInsert(n, t.data[i].key, t.data[i].val)
assert(hasEmptySlot(n))
swap(t.data, n)
idTableRawInsert(t.data, key, val)
inc(t.counter)
template idTablePut*[T](t: var TIdTable[T], key: PType | PSym, val: T) =
t[key.itemId] = val
iterator idTablePairs*[T](t: TIdTable[T]): tuple[key: ItemId, val: T] =
for i in 0..high(t.data):
if not isNil(t.data[i].key):
yield (t.data[i].key, t.data[i].val)
proc initIITable(x: var TIITable) =
x.counter = 0
newSeq(x.data, StartSize)
for i in 0..<StartSize: x.data[i].key = InvalidKey
proc iiTableRawGet(t: TIITable, key: int): int =
var h: Hash
h = key and high(t.data) # start with real hash value
while t.data[h].key != InvalidKey:
if t.data[h].key == key: return h
h = nextTry(h, high(t.data))
result = -1
proc iiTableGet(t: TIITable, key: int): int =
var index = iiTableRawGet(t, key)
if index >= 0: result = t.data[index].val
else: result = InvalidKey
proc iiTableRawInsert(data: var TIIPairSeq, key, val: int) =
var h: Hash
h = key and high(data)
while data[h].key != InvalidKey:
assert(data[h].key != key)
h = nextTry(h, high(data))
assert(data[h].key == InvalidKey)
data[h].key = key
data[h].val = val
proc iiTablePut(t: var TIITable, key, val: int) =
var index = iiTableRawGet(t, key)
if index >= 0:
assert(t.data[index].key != InvalidKey)
t.data[index].val = val
else:
if mustRehash(t.data.len, t.counter):
var n: TIIPairSeq
newSeq(n, t.data.len * GrowthFactor)
for i in 0..high(n): n[i].key = InvalidKey
for i in 0..high(t.data):
if t.data[i].key != InvalidKey:
iiTableRawInsert(n, t.data[i].key, t.data[i].val)
swap(t.data, n)
iiTableRawInsert(t.data, key, val)
inc(t.counter)
proc listSymbolNames*(symbols: openArray[PSym]): string =
result = ""
for sym in symbols:
if result.len > 0:
result.add ", "
result.add sym.name.s
proc isDiscriminantField*(n: PNode): bool =
if n.kind == nkCheckedFieldExpr: sfDiscriminant in n[0][1].sym.flags
elif n.kind == nkDotExpr: sfDiscriminant in n[1].sym.flags
else: false