Files
Nim/compiler/semtypes.nim
2025-11-05 11:36:17 +01:00

2539 lines
99 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking of type declarations
# included from sem.nim
const
errStringOrIdentNodeExpected = "string or ident node expected"
errStringLiteralExpected = "string literal expected"
errIntLiteralExpected = "integer literal expected"
errWrongNumberOfVariables = "wrong number of variables"
errDuplicateAliasInEnumX = "duplicate value in enum '$1'"
errOverflowInEnumX = "The enum '$1' exceeds its maximum value ($2)"
errOrdinalTypeExpected = "ordinal type expected; given: $1"
errSetTooBig = "set is too large; use `std/sets` for ordinal types with more than 2^16 elements"
errBaseTypeMustBeOrdinal = "base type of a set must be an ordinal"
errInheritanceOnlyWithNonFinalObjects = "inheritance only works with non-final objects"
errXExpectsOneTypeParam = "'$1' expects one type parameter"
errArrayExpectsTwoTypeParams = "array expects two type parameters"
errInvalidVisibilityX = "invalid visibility: '$1'"
errXCannotBeAssignedTo = "'$1' cannot be assigned to"
errIteratorNotAllowed = "iterators can only be defined at the module's top level"
errXNeedsReturnType = "$1 needs a return type"
errNoReturnTypeDeclared = "no return type declared"
errTIsNotAConcreteType = "'$1' is not a concrete type"
errTypeExpected = "type expected"
errXOnlyAtModuleScope = "'$1' is only allowed at top level"
errDuplicateCaseLabel = "duplicate case label"
errMacroBodyDependsOnGenericTypes = "the macro body cannot be compiled, " &
"because the parameter '$1' has a generic type"
errIllegalRecursionInTypeX = "illegal recursion in type '$1'"
errNoGenericParamsAllowedForX = "no generic parameters allowed for $1"
errInOutFlagNotExtern = "the '$1' modifier can be used only with imported types"
proc reusePrev(prev: PType): bool {.inline.} =
# only overwrite `prev` if it is a forward type, partial object or magic type
result = prev != nil and (prev.kind == tyForward or (prev.sym != nil and
# partial object marks sym as `sfForward`
(sfForward in prev.sym.flags or prev.sym.magic != mNone)))
proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext, son: sink PType): PType =
if reusePrev(prev):
result = prev
result.setSon(son)
if result.kind == tyForward: result.kind = kind
else:
result = newTypeS(kind, c, son)
#if kind == tyError: result.flags.incl tfCheckedForDestructor
proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType =
if reusePrev(prev):
result = prev
if result.kind == tyForward: result.kind = kind
else:
result = newTypeS(kind, c)
proc newConstraint(c: PContext, k: TTypeKind): PType =
result = newTypeS(tyBuiltInTypeClass, c)
result.flags.incl tfCheckedForDestructor
result.addSonSkipIntLit(newTypeS(k, c), c.idgen)
proc semEnum(c: PContext, n: PNode, prev: PType): PType =
if n.len == 0: return newConstraint(c, tyEnum)
elif n.len == 1:
# don't create an empty tyEnum; fixes #3052
return errorType(c)
var
counter, x: BiggestInt = 0
e: PSym = nil
base: PType = nil
identToReplace: ptr PNode = nil
counterSet = initPackedSet[BiggestInt]()
counter = 0
base = nil
result = newOrPrevType(tyEnum, prev, c)
result.n = newNodeI(nkEnumTy, n.info)
checkMinSonsLen(n, 1, c.config)
if n[0].kind != nkEmpty:
base = semTypeNode(c, n[0][0], nil)
if base.kind != tyEnum:
localError(c.config, n[0].info, "inheritance only works with an enum")
counter = toInt64(lastOrd(c.config, base)) + 1
rawAddSon(result, base)
let isPure = result.sym != nil and sfPure in result.sym.flags
var symbols: TStrTable = initStrTable()
var hasNull = false
var needsReorder = false
for i in 1..<n.len:
if n[i].kind == nkEmpty: continue
var useAutoCounter = false
case n[i].kind
of nkEnumFieldDef:
if n[i][0].kind == nkPragmaExpr:
e = newSymS(skEnumField, n[i][0][0], c)
identToReplace = addr n[i][0][0]
pragma(c, e, n[i][0][1], enumFieldPragmas)
else:
e = newSymS(skEnumField, n[i][0], c)
identToReplace = addr n[i][0]
var v = semConstExpr(c, n[i][1])
var strVal: PNode = nil
case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind
of tyTuple:
if v.len == 2:
strVal = v[1] # second tuple part is the string value
if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCstring}:
if not isOrdinalType(v[0].typ, allowEnumWithHoles=true):
localError(c.config, v[0].info, errOrdinalTypeExpected % typeToString(v[0].typ, preferDesc))
x = toInt64(getOrdValue(v[0])) # first tuple part is the ordinal
n[i][1][0] = newIntTypeNode(x, getSysType(c.graph, unknownLineInfo, tyInt))
else:
localError(c.config, strVal.info, errStringLiteralExpected)
else:
localError(c.config, v.info, errWrongNumberOfVariables)
of tyString, tyCstring:
strVal = v
x = counter
useAutoCounter = true
else:
if isOrdinalType(v.typ, allowEnumWithHoles=true):
x = toInt64(getOrdValue(v))
n[i][1] = newIntTypeNode(x, getSysType(c.graph, unknownLineInfo, tyInt))
else:
localError(c.config, v.info, errOrdinalTypeExpected % typeToString(v.typ, preferDesc))
if i != 1:
if x != counter:
needsReorder = true
incl(result.flags, tfEnumHasHoles)
e.ast = strVal # might be nil
counter = x
of nkSym:
e = n[i].sym
useAutoCounter = true
of nkIdent, nkAccQuoted:
e = newSymS(skEnumField, n[i], c)
identToReplace = addr n[i]
useAutoCounter = true
of nkPragmaExpr:
e = newSymS(skEnumField, n[i][0], c)
pragma(c, e, n[i][1], enumFieldPragmas)
identToReplace = addr n[i][0]
useAutoCounter = true
else:
illFormedAst(n[i], c.config)
if useAutoCounter:
while counter in counterSet and counter != high(typeof(counter)):
inc counter
counterSet.incl counter
elif counterSet.containsOrIncl(counter):
localError(c.config, n[i].info, errDuplicateAliasInEnumX % e.name.s)
e.typ = result
e.position = int(counter)
let symNode = newSymNode(e)
if identToReplace != nil and c.config.cmd notin cmdDocLike:
# A hack to produce documentation for enum fields.
identToReplace[] = symNode
if e.position == 0: hasNull = true
if result.sym != nil and sfExported in result.sym.flags:
e.flags.incl {sfUsed, sfExported}
result.n.add symNode
styleCheckDef(c, e)
onDef(e.info, e)
suggestSym(c.graph, e.info, e, c.graph.usageSym)
if sfGenSym notin e.flags:
if not isPure:
addInterfaceOverloadableSymAt(c, c.currentScope, e)
else:
declarePureEnumField(c, e)
if (let conflict = strTableInclReportConflict(symbols, e); conflict != nil):
wrongRedefinition(c, e.info, e.name.s, conflict.info)
if counter == high(typeof(counter)):
if i > 1 and result.n[i-2].sym.position == high(int):
localError(c.config, n[i].info, errOverflowInEnumX % [e.name.s, $high(typeof(counter))])
else:
inc(counter)
if needsReorder:
result.n.sons.sort(
proc (x, y: PNode): int =
result = cmp(x.sym.position, y.sym.position)
)
if isPure and sfExported in result.sym.flags:
addPureEnum(c, LazySym(sym: result.sym))
if tfNotNil in e.typ.flags and not hasNull:
result.flags.incl tfRequiresInit
setToStringProc(c.graph, result, genEnumToStrProc(result, n.info, c.graph, c.idgen))
proc semSet(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tySet, prev, c)
if n.len == 2 and n[1].kind != nkEmpty:
var base = semTypeNode(c, n[1], nil)
addSonSkipIntLit(result, base, c.idgen)
if base.kind in {tyGenericInst, tyAlias, tySink}: base = skipModifier(base)
if base.kind notin {tyGenericParam, tyGenericInvocation}:
if base.kind == tyForward:
c.skipTypes.add n
elif not isOrdinalType(base, allowEnumWithHoles = true):
localError(c.config, n.info, errOrdinalTypeExpected % typeToString(base, preferDesc))
elif lengthOrd(c.config, base) > MaxSetElements:
localError(c.config, n.info, errSetTooBig)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % "set")
addSonSkipIntLit(result, errorType(c), c.idgen)
proc semContainerArg(c: PContext; n: PNode, kindStr: string; result: PType) =
if n.len == 2:
var base = semTypeNode(c, n[1], nil)
if base.kind == tyVoid:
localError(c.config, n.info, errTIsNotAConcreteType % typeToString(base))
addSonSkipIntLit(result, base, c.idgen)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % kindStr)
addSonSkipIntLit(result, errorType(c), c.idgen)
proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string,
prev: PType): PType =
result = newOrPrevType(kind, prev, c)
semContainerArg(c, n, kindStr, result)
proc semVarargs(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tyVarargs, prev, c)
if n.len == 2 or n.len == 3:
var base = semTypeNode(c, n[1], nil)
addSonSkipIntLit(result, base, c.idgen)
if n.len == 3:
result.n = newIdentNode(considerQuotedIdent(c, n[2]), n[2].info)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % "varargs")
addSonSkipIntLit(result, errorType(c), c.idgen)
proc semVarOutType(c: PContext, n: PNode, prev: PType; flags: TTypeFlags): PType =
if n.len == 1:
result = newOrPrevType(tyVar, prev, c)
result.flags = flags
var base = semTypeNode(c, n[0], nil)
if base.kind == tyTypeDesc and not isSelf(base):
base = base[0]
if base.kind == tyVar:
localError(c.config, n.info, "type 'var var' is not allowed")
base = base[0]
addSonSkipIntLit(result, base, c.idgen)
else:
result = newConstraint(c, tyVar)
proc isRecursiveType(t: PType, cycleDetector: var IntSet): bool =
if t == nil:
return false
if cycleDetector.containsOrIncl(t.id):
return true
case t.kind
of tyAlias, tyGenericInst, tyDistinct:
return isRecursiveType(t.skipModifier, cycleDetector)
else:
return false
proc annotateClosureConv(n: PNode) =
case n.kind
of {nkNone..nkNilLit}:
discard
of nkTupleConstr:
if n.typ.kind == tyProc and n.typ.callConv == ccClosure and
n[0].typ.kind == tyProc and n[0].typ.callConv != ccClosure:
# restores `transf.generateThunk`
n[0] = newTreeIT(nkHiddenSubConv, n[0].info, n.typ,
newNodeI(nkEmpty, n[0].info), n[0])
n.transitionSonsKind(nkClosure)
n.flags.incl nfTransf
else:
for i in 0..<n.len:
annotateClosureConv(n[i])
proc fitDefaultNode(c: PContext, n: var PNode, expectedType: PType) =
inc c.inStaticContext
n = semConstExpr(c, n, expectedType = expectedType)
let oldType = n.typ
n.flags.incl nfSem
if expectedType != nil and oldType != expectedType:
n = fitNodeConsiderViewType(c, expectedType, n, n.info)
changeType(c, n, expectedType, true) # infer types for default fields value
# bug #22926; be cautious that it uses `semConstExpr` to
# evaulate the default fields; it's only natural to use
# `changeType` to infer types for constant values
# that's also the reason why we don't use `semExpr` to check
# the type since two overlapping error messages might be produced
annotateClosureConv(n)
# xxx any troubles related to defaults fields, consult `semConst` for a potential answer
if n.kind != nkNilLit:
typeAllowedCheck(c, n.info, n.typ, skConst, {taProcContextIsNotMacro, taIsDefaultField})
dec c.inStaticContext
proc isRecursiveType*(t: PType): bool =
# handle simple recusive types before typeFinalPass
var cycleDetector = initIntSet()
isRecursiveType(t, cycleDetector)
proc addSonSkipIntLitChecked(c: PContext; father, son: PType; it: PNode, id: IdGenerator) =
let s = son.skipIntLit(id)
father.add(s)
if isRecursiveType(s):
localError(c.config, it.info, "illegal recursion in type '" & typeToString(s) & "'")
else:
propagateToOwner(father, s)
proc semDistinct(c: PContext, n: PNode, prev: PType): PType =
if n.len == 0: return newConstraint(c, tyDistinct)
result = newOrPrevType(tyDistinct, prev, c)
addSonSkipIntLitChecked(c, result, semTypeNode(c, n[0], nil), n[0], c.idgen)
if n.len > 1: result.n = n[1]
proc semRangeAux(c: PContext, n: PNode, prev: PType): PType =
assert isRange(n)
checkSonsLen(n, 3, c.config)
result = newOrPrevType(tyRange, prev, c)
result.n = newNodeI(nkRange, n.info)
# always create a 'valid' range type, but overwrite it later
# because 'semExprWithType' can raise an exception. See bug #6895.
addSonSkipIntLit(result, errorType(c), c.idgen)
if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty):
localError(c.config, n.info, "range is empty")
var range: array[2, PNode]
# XXX this is still a hard compilation in a generic context, this can
# result in unresolved generic parameters being treated like real types
range[0] = semExprWithType(c, n[1], {efDetermineType})
range[1] = semExprWithType(c, n[2], {efDetermineType})
var rangeT: array[2, PType] = default(array[2, PType])
for i in 0..1:
rangeT[i] = range[i].typ.skipTypes({tyStatic}).skipIntLit(c.idgen)
let hasUnknownTypes = c.inGenericContext > 0 and
(rangeT[0].kind == tyFromExpr or rangeT[1].kind == tyFromExpr)
if not hasUnknownTypes:
if not sameType(rangeT[0].skipTypes({tyRange}), rangeT[1].skipTypes({tyRange})):
typeMismatch(c.config, n.info, rangeT[0], rangeT[1], n)
elif not isOrdinalType(rangeT[0]) and rangeT[0].kind notin {tyFloat..tyFloat128} or
rangeT[0].kind == tyBool:
localError(c.config, n.info, "ordinal or float type expected, but got " & typeToString(rangeT[0]))
elif enumHasHoles(rangeT[0]):
localError(c.config, n.info, "enum '$1' has holes" % typeToString(rangeT[0]))
for i in 0..1:
if hasUnresolvedArgs(c, range[i]):
result.n.add makeStaticExpr(c, range[i])
result.flags.incl tfUnresolved
else:
result.n.add semConstExpr(c, range[i])
if result.n[i].kind in {nkFloatLit..nkFloat64Lit} and result.n[i].floatVal.isNaN:
localError(c.config, n.info, "NaN is not a valid range " & (if i == 0: "start" else: "end"))
if weakLeValue(result.n[0], result.n[1]) == impNo:
localError(c.config, n.info, "range is empty")
result[0] = rangeT[0]
proc semRange(c: PContext, n: PNode, prev: PType): PType =
result = nil
if n.len == 2:
if isRange(n[1]):
result = semRangeAux(c, n[1], prev)
if not isDefined(c.config, "nimPreviewRangeDefault"):
let n = result.n
if n[0].kind in {nkCharLit..nkUInt64Lit} and n[0].intVal > 0:
incl(result.flags, tfRequiresInit)
elif n[1].kind in {nkCharLit..nkUInt64Lit} and n[1].intVal < 0:
incl(result.flags, tfRequiresInit)
elif n[0].kind in {nkFloatLit..nkFloat64Lit} and
n[0].floatVal > 0.0:
incl(result.flags, tfRequiresInit)
elif n[1].kind in {nkFloatLit..nkFloat64Lit} and
n[1].floatVal < 0.0:
incl(result.flags, tfRequiresInit)
else:
if n[1].kind == nkInfix and considerQuotedIdent(c, n[1][0]).s == "..<":
localError(c.config, n[0].info, "range types need to be constructed with '..', '..<' is not supported")
else:
localError(c.config, n[0].info, "expected range")
result = newOrPrevType(tyError, prev, c)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % "range")
result = newOrPrevType(tyError, prev, c)
proc semArrayIndexConst(c: PContext, e: PNode, info: TLineInfo): PType =
let x = semConstExpr(c, e)
if x.kind in {nkIntLit..nkUInt64Lit}:
result = makeRangeType(c, 0, x.intVal-1, info,
x.typ.skipTypes({tyTypeDesc}))
else:
result = x.typ.skipTypes({tyTypeDesc})
proc semArrayIndex(c: PContext, n: PNode): PType =
if isRange(n):
result = semRangeAux(c, n, nil)
elif n.kind == nkInfix and n[0].kind == nkIdent and n[0].ident.s == "..<":
result = errorType(c)
else:
# XXX this is still a hard compilation in a generic context, this can
# result in unresolved generic parameters being treated like real types
let e = semExprWithType(c, n, {efDetermineType})
if e.typ.kind == tyFromExpr:
result = makeRangeWithStaticExpr(c, e.typ.n)
elif e.kind in {nkIntLit..nkUInt64Lit}:
if e.intVal < 0:
if e.kind in {nkIntLit..nkInt64Lit}:
localError(c.config, n.info,
"Array length can't be negative, but was " & $e.intVal)
else:
localError(c.config, n.info,
"Array length can't exceed its maximum value (9223372036854775807), but was " & $cast[BiggestUInt](e.intVal))
result = makeRangeType(c, 0, e.intVal-1, n.info, e.typ)
elif e.kind == nkSym and (e.typ.kind == tyStatic or e.typ.kind == tyTypeDesc):
if e.typ.kind == tyStatic:
if e.sym.ast != nil:
return semArrayIndex(c, e.sym.ast)
if e.typ.skipModifier.kind != tyGenericParam and not isOrdinalType(e.typ.skipModifier):
let info = if n.safeLen > 1: n[1].info else: n.info
localError(c.config, info, errOrdinalTypeExpected % typeToString(e.typ, preferDesc))
result = makeRangeWithStaticExpr(c, e)
if c.inGenericContext > 0: result.flags.incl tfUnresolved
else:
result = e.typ.skipTypes({tyTypeDesc})
result.flags.incl tfImplicitStatic
elif e.kind in (nkCallKinds + {nkBracketExpr}) and hasUnresolvedArgs(c, e):
if not isOrdinalType(e.typ.skipTypes({tyStatic, tyAlias, tyGenericInst, tySink})):
localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(e.typ, preferDesc))
# This is an int returning call, depending on an
# yet unknown generic param (see tuninstantiatedgenericcalls).
# We are going to construct a range type that will be
# properly filled-out in semtypinst (see how tyStaticExpr
# is handled there).
result = makeRangeWithStaticExpr(c, e)
elif e.kind == nkIdent:
result = e.typ.skipTypes({tyTypeDesc})
else:
result = semArrayIndexConst(c, e, n.info)
#localError(c.config, n[1].info, errConstExprExpected)
proc semArray(c: PContext, n: PNode, prev: PType): PType =
var base: PType
if n.len == 3:
# 3 = length(array indx base)
let indx = semArrayIndex(c, n[1])
var indxB = indx
if indxB.kind in {tyGenericInst, tyAlias, tySink}: indxB = skipModifier(indxB)
if indxB.kind notin {tyGenericParam, tyStatic, tyFromExpr} and
tfUnresolved notin indxB.flags:
if not isOrdinalType(indxB):
localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(indxB, preferDesc))
elif enumHasHoles(indxB):
localError(c.config, n[1].info, "enum '$1' has holes" %
typeToString(indxB.skipTypes({tyRange})))
elif indxB.kind != tyRange and
lengthOrd(c.config, indxB) > high(uint16).int:
# assume range type is intentional
localError(c.config, n[1].info,
"index type '$1' for array is too large" % typeToString(indxB))
base = semTypeNode(c, n[2], nil)
# ensure we only construct a tyArray when there was no error (bug #3048):
# bug #6682: Do not propagate initialization requirements etc for the
# index type:
result = newOrPrevType(tyArray, prev, c, indx)
addSonSkipIntLit(result, base, c.idgen)
else:
localError(c.config, n.info, errArrayExpectsTwoTypeParams)
result = newOrPrevType(tyError, prev, c)
proc semIterableType(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tyIterable, prev, c)
if n.len == 2:
let base = semTypeNode(c, n[1], nil)
addSonSkipIntLit(result, base, c.idgen)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % "iterable")
result = newOrPrevType(tyError, prev, c)
proc semOrdinal(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tyOrdinal, prev, c)
if n.len == 2:
var base = semTypeNode(c, n[1], nil)
if base.kind != tyGenericParam:
if not isOrdinalType(base):
localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(base, preferDesc))
addSonSkipIntLit(result, base, c.idgen)
else:
localError(c.config, n.info, errXExpectsOneTypeParam % "ordinal")
result = newOrPrevType(tyError, prev, c)
proc semAnonTuple(c: PContext, n: PNode, prev: PType): PType =
if n.len == 0:
localError(c.config, n.info, errTypeExpected)
result = newOrPrevType(tyTuple, prev, c)
for it in n:
let t = semTypeNode(c, it, nil)
addSonSkipIntLitChecked(c, result, t, it, c.idgen)
proc firstRange(config: ConfigRef, t: PType): PNode =
if t.skipModifier().kind in tyFloat..tyFloat64:
result = newFloatNode(nkFloatLit, firstFloat(t))
else:
result = newIntNode(nkIntLit, firstOrd(config, t))
result.typ() = t
proc semTuple(c: PContext, n: PNode, prev: PType): PType =
var typ: PType
result = newOrPrevType(tyTuple, prev, c)
result.n = newNodeI(nkRecList, n.info)
var check = initIntSet()
var counter = 0
for i in ord(n.kind == nkBracketExpr)..<n.len:
var a = n[i]
if (a.kind != nkIdentDefs): illFormedAst(a, c.config)
checkMinSonsLen(a, 3, c.config)
var hasDefaultField = a[^1].kind != nkEmpty
if hasDefaultField:
typ = if a[^2].kind != nkEmpty: semTypeNode(c, a[^2], nil) else: nil
if c.inGenericContext > 0:
a[^1] = semExprWithType(c, a[^1], {efDetermineType, efAllowSymChoice}, typ)
if typ == nil:
typ = a[^1].typ
else:
fitDefaultNode(c, a[^1], typ)
typ = a[^1].typ.skipIntLit(c.idgen)
elif a[^2].kind != nkEmpty:
typ = semTypeNode(c, a[^2], nil)
if c.graph.config.isDefined("nimPreviewRangeDefault") and typ.skipTypes(abstractInst).kind == tyRange:
a[^1] = firstRange(c.config, typ)
hasDefaultField = true
else:
localError(c.config, a.info, errTypeExpected)
typ = errorType(c)
for j in 0..<a.len - 2:
var field = newSymG(skField, a[j], c)
field.typ = typ
field.position = counter
inc(counter)
if containsOrIncl(check, field.name.id):
localError(c.config, a[j].info, "attempt to redefine: '" & field.name.s & "'")
else:
let fSym = newSymNode(field)
if hasDefaultField:
fSym.sym.ast = a[^1]
fSym.sym.ast.flags.incl nfSkipFieldChecking
result.n.add fSym
addSonSkipIntLit(result, typ, c.idgen)
styleCheckDef(c, a[j].info, field)
onDef(field.info, field)
if result.n.len == 0: result.n = nil
if isRecursiveStructuralType(result):
localError(c.config, n.info, errIllegalRecursionInTypeX % typeToString(result))
proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym =
# identifier with visibility
if n.kind == nkPostfix:
if n.len == 2:
# for gensym'ed identifiers the identifier may already have been
# transformed to a symbol and we need to use that here:
result = newSymG(kind, n[1], c)
var v = considerQuotedIdent(c, n[0])
if sfExported in allowed and v.id == ord(wStar):
incl(result.flags, sfExported)
else:
if not (sfExported in allowed):
localError(c.config, n[0].info, errXOnlyAtModuleScope % "export")
else:
localError(c.config, n[0].info, errInvalidVisibilityX % renderTree(n[0]))
else:
result = nil
illFormedAst(n, c.config)
else:
result = newSymG(kind, n, c)
proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags, fromTopLevel = false): PSym =
if n.kind == nkPragmaExpr:
checkSonsLen(n, 2, c.config)
result = semIdentVis(c, kind, n[0], allowed)
case kind
of skType:
# process pragmas later, because result.typ has not been set yet
discard
of skField: pragma(c, result, n[1], fieldPragmas)
of skVar: pragma(c, result, n[1], varPragmas)
of skLet: pragma(c, result, n[1], letPragmas)
of skConst: pragma(c, result, n[1], constPragmas)
else: discard
else:
result = semIdentVis(c, kind, n, allowed)
let invalidPragmasForPush = if fromTopLevel and sfWasGenSym notin result.flags:
{}
else:
{wExportc, wExportCpp, wDynlib}
case kind
of skField: implicitPragmas(c, result, n.info, fieldPragmas)
of skVar: implicitPragmas(c, result, n.info, varPragmas-invalidPragmasForPush)
of skLet: implicitPragmas(c, result, n.info, letPragmas-invalidPragmasForPush)
of skConst: implicitPragmas(c, result, n.info, constPragmas-invalidPragmasForPush)
else: discard
proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) =
let ex = t[branchIndex][currentEx].skipConv
for i in 1..branchIndex:
for j in 0..<t[i].len - 1:
if i == branchIndex and j == currentEx: break
if overlap(t[i][j].skipConv, ex):
localError(c.config, ex.info, errDuplicateCaseLabel)
proc semBranchRange(c: PContext, n, a, b: PNode, covered: var Int128): PNode =
checkMinSonsLen(n, 1, c.config)
let ac = semConstExpr(c, a)
let bc = semConstExpr(c, b)
if ac.kind in {nkStrLit..nkTripleStrLit} or bc.kind in {nkStrLit..nkTripleStrLit}:
localError(c.config, b.info, "range of string is invalid")
var at = fitNode(c, n[0].typ, ac, ac.info).skipConvTakeType
var bt = fitNode(c, n[0].typ, bc, bc.info).skipConvTakeType
# the calls to fitNode may introduce calls to converters
# mirrored with semCaseBranch for single elements
if at.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
at = semConstExpr(c, at)
if bt.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
bt = semConstExpr(c, bt)
result = newNodeI(nkRange, a.info)
result.add(at)
result.add(bt)
if emptyRange(ac, bc): localError(c.config, b.info, "range is empty")
else: covered = covered + getOrdValue(bc) + 1 - getOrdValue(ac)
proc semCaseBranchRange(c: PContext, t, b: PNode,
covered: var Int128): PNode =
checkSonsLen(b, 3, c.config)
result = semBranchRange(c, t, b[1], b[2], covered)
proc semCaseBranchSetElem(c: PContext, n, b: PNode,
covered: var Int128): PNode =
if isRange(b):
checkSonsLen(b, 3, c.config)
result = semBranchRange(c, n, b[1], b[2], covered)
elif b.kind == nkRange:
checkSonsLen(b, 2, c.config)
result = semBranchRange(c, n, b[0], b[1], covered)
else:
result = fitNode(c, n[0].typ, b, b.info)
inc(covered)
proc semCaseBranch(c: PContext, n, branch: PNode, branchIndex: int,
covered: var Int128) =
let lastIndex = branch.len - 2
for i in 0..lastIndex:
var b = branch[i]
if b.kind == nkRange:
branch[i] = b
# same check as in semBranchRange for exhaustiveness
covered = covered + getOrdValue(b[1]) + 1 - getOrdValue(b[0])
elif isRange(b):
branch[i] = semCaseBranchRange(c, n, b, covered)
else:
# constant sets and arrays are allowed:
# set expected type to selector type for type inference
# even if it can be a different type like a set or array
var r = semConstExpr(c, b, expectedType = n[0].typ)
if r.kind in {nkCurly, nkBracket} and r.len == 0 and branch.len == 2:
# discarding ``{}`` and ``[]`` branches silently
delSon(branch, 0)
return
elif r.kind notin {nkCurly, nkBracket} or r.len == 0:
checkMinSonsLen(n, 1, c.config)
var tmp = fitNode(c, n[0].typ, r, r.info)
# the call to fitNode may introduce a call to a converter
# mirrored with semBranchRange
if tmp.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
tmp = semConstExpr(c, tmp)
branch[i] = skipConv(tmp)
inc(covered)
else:
if r.kind == nkCurly:
r = deduplicate(c.config, r)
# first element is special and will overwrite: branch[i]:
branch[i] = semCaseBranchSetElem(c, n, r[0], covered)
# other elements have to be added to ``branch``
for j in 1..<r.len:
branch.add(semCaseBranchSetElem(c, n, r[j], covered))
# caution! last son of branch must be the actions to execute:
swap(branch[^2], branch[^1])
checkForOverlap(c, n, i, branchIndex)
# Elements added above needs to be checked for overlaps.
for i in lastIndex.succ..<branch.len - 1:
checkForOverlap(c, n, i, branchIndex)
proc toCover(c: PContext, t: PType): Int128 =
let t2 = skipTypes(t, abstractVarRange-{tyTypeDesc})
if t2.kind == tyEnum and enumHasHoles(t2):
result = toInt128(t2.n.len)
else:
# <----
let t = skipTypes(t, abstractVar-{tyTypeDesc})
# XXX: hack incoming. lengthOrd is incorrect for 64bit integer
# types because it doesn't uset Int128 yet. This entire branching
# should be removed as soon as lengthOrd uses int128.
if t.kind in {tyInt64, tyUInt64}:
result = toInt128(1) shl 64
elif t.kind in {tyInt, tyUInt}:
result = toInt128(1) shl (c.config.target.intSize * 8)
else:
result = lengthOrd(c.config, t)
proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
father: PNode, rectype: PType, hasCaseFields = false)
proc getIntSetOfType(c: PContext, t: PType): IntSet =
result = initIntSet()
if t.enumHasHoles:
let t = t.skipTypes(abstractRange)
for field in t.n.sons:
result.incl(field.sym.position)
else:
assert(lengthOrd(c.config, t) <= BiggestInt(MaxSetElements))
for i in toInt64(firstOrd(c.config, t))..toInt64(lastOrd(c.config, t)):
result.incl(i.int)
iterator processBranchVals(b: PNode): int =
assert b.kind in {nkOfBranch, nkElifBranch, nkElse}
if b.kind == nkOfBranch:
for i in 0..<b.len-1:
if b[i].kind in {nkIntLit, nkCharLit}:
yield b[i].intVal.int
elif b[i].kind == nkRange:
for i in b[i][0].intVal..b[i][1].intVal:
yield i.int
proc renderAsType(vals: IntSet, t: PType): string =
result = "{"
let t = t.skipTypes(abstractRange)
var enumSymOffset = 0
var i = 0
for val in vals:
if result.len > 1:
result &= ", "
case t.kind:
of tyEnum, tyBool:
while t.n[enumSymOffset].sym.position < val: inc(enumSymOffset)
result &= t.n[enumSymOffset].sym.name.s
of tyChar:
result.addQuoted(char(val))
else:
if i == 64:
result &= "omitted $1 values..." % $(vals.len - i)
break
else:
result &= $val
inc(i)
result &= "}"
proc formatMissingEnums(c: PContext, n: PNode): string =
var coveredCases = initIntSet()
for i in 1..<n.len:
for val in processBranchVals(n[i]):
coveredCases.incl val
result = (c.getIntSetOfType(n[0].typ) - coveredCases).renderAsType(n[0].typ)
proc semRecordCase(c: PContext, n: PNode, check: var IntSet, pos: var int,
father: PNode, rectype: PType) =
var a = copyNode(n)
checkMinSonsLen(n, 2, c.config)
semRecordNodeAux(c, n[0], check, pos, a, rectype, hasCaseFields = true)
if a[0].kind != nkSym:
internalError(c.config, "semRecordCase: discriminant is no symbol")
return
incl(a[0].sym.flags, sfDiscriminant)
var covered = toInt128(0)
var chckCovered = false
var typ = skipTypes(a[0].typ, abstractVar-{tyTypeDesc})
const shouldChckCovered = {tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt32, tyBool}
case typ.kind
of shouldChckCovered:
chckCovered = true
of tyError:
discard
of tyRange:
if skipTypes(typ.elementType, abstractInst).kind in shouldChckCovered:
chckCovered = true
of tyForward:
errorUndeclaredIdentifier(c, n[0].info, typ.sym.name.s)
elif not isOrdinalType(typ):
localError(c.config, n[0].info, "selector must be of an ordinal type")
if firstOrd(c.config, typ) != 0:
localError(c.config, n.info, "low(" & $a[0].sym.name.s &
") must be 0 for discriminant")
elif lengthOrd(c.config, typ) > 0x00007FFF:
localError(c.config, n.info, "len($1) must be less than 32768" % a[0].sym.name.s)
for i in 1..<n.len:
var b = copyTree(n[i])
a.add b
case n[i].kind
of nkOfBranch:
checkMinSonsLen(b, 2, c.config)
semCaseBranch(c, a, b, i, covered)
of nkElse:
checkSonsLen(b, 1, c.config)
if chckCovered and covered == toCover(c, a[0].typ):
message(c.config, b.info, warnUnreachableElse)
chckCovered = false
else: illFormedAst(n, c.config)
delSon(b, b.len - 1)
semRecordNodeAux(c, lastSon(n[i]), check, pos, b, rectype, hasCaseFields = true)
if chckCovered and covered != toCover(c, a[0].typ):
if a[0].typ.skipTypes(abstractRange).kind == tyEnum:
localError(c.config, a.info, "not all cases are covered; missing: $1" %
formatMissingEnums(c, a))
else:
localError(c.config, a.info, "not all cases are covered")
father.add a
proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
father: PNode, rectype: PType, hasCaseFields: bool) =
if n == nil: return
case n.kind
of nkRecWhen:
var a = copyTree(n)
var branch: PNode = nil # the branch to take
var cannotResolve = false # no branch should be taken
for i in 0..<a.len:
var it = a[i]
if it == nil: illFormedAst(n, c.config)
var idx = 1
case it.kind
of nkElifBranch:
checkSonsLen(it, 2, c.config)
if c.inGenericContext == 0:
var e = semConstBoolExpr(c, it[0])
if e.kind != nkIntLit: discard "don't report followup error"
elif e.intVal != 0 and branch == nil: branch = it[1]
else:
# XXX this is still a hard compilation in a generic context, this can
# result in unresolved generic parameters being treated like real types
let e = semExprWithType(c, it[0], {efDetermineType})
if e.typ.kind == tyFromExpr:
it[0] = makeStaticExpr(c, e)
cannotResolve = true
else:
it[0] = forceBool(c, e)
let val = getConstExpr(c.module, it[0], c.idgen, c.graph)
if val == nil or val.kind != nkIntLit:
cannotResolve = true
elif not cannotResolve and val.intVal != 0 and branch == nil:
branch = it[1]
of nkElse:
checkSonsLen(it, 1, c.config)
if branch == nil and not cannotResolve: branch = it[0]
idx = 0
else: illFormedAst(n, c.config)
if c.inGenericContext > 0 and cannotResolve:
# use a new check intset here for each branch:
var newCheck: IntSet = check
var newPos = pos
var newf = newNodeI(nkRecList, n.info)
semRecordNodeAux(c, it[idx], newCheck, newPos, newf, rectype, hasCaseFields)
it[idx] = if newf.len == 1: newf[0] else: newf
if branch != nil:
semRecordNodeAux(c, branch, check, pos, father, rectype, hasCaseFields)
elif cannotResolve:
father.add a
elif father.kind in {nkElse, nkOfBranch}:
father.add newNodeI(nkRecList, n.info)
of nkRecCase:
semRecordCase(c, n, check, pos, father, rectype)
of nkNilLit:
if father.kind != nkRecList: father.add newNodeI(nkRecList, n.info)
of nkRecList:
# attempt to keep the nesting at a sane level:
var a = if father.kind == nkRecList: father else: copyNode(n)
for i in 0..<n.len:
semRecordNodeAux(c, n[i], check, pos, a, rectype, hasCaseFields)
if a != father: father.add a
of nkIdentDefs:
checkMinSonsLen(n, 3, c.config)
var a: PNode
if father.kind != nkRecList and n.len >= 4: a = newNodeI(nkRecList, n.info)
else: a = newNodeI(nkEmpty, n.info)
var typ: PType
var hasDefaultField = n[^1].kind != nkEmpty
if hasDefaultField:
typ = if n[^2].kind != nkEmpty: semTypeNode(c, n[^2], nil) else: nil
if c.inGenericContext > 0:
n[^1] = semExprWithType(c, n[^1], {efDetermineType, efAllowSymChoice}, typ)
if typ == nil:
typ = n[^1].typ
else:
fitDefaultNode(c, n[^1], typ)
typ = n[^1].typ.skipIntLit(c.idgen)
propagateToOwner(rectype, typ)
elif n[^2].kind == nkEmpty:
localError(c.config, n.info, errTypeExpected)
typ = errorType(c)
else:
typ = semTypeNode(c, n[^2], nil)
if c.graph.config.isDefined("nimPreviewRangeDefault") and typ.skipTypes(abstractInst).kind == tyRange:
n[^1] = firstRange(c.config, typ)
hasDefaultField = true
propagateToOwner(rectype, typ)
var fieldOwner = if c.inGenericContext > 0: c.getCurrOwner
else: rectype.sym
for i in 0..<n.len-2:
var f = semIdentWithPragma(c, skField, n[i], {sfExported})
let info = if n[i].kind == nkPostfix:
n[i][1].info
else:
n[i].info
suggestSym(c.graph, info, f, c.graph.usageSym)
f.typ = typ
f.position = pos
f.options = c.config.options
if fieldOwner != nil and
{sfImportc, sfExportc} * fieldOwner.flags != {} and
not hasCaseFields and f.loc.snippet == "":
f.loc.snippet = rope(f.name.s)
f.flags.incl {sfImportc, sfExportc} * fieldOwner.flags
inc(pos)
if containsOrIncl(check, f.name.id):
localError(c.config, info, "attempt to redefine: '" & f.name.s & "'")
let fSym = newSymNode(f)
if hasDefaultField:
fSym.sym.ast = n[^1]
fSym.sym.ast.flags.incl nfSkipFieldChecking
if a.kind == nkEmpty: father.add fSym
else: a.add fSym
styleCheckDef(c, f)
onDef(f.info, f)
if a.kind != nkEmpty: father.add a
of nkSym:
# This branch only valid during generic object
# inherited from generic/partial specialized parent second check.
# There is no branch validity check here
if containsOrIncl(check, n.sym.name.id):
localError(c.config, n.info, "attempt to redefine: '" & n.sym.name.s & "'")
father.add n
of nkEmpty:
if father.kind in {nkElse, nkOfBranch}:
father.add n
else: illFormedAst(n, c.config)
proc addInheritedFieldsAux(c: PContext, check: var IntSet, pos: var int,
n: PNode) =
case n.kind
of nkRecCase:
if (n[0].kind != nkSym): internalError(c.config, n.info, "addInheritedFieldsAux")
addInheritedFieldsAux(c, check, pos, n[0])
for i in 1..<n.len:
case n[i].kind
of nkOfBranch, nkElse:
addInheritedFieldsAux(c, check, pos, lastSon(n[i]))
else: internalError(c.config, n.info, "addInheritedFieldsAux(record case branch)")
of nkRecList, nkRecWhen, nkElifBranch, nkElse:
for i in int(n.kind == nkElifBranch)..<n.len:
addInheritedFieldsAux(c, check, pos, n[i])
of nkSym:
incl(check, n.sym.name.id)
inc(pos)
else: internalError(c.config, n.info, "addInheritedFieldsAux()")
proc skipGenericInvocation(t: PType): PType {.inline.} =
result = t
if result.kind == tyGenericInvocation:
result = result[0]
while result.kind in {tyGenericInst, tyGenericBody, tyRef, tyPtr, tyAlias, tySink, tyOwned}:
result = skipModifier(result)
proc tryAddInheritedFields(c: PContext, check: var IntSet, pos: var int,
obj: PType, n: PNode, isPartial = false, innerObj: PType = nil): bool =
if ((not isPartial) and (obj.kind notin {tyObject, tyGenericParam} or tfFinal in obj.flags)) or
(innerObj != nil and obj.sym.id == innerObj.sym.id):
localError(c.config, n.info, "Cannot inherit from: '" & $obj & "'")
result = false
elif obj.kind == tyObject:
result = true
if (obj.len > 0) and (obj[0] != nil):
result = result and tryAddInheritedFields(c, check, pos, obj[0].skipGenericInvocation, n, false, obj)
addInheritedFieldsAux(c, check, pos, obj.n)
else:
result = true
proc semObjectNode(c: PContext, n: PNode, prev: PType; flags: TTypeFlags): PType =
result = nil
if n.len == 0:
return newConstraint(c, tyObject)
var check = initIntSet()
var pos = 0
var base, realBase: PType = nil
# n[0] contains the pragmas (if any). We process these later...
checkSonsLen(n, 3, c.config)
if n[1].kind != nkEmpty:
realBase = semTypeNode(c, n[1][0], nil)
base = skipTypesOrNil(realBase, skipPtrs)
if base.isNil:
localError(c.config, n.info, "cannot inherit from a type that is not an object type")
else:
var concreteBase = skipGenericInvocation(base)
if concreteBase.kind in {tyObject, tyGenericParam,
tyGenericInvocation} and tfFinal notin concreteBase.flags:
# we only check fields duplication of object inherited from
# concrete object. If inheriting from generic object or partial
# specialized object, there will be second check after instantiation
# located in semGeneric.
if concreteBase.kind == tyObject:
if concreteBase.sym != nil and concreteBase.sym.magic == mException and
sfSystemModule notin c.module.flags:
message(c.config, n.info, warnInheritFromException, "")
if not tryAddInheritedFields(c, check, pos, concreteBase, n):
return newType(tyError, c.idgen, result.owner)
elif concreteBase.kind == tyForward:
c.skipTypes.add n #we retry in the final pass
else:
if concreteBase.kind != tyError:
localError(c.config, n[1].info, "inheritance only works with non-final objects; " &
"for " & typeToString(realBase) & " to be inheritable it must be " &
"'object of RootObj' instead of 'object'")
base = nil
realBase = nil
if n.kind != nkObjectTy: internalError(c.config, n.info, "semObjectNode")
result = newOrPrevType(tyObject, prev, c)
rawAddSon(result, realBase)
if realBase == nil and tfInheritable in flags:
result.flags.incl tfInheritable
if tfAcyclic in flags: result.flags.incl tfAcyclic
if result.n.isNil:
result.n = newNodeI(nkRecList, n.info)
else:
# partial object so add things to the check
if not tryAddInheritedFields(c, check, pos, result, n, isPartial = true):
return newType(tyError, c.idgen, result.owner)
semRecordNodeAux(c, n[2], check, pos, result.n, result)
if n[0].kind != nkEmpty:
# dummy symbol for `pragma`:
var s = newSymS(skType, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
s.typ = result
pragma(c, s, n[0], typePragmas)
if base == nil and tfInheritable notin result.flags:
incl(result.flags, tfFinal)
if c.inGenericContext == 0 and computeRequiresInit(c, result):
result.flags.incl tfRequiresInit
proc semAnyRef(c: PContext; n: PNode; kind: TTypeKind; prev: PType): PType =
if n.len < 1:
result = newConstraint(c, kind)
else:
let isCall = int ord(n.kind in nkCallKinds+{nkBracketExpr})
let n = if n[0].kind == nkBracket: n[0] else: n
checkMinSonsLen(n, 1, c.config)
let body = n.lastSon
var t = if prev != nil and prev.kind != tyGenericBody and body.kind == nkObjectTy:
semObjectNode(c, body, nil, prev.flags)
else:
semTypeNode(c, body, nil)
if t.kind == tyTypeDesc and tfUnresolved notin t.flags:
t = t.base
if t.kind == tyVoid:
localError(c.config, n.info, "type '$1 void' is not allowed" % kind.toHumanStr)
result = newOrPrevType(kind, prev, c)
var isNilable = false
var wrapperKind = tyNone
# check every except the last is an object:
for i in isCall..<n.len-1:
let ni = n[i]
# echo "semAnyRef ", "n: ", n, "i: ", i, "ni: ", ni
if ni.kind == nkNilLit:
isNilable = true
else:
let region = semTypeNode(c, ni, nil)
if region.kind in {tyOwned, tySink}:
wrapperKind = region.kind
elif region.skipTypes({tyGenericInst, tyAlias, tySink}).kind notin {
tyError, tyObject}:
message c.config, n[i].info, errGenerated, "region needs to be an object type"
addSonSkipIntLit(result, region, c.idgen)
else:
message(c.config, n.info, warnDeprecated, "region for pointer types is deprecated")
addSonSkipIntLit(result, region, c.idgen)
addSonSkipIntLit(result, t, c.idgen)
if tfPartial in result.flags:
if result.elementType.kind == tyObject: incl(result.elementType.flags, tfPartial)
# if not isNilable: result.flags.incl tfNotNil
case wrapperKind
of tyOwned:
if optOwnedRefs in c.config.globalOptions:
let t = newTypeS(tyOwned, c, result)
t.flags.incl tfHasOwned
result = t
of tySink:
let t = newTypeS(tySink, c, result)
result = t
else: discard
if result.kind == tyRef and
c.config.selectedGC in {gcArc, gcOrc, gcAtomicArc} and
tfTriggersCompileTime notin result.flags:
result.flags.incl tfHasAsgn
proc findEnforcedStaticType(t: PType): PType =
# This handles types such as `static[T] and Foo`,
# which are subset of `static[T]`, hence they could
# be treated in the same way
result = nil
if t == nil: return nil
if t.kind == tyStatic: return t
if t.kind == tyAnd:
for s in t.kids:
let t = findEnforcedStaticType(s)
if t != nil: return t
proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) =
if kind == skMacro:
let staticType = findEnforcedStaticType(param.typ)
if staticType != nil:
var a = copySym(param, c.idgen)
a.typ = staticType.base
addDecl(c, a)
#elif param.typ != nil and param.typ.kind == tyTypeDesc:
# addDecl(c, param)
else:
# within a macro, every param has the type NimNode!
let nn = getSysSym(c.graph, param.info, "NimNode")
var a = copySym(param, c.idgen)
a.typ = nn.typ
addDecl(c, a)
else:
if sfGenSym in param.flags:
# bug #XXX, fix the gensym'ed parameters owner:
if param.owner == nil:
setOwner(param, getCurrOwner(c))
else: addDecl(c, param)
template shouldHaveMeta(t) =
internalAssert c.config, tfHasMeta in t.flags
# result.lastSon.flags.incl tfHasMeta
proc addImplicitGeneric(c: PContext; typeClass: PType, typId: PIdent;
info: TLineInfo; genericParams: PNode;
paramName: string): PType =
if genericParams == nil:
# This happens with anonymous proc types appearing in signatures
# XXX: we need to lift these earlier
return
let finalTypId = if typId != nil: typId
else: getIdent(c.cache, paramName & ":type")
# is this a bindOnce type class already present in the param list?
for i in 0..<genericParams.len:
if genericParams[i].sym.name.id == finalTypId.id:
return genericParams[i].typ
let owner = if typeClass.sym != nil: typeClass.sym
else: getCurrOwner(c)
var s = newSym(skType, finalTypId, c.idgen, owner, info)
if sfExplain in owner.flags: s.flags.incl sfExplain
if typId == nil: s.flags.incl(sfAnon)
s.linkTo(typeClass)
typeClass.flags.incl tfImplicitTypeParam
s.position = genericParams.len
genericParams.add newSymNode(s)
result = typeClass
addDecl(c, s)
proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode,
paramType: PType, paramName: string,
info: TLineInfo, anon = false): PType =
if paramType == nil: return # (e.g. proc return type)
template recurse(typ: PType, anonFlag = false): untyped =
liftParamType(c, procKind, genericParams, typ, paramName, info, anonFlag)
var paramTypId = if not anon and paramType.sym != nil: paramType.sym.name
else: nil
case paramType.kind
of tyAnything:
result = addImplicitGeneric(c, newTypeS(tyGenericParam, c), nil, info, genericParams, paramName)
of tyStatic:
if paramType.base.kind != tyNone and paramType.n != nil:
# this is a concrete static value
return
if tfUnresolved in paramType.flags: return # already lifted
let lifted = recurse(paramType.base)
let base = (if lifted != nil: lifted else: paramType.base)
if base.isMetaType and procKind == skMacro:
localError(c.config, info, errMacroBodyDependsOnGenericTypes % paramName)
result = addImplicitGeneric(c, newTypeS(tyStatic, c, base),
paramTypId, info, genericParams, paramName)
if result != nil: result.flags.incl({tfHasStatic, tfUnresolved})
of tyTypeDesc:
if tfUnresolved notin paramType.flags:
# naked typedescs are not bindOnce types
if paramType.base.kind == tyNone and paramTypId != nil and
(paramTypId.id == getIdent(c.cache, "typedesc").id or
paramTypId.id == getIdent(c.cache, "type").id):
# XXX Why doesn't this check for tyTypeDesc instead?
paramTypId = nil
let t = newTypeS(tyTypeDesc, c, paramType.base)
incl t.flags, tfCheckedForDestructor
result = addImplicitGeneric(c, t, paramTypId, info, genericParams, paramName)
else:
result = nil
of tyDistinct:
if paramType.len == 1:
# disable the bindOnce behavior for the type class
result = recurse(paramType.base, true)
else:
result = nil
of tyTuple:
result = nil
for i in 0..<paramType.len:
let t = recurse(paramType[i])
if t != nil:
paramType[i] = t
result = paramType
of tyAlias, tyOwned:
result = recurse(paramType.base)
of tySequence, tySet, tyArray, tyOpenArray,
tyVar, tyLent, tyPtr, tyRef, tyProc, tySink:
# XXX: this is a bit strange, but proc(s: seq)
# produces tySequence(tyGenericParam, tyNone).
# This also seems to be true when creating aliases
# like: type myseq = distinct seq.
# Maybe there is another better place to associate
# the seq type class with the seq identifier.
if paramType.kind == tySequence and paramType.elementType.kind == tyNone:
let typ = newTypeS(tyBuiltInTypeClass, c,
newTypeS(paramType.kind, c))
result = addImplicitGeneric(c, typ, paramTypId, info, genericParams, paramName)
else:
result = nil
for i in 0..<paramType.len:
if paramType[i] == paramType:
globalError(c.config, info, errIllegalRecursionInTypeX % typeToString(paramType))
var lifted = recurse(paramType[i])
if lifted != nil:
paramType[i] = lifted
result = paramType
of tyGenericBody:
result = newTypeS(tyGenericInvocation, c)
result.rawAddSon(paramType)
for i in 0..<paramType.len - 1:
if paramType[i].kind == tyStatic:
var staticCopy = paramType[i].exactReplica
staticCopy.flags.incl tfInferrableStatic
result.rawAddSon staticCopy
else:
result.rawAddSon newTypeS(tyAnything, c)
if paramType.typeBodyImpl.kind == tyUserTypeClass:
result.kind = tyUserTypeClassInst
result.rawAddSon paramType.typeBodyImpl
return addImplicitGeneric(c, result, paramTypId, info, genericParams, paramName)
let x = instGenericContainer(c, paramType.sym.info, result,
allowMetaTypes = true)
result = newTypeS(tyCompositeTypeClass, c)
result.rawAddSon paramType
result.rawAddSon x
result = addImplicitGeneric(c, result, paramTypId, info, genericParams, paramName)
of tyGenericInst:
result = nil
if paramType.skipModifier.kind == tyUserTypeClass:
var cp = copyType(paramType, c.idgen, getCurrOwner(c))
copyTypeProps(c.graph, c.idgen.module, cp, paramType)
cp.kind = tyUserTypeClassInst
return addImplicitGeneric(c, cp, paramTypId, info, genericParams, paramName)
for i in 1..<paramType.len-1:
var lifted = recurse(paramType[i])
if lifted != nil:
paramType[i] = lifted
result = paramType
result.last.shouldHaveMeta
if paramType.isConcept:
return addImplicitGeneric(c, paramType, paramTypId, info, genericParams, paramName)
else:
let liftBody = recurse(paramType.skipModifier, true)
if liftBody != nil:
result = liftBody
result.flags.incl tfHasMeta
#result.shouldHaveMeta
of tyGenericInvocation:
result = nil
for i in 1..<paramType.len:
#if paramType[i].kind != tyTypeDesc:
let lifted = recurse(paramType[i])
if lifted != nil: paramType[i] = lifted
let body = paramType.base
if body.kind in {tyForward, tyError}:
# this may happen for proc type appearing in a type section
# before one of its param types
return
if body.last.kind == tyUserTypeClass:
let expanded = instGenericContainer(c, info, paramType,
allowMetaTypes = true)
result = recurse(expanded, true)
of tyUserTypeClasses, tyBuiltInTypeClass, tyCompositeTypeClass,
tyAnd, tyOr, tyNot, tyConcept:
result = addImplicitGeneric(c,
copyType(paramType, c.idgen, getCurrOwner(c)), paramTypId,
info, genericParams, paramName)
of tyGenericParam:
result = nil
markUsed(c, paramType.sym.info, paramType.sym)
onUse(paramType.sym.info, paramType.sym)
if tfWildcard in paramType.flags:
paramType.flags.excl tfWildcard
paramType.sym.transitionGenericParamToType()
else: result = nil
proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType =
## Semchecks the type of parameters.
if n.kind == nkCurlyExpr:
result = semTypeNode(c, n[0], nil)
constraint = semNodeKindConstraints(n, c.config, 1)
elif n.kind == nkCall and
n[0].kind in {nkIdent, nkSym, nkOpenSymChoice, nkClosedSymChoice, nkOpenSym} and
considerQuotedIdent(c, n[0]).s == "{}":
result = semTypeNode(c, n[1], nil)
constraint = semNodeKindConstraints(n, c.config, 2)
else:
result = semTypeNode(c, n, nil)
proc newProcType(c: PContext; info: TLineInfo; prev: PType = nil): PType =
result = newOrPrevType(tyProc, prev, c)
result.callConv = lastOptionEntry(c).defaultCC
result.n = newNodeI(nkFormalParams, info)
rawAddSon(result, nil) # return type
# result.n[0] used to be `nkType`, but now it's `nkEffectList` because
# the effects are now stored in there too ... this is a bit hacky, but as
# usual we desperately try to save memory:
result.n.add newNodeI(nkEffectList, info)
proc isMagic(sym: PSym): bool =
if sym.ast == nil: return false
let nPragmas = sym.ast[pragmasPos]
return hasPragma(nPragmas, wMagic)
proc semProcTypeNode(c: PContext, n, genericParams: PNode,
prev: PType, kind: TSymKind; isType=false): PType =
# for historical reasons (code grows) this is invoked for parameter
# lists too and then 'isType' is false.
checkMinSonsLen(n, 1, c.config)
result = newProcType(c, n.info, prev)
var check = initIntSet()
var counter = 0
template isCurrentlyGeneric: bool =
# genericParams might update as implicit generic params are added
genericParams != nil and genericParams.len > 0
for i in 1..<n.len:
var a = n[i]
if a.kind != nkIdentDefs:
# for some generic instantiations the passed ':env' parameter
# for closures has already been produced (see bug #898). We simply
# skip this parameter here. It'll then be re-generated in another LL
# pass over this instantiation:
if a.kind == nkSym and sfFromGeneric in a.sym.flags: continue
illFormedAst(a, c.config)
checkMinSonsLen(a, 3, c.config)
var
typ: PType = nil
def: PNode = nil
constraint: PNode = nil
hasType = a[^2].kind != nkEmpty
hasDefault = a[^1].kind != nkEmpty
if hasType:
let isGeneric = isCurrentlyGeneric()
inc c.inGenericContext, ord(isGeneric)
typ = semParamType(c, a[^2], constraint)
dec c.inGenericContext, ord(isGeneric)
# TODO: Disallow typed/untyped in procs in the compiler/stdlib
if kind in {skProc, skFunc} and (typ.kind == tyTyped or typ.kind == tyUntyped):
if not isMagic(getCurrOwner(c)):
localError(c.config, a[^2].info, "'" & typ.sym.name.s & "' is only allowed in templates and macros or magic procs")
if hasDefault:
def = a[^1]
if a.len > 3:
var msg = ""
for j in 0 ..< a.len - 2:
if msg.len != 0: msg.add(", ")
msg.add($a[j])
msg.add(" all have default value '")
msg.add(def.renderTree)
msg.add("', this may be unintentional, " &
"either use ';' (semicolon) or explicitly write each default value")
message(c.config, a.info, warnImplicitDefaultValue, msg)
block determineType:
var canBeVoid = false
if kind == skTemplate:
if typ != nil and typ.kind == tyUntyped:
# don't do any typechecking or assign a type for
# `untyped` parameter default value
break determineType
elif hasUnresolvedArgs(c, def):
# template default value depends on other parameter
# don't do any typechecking
def.typ() = makeTypeFromExpr(c, def.copyTree)
break determineType
elif typ != nil and typ.kind == tyTyped:
canBeVoid = true
let isGeneric = isCurrentlyGeneric()
inc c.inGenericContext, ord(isGeneric)
if canBeVoid:
def = semExpr(c, def, {efDetermineType, efAllowSymChoice}, typ)
else:
def = semExprWithType(c, def, {efDetermineType, efAllowSymChoice}, typ)
dec c.inGenericContext, ord(isGeneric)
if def.referencesAnotherParam(getCurrOwner(c)):
def.flags.incl nfDefaultRefsParam
if typ == nil:
typ = def.typ
if isEmptyContainer(typ):
localError(c.config, a.info, "cannot infer the type of parameter '" & $a[0] & "'")
if typ.kind == tyTypeDesc:
# consider a proc such as:
# proc takesType(T = int)
# a naive analysis may conclude that the proc type is type[int]
# which will prevent other types from matching - clearly a very
# surprising behavior. We must instead fix the expected type of
# the proc to be the unbound typedesc type:
typ = newTypeS(tyTypeDesc, c, newTypeS(tyNone, c))
typ.flags.incl tfCheckedForDestructor
elif def.typ != nil and def.typ.kind != tyFromExpr: # def.typ can be void
# if def.typ != nil and def.typ.kind != tyNone:
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if not containsGenericType(typ):
# check type compatibility between def.typ and typ:
def = fitNode(c, typ, def, def.info)
elif typ.kind == tyStatic:
def = semConstExpr(c, def)
def = fitNode(c, typ, def, def.info)
if not hasType and not hasDefault:
if isType: localError(c.config, a.info, "':' expected")
if kind in {skTemplate, skMacro}:
typ = newTypeS(tyUntyped, c)
elif isRecursiveStructuralType(typ):
localError(c.config, a[^2].info, errIllegalRecursionInTypeX % typeToString(typ))
elif skipTypes(typ, {tyGenericInst, tyAlias, tySink}).kind == tyVoid:
continue
for j in 0..<a.len-2:
var arg = newSymG(skParam, if a[j].kind == nkPragmaExpr: a[j][0] else: a[j], c)
if arg.name.id == ord(wUnderscore):
arg.flags.incl(sfGenSym)
elif containsOrIncl(check, arg.name.id):
localError(c.config, a[j].info, "attempt to redefine: '" & arg.name.s & "'")
if a[j].kind == nkPragmaExpr:
pragma(c, arg, a[j][1], paramPragmas)
if not hasType and not hasDefault and kind notin {skTemplate, skMacro}:
let param = strTableGet(c.signatures, arg.name)
if param != nil: typ = param.typ
else:
localError(c.config, a.info, "parameter '$1' requires a type" % arg.name.s)
typ = errorType(c)
var nameForLift = arg.name.s
if sfGenSym in arg.flags:
nameForLift.add("`gensym" & $arg.id)
let lifted = liftParamType(c, kind, genericParams, typ,
nameForLift, arg.info)
let finalType = if lifted != nil: lifted else: typ.skipIntLit(c.idgen)
arg.typ = finalType
arg.position = counter
if constraint != nil:
#only replace the constraint when it has been set as arg could contain codegenDecl
arg.constraint = constraint
inc(counter)
if def != nil and def.kind != nkEmpty:
arg.ast = copyTree(def)
result.n.add newSymNode(arg)
rawAddSon(result, finalType)
addParamOrResult(c, arg, kind)
styleCheckDef(c, a[j].info, arg)
onDef(a[j].info, arg)
if a[j].kind == nkPragmaExpr:
a[j][0] = newSymNode(arg)
else:
a[j] = newSymNode(arg)
var r: PType = nil
if n[0].kind != nkEmpty:
let isGeneric = isCurrentlyGeneric()
inc c.inGenericContext, ord(isGeneric)
r = semTypeNode(c, n[0], nil)
dec c.inGenericContext, ord(isGeneric)
if r != nil and kind in {skMacro, skTemplate} and r.kind == tyTyped:
# XXX: To implement the proposed change in the warning, just
# delete this entire if block. The rest is (at least at time of
# writing this comment) already implemented.
let info = n[0].info
const msg = "`typed` will change its meaning in future versions of Nim. " &
"`void` or no return type declaration at all has the same " &
"meaning as the current meaning of `typed` as return type " &
"declaration."
message(c.config, info, warnDeprecated, msg)
r = nil
if r != nil:
# turn explicit 'void' return type into 'nil' because the rest of the
# compiler only checks for 'nil':
if isRecursiveStructuralType(r):
localError(c.config, n.info, errIllegalRecursionInTypeX % typeToString(r))
elif skipTypes(r, {tyGenericInst, tyAlias, tySink}).kind != tyVoid:
if kind notin {skMacro, skTemplate} and r.kind in {tyTyped, tyUntyped}:
localError(c.config, n[0].info, "return type '" & typeToString(r) &
"' is only valid for macros and templates")
# 'auto' as a return type does not imply a generic:
elif r.kind == tyAnything:
r = copyType(r, c.idgen, r.owner)
r.flags.incl tfRetType
elif r.kind == tyStatic:
# type allowed should forbid this type
discard
else:
if r.sym == nil or sfAnon notin r.sym.flags:
let lifted = liftParamType(c, kind, genericParams, r, "result",
n[0].info)
if lifted != nil:
r = lifted
#if r.kind != tyGenericParam:
#echo "came here for ", typeToString(r)
r.flags.incl tfRetType
r = skipIntLit(r, c.idgen)
if kind == skIterator:
# see tchainediterators
# in cases like iterator foo(it: iterator): typeof(it)
# we don't need to change the return type to iter[T]
result.flags.incl tfIterator
# XXX Would be nice if we could get rid of this
result[0] = r
let oldFlags = result.flags
propagateToOwner(result, r)
if oldFlags != result.flags:
# XXX This rather hacky way keeps 'tflatmap' compiling:
if tfHasMeta notin oldFlags:
result.flags.excl tfHasMeta
result.n.typ() = r
if isCurrentlyGeneric():
for n in genericParams:
if {sfUsed, sfAnon} * n.sym.flags == {}:
result.flags.incl tfUnresolved
if tfWildcard in n.sym.typ.flags:
n.sym.transitionGenericParamToType()
n.sym.typ.flags.excl tfWildcard
proc semStmtListType(c: PContext, n: PNode, prev: PType): PType =
checkMinSonsLen(n, 1, c.config)
for i in 0..<n.len - 1:
n[i] = semStmt(c, n[i], {})
if n.len > 0:
result = semTypeNode(c, n[^1], prev)
n.typ() = result
n[^1].typ() = result
else:
result = nil
proc semBlockType(c: PContext, n: PNode, prev: PType): PType =
inc(c.p.nestedBlockCounter)
let oldBreakInLoop = c.p.breakInLoop
c.p.breakInLoop = false
checkSonsLen(n, 2, c.config)
openScope(c)
if n[0].kind notin {nkEmpty, nkSym}:
addDecl(c, newSymS(skLabel, n[0], c))
result = semStmtListType(c, n[1], prev)
n[1].typ() = result
n.typ() = result
closeScope(c)
c.p.breakInLoop = oldBreakInLoop
dec(c.p.nestedBlockCounter)
proc semGenericParamInInvocation(c: PContext, n: PNode): PType =
result = semTypeNode(c, n, nil)
n.typ() = makeTypeDesc(c, result)
proc trySemObjectTypeForInheritedGenericInst(c: PContext, n: PNode, t: PType): bool =
var
check = initIntSet()
pos = 0
let
realBase = t.baseClass
base = skipTypesOrNil(realBase, skipPtrs)
result = true
if base.isNil:
localError(c.config, n.info, errIllegalRecursionInTypeX % "object")
else:
let concreteBase = skipGenericInvocation(base)
if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags:
if not tryAddInheritedFields(c, check, pos, concreteBase, n):
return false
else:
if concreteBase.kind != tyError:
localError(c.config, n.info, errInheritanceOnlyWithNonFinalObjects)
var newf = newNodeI(nkRecList, n.info)
semRecordNodeAux(c, t.n, check, pos, newf, t)
proc containsGenericInvocationWithForward(n: PNode): bool =
if n.kind == nkSym and n.sym.ast != nil and n.sym.ast.len > 1 and n.sym.ast[2].kind == nkObjectTy:
for p in n.sym.ast[2][^1]:
if p.kind == nkIdentDefs and p[1].typ != nil and p[1].typ.kind == tyGenericInvocation and
p[1][0].kind == nkSym and p[1][0].typ.kind == tyForward:
return true
return false
proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType =
if s.typ == nil:
localError(c.config, n.info, "cannot instantiate the '$1' $2" %
[s.name.s, s.kind.toHumanStr])
return newOrPrevType(tyError, prev, c)
var t = s.typ.skipTypes({tyAlias})
if t.kind == tyCompositeTypeClass and t.base.kind == tyGenericBody:
t = t.base
result = newOrPrevType(tyGenericInvocation, prev, c)
addSonSkipIntLit(result, t, c.idgen)
template addToResult(typ, skip) =
if typ.isNil:
internalAssert c.config, false
rawAddSon(result, typ)
else:
if skip:
addSonSkipIntLit(result, typ, c.idgen)
else:
rawAddSon(result, makeRangeWithStaticExpr(c, typ.n))
if t.kind == tyForward:
for i in 1..<n.len:
var elem = semGenericParamInInvocation(c, n[i])
addToResult(elem, true)
return
elif t.kind != tyGenericBody:
# we likely got code of the form TypeA[TypeB] where TypeA is
# not generic.
localError(c.config, n.info, errNoGenericParamsAllowedForX % s.name.s)
return newOrPrevType(tyError, prev, c)
else:
var m = newCandidate(c, t)
m.isNoCall = true
matches(c, n, copyTree(n), m)
if m.state != csMatch:
var err = "cannot instantiate "
err.addTypeHeader(c.config, t)
err.add "\ngot: <$1>\nbut expected: <$2>" % [describeArgs(c, n), describeArgs(c, t.n, 0)]
if m.firstMismatch.kind == kTypeMismatch and m.firstMismatch.arg < n.len:
let nArg = n[m.firstMismatch.arg]
if nArg.kind in nkSymChoices:
err.add "\n"
err.add ambiguousIdentifierMsg(nArg)
localError(c.config, n.info, errGenerated, err)
return newOrPrevType(tyError, prev, c)
var isConcrete = true
let rType = m.call[0].typ
let mIndex = if rType != nil: rType.len - 1 else: -1
for i in 1..<m.call.len:
var typ = m.call[i].typ
# is this a 'typedesc' *parameter*? If so, use the typedesc type,
# unstripped.
if m.call[i].kind == nkSym and m.call[i].sym.kind == skParam and
typ.kind == tyTypeDesc and containsGenericType(typ):
isConcrete = false
addToResult(typ, true)
else:
typ = typ.skipTypes({tyTypeDesc})
if containsGenericType(typ): isConcrete = false
var skip = true
if mIndex >= i - 1 and tfImplicitStatic in rType[i - 1].flags and isIntLit(typ):
skip = false
addToResult(typ, skip)
if isConcrete:
if s.ast == nil and s.typ.kind != tyCompositeTypeClass:
# XXX: What kind of error is this? is it still relevant?
localError(c.config, n.info, errCannotInstantiateX % s.name.s)
result = newOrPrevType(tyError, prev, c)
elif containsGenericInvocationWithForward(n[0]):
c.skipTypes.add n #fixes 1500
else:
result = instGenericContainer(c, n.info, result,
allowMetaTypes = false)
# special check for generic object with
# generic/partial specialized parent
let tx = result.skipTypes(abstractPtrs, 50)
if tx.isNil or isRecursiveStructuralType(tx):
localError(c.config, n.info, "illegal recursion in type '$1'" % typeToString(result[0]))
return errorType(c)
if tx != result and tx.kind == tyObject:
if tx[0] != nil:
if not trySemObjectTypeForInheritedGenericInst(c, n, tx):
return newOrPrevType(tyError, prev, c)
var position = 0
recomputeFieldPositions(tx, tx.n, position)
proc maybeAliasType(c: PContext; typeExpr, prev: PType): PType =
if prev != nil and (prev.kind == tyGenericBody or
typeExpr.kind in {tyObject, tyEnum, tyDistinct, tyForward, tyGenericBody}):
result = newTypeS(tyAlias, c)
result.rawAddSon typeExpr
result.sym = prev.sym
if prev.kind != tyGenericBody:
assignType(prev, result)
else:
result = nil
proc fixupTypeOf(c: PContext, prev: PType, typ: PType) =
if prev != nil:
let result = newTypeS(tyAlias, c)
result.rawAddSon typ
result.sym = prev.sym
if prev.kind != tyGenericBody:
assignType(prev, result)
proc semTypeExpr(c: PContext, n: PNode; prev: PType): PType =
var n = semExprWithType(c, n, {efDetermineType})
if n.typ.kind == tyTypeDesc:
result = n.typ.base
# fix types constructed by macros/template:
if prev != nil and prev.kind != tyGenericBody and prev.sym != nil:
if result.sym.isNil:
# Behold! you're witnessing enormous power yielded
# by macros. Only macros can summon unnamed types
# and cast spell upon AST. Here we need to give
# it a name taken from left hand side's node
result.sym = prev.sym
result.sym.typ = result
else:
# Less powerful routine like template do not have
# the ability to produce unnamed types. But still
# it has wild power to push a type a bit too far.
# So we need to hold it back using alias and prevent
# unnecessary new type creation
let alias = maybeAliasType(c, result, prev)
if alias != nil: result = alias
elif n.typ.kind == tyFromExpr and c.inGenericContext > 0:
# sometimes not possible to distinguish type from value in generic body,
# for example `T.Foo`, so both are handled under `tyFromExpr`
result = n.typ
else:
localError(c.config, n.info, "expected type, but got: " & n.renderTree)
result = errorType(c)
proc freshType(c: PContext; res, prev: PType): PType {.inline.} =
if prev.isNil or prev.kind == tyGenericBody:
result = copyType(res, c.idgen, res.owner)
copyTypeProps(c.graph, c.idgen.module, result, res)
else:
result = res
template modifierTypeKindOfNode(n: PNode): TTypeKind =
case n.kind
of nkVarTy: tyVar
of nkRefTy: tyRef
of nkPtrTy: tyPtr
of nkStaticTy: tyStatic
of nkTypeOfExpr: tyTypeDesc
else: tyNone
proc semTypeClass(c: PContext, n: PNode, prev: PType): PType =
# if n.len == 0: return newConstraint(c, tyTypeClass)
if isNewStyleConcept(n):
result = newOrPrevType(tyConcept, prev, c)
result.flags.incl tfCheckedForDestructor
result.n = semConceptDeclaration(c, n)
return result
let
pragmas = n[1]
inherited = n[2]
var owner = getCurrOwner(c)
var candidateTypeSlot = newTypeS(tyAlias, c, c.errorType)
result = newOrPrevType(tyUserTypeClass, prev, c, son = candidateTypeSlot)
result.flags.incl tfCheckedForDestructor
result.n = n
if inherited.kind != nkEmpty:
for n in inherited.sons:
let typ = semTypeNode(c, n, nil)
result.add(typ)
openScope(c)
for param in n[0]:
var
dummyName: PNode
dummyType: PType
let modifier = param.modifierTypeKindOfNode
if modifier != tyNone:
dummyName = param[0]
dummyType = c.makeTypeWithModifier(modifier, candidateTypeSlot)
# if modifier == tyRef:
# dummyType.flags.incl tfNotNil
if modifier == tyTypeDesc:
dummyType.flags.incl tfConceptMatchedTypeSym
dummyType.flags.incl tfCheckedForDestructor
else:
dummyName = param
dummyType = candidateTypeSlot
# this can be true for 'nim check' on incomplete concepts,
# see bug #8230
if dummyName.kind == nkEmpty: continue
internalAssert c.config, dummyName.kind == nkIdent
var dummyParam = newSym(if modifier == tyTypeDesc: skType else: skVar,
dummyName.ident, c.idgen, owner, param.info)
dummyParam.typ = dummyType
incl dummyParam.flags, sfUsed
addDecl(c, dummyParam)
result.n[3] = semConceptBody(c, n[3])
closeScope(c)
proc applyTypeSectionPragmas(c: PContext; pragmas, operand: PNode): PNode =
result = nil
for p in pragmas:
let key = if p.kind in nkPragmaCallKinds and p.len >= 1: p[0] else: p
if p.kind == nkEmpty or whichPragma(p) != wInvalid:
discard "builtin pragma"
else:
trySuggestPragmas(c, key)
let ident =
if key.kind in nkIdentKinds:
considerQuotedIdent(c, key)
else:
nil
if ident != nil and strTableGet(c.userPragmas, ident) != nil:
discard "User-defined pragma"
else:
let sym = qualifiedLookUp(c, key, {})
# XXX: What to do here if amb is true?
if sym != nil and sfCustomPragma in sym.flags:
discard "Custom user pragma"
else:
# we transform ``(arg1, arg2: T) {.m, rest.}`` into ``m((arg1, arg2: T) {.rest.})`` and
# let the semantic checker deal with it:
var x = newNodeI(nkCall, key.info)
x.add(key)
if p.kind in nkPragmaCallKinds and p.len > 1:
# pass pragma arguments to the macro too:
for i in 1 ..< p.len:
x.add(p[i])
# Also pass the node the pragma has been applied to
x.add(operand.copyTreeWithoutNode(p))
# recursion assures that this works for multiple macro annotations too:
var r = semOverloadedCall(c, x, x, {skMacro, skTemplate}, {efNoUndeclared})
if r != nil and (r.typ == nil or r.typ.kind != tyFromExpr):
doAssert r[0].kind == nkSym
let m = r[0].sym
case m.kind
of skMacro: return semMacroExpr(c, r, r, m, {efNoSemCheck})
of skTemplate: return semTemplateExpr(c, r, m, {efNoSemCheck})
else: doAssert(false, "cannot happen")
proc semProcTypeWithScope(c: PContext, n: PNode,
prev: PType, kind: TSymKind): PType =
checkSonsLen(n, 2, c.config)
if n[1].kind != nkEmpty and n[1].len > 0:
let macroEval = applyTypeSectionPragmas(c, n[1], n)
if macroEval != nil:
return semTypeNode(c, macroEval, prev)
openScope(c)
result = semProcTypeNode(c, n[0], nil, prev, kind, isType=true)
# start with 'ccClosure', but of course pragmas can overwrite this:
result.callConv = ccClosure
# dummy symbol for `pragma`:
var s = newSymS(kind, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
s.typ = result
if n[1].kind != nkEmpty and n[1].len > 0:
pragma(c, s, n[1], procTypePragmas)
when useEffectSystem: setEffectsForProcType(c.graph, result, n[1])
elif c.optionStack.len > 0:
# we construct a fake 'nkProcDef' for the 'mergePragmas' inside 'implicitPragmas'...
s.ast = newTree(nkProcDef, newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info),
newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info))
implicitPragmas(c, s, n.info, {wTags, wRaises})
when useEffectSystem: setEffectsForProcType(c.graph, result, s.ast[pragmasPos])
closeScope(c)
proc symFromExpectedTypeNode(c: PContext, n: PNode): PSym =
if n.kind == nkType:
result = symFromType(c, n.typ, n.info)
else:
localError(c.config, n.info, errTypeExpected)
result = errorSym(c, n)
proc semStaticType(c: PContext, childNode: PNode, prev: PType): PType =
result = newOrPrevType(tyStatic, prev, c)
var base = semTypeNode(c, childNode, nil).skipTypes({tyTypeDesc, tyAlias})
result.rawAddSon(base)
result.flags.incl tfHasStatic
proc semTypeOf(c: PContext; n: PNode; prev: PType): PType =
openScope(c)
inc c.inTypeofContext
defer: dec c.inTypeofContext # compiles can raise an exception
let ex = semExprWithType(c, n, {efInTypeof})
closeScope(c)
result = ex.typ
if result.kind == tyFromExpr:
result.flags.incl tfNonConstExpr
elif result.kind == tyStatic:
let base = result.skipTypes({tyStatic})
if c.inGenericContext > 0 and base.containsGenericType:
result = makeTypeFromExpr(c, copyTree(ex))
result.flags.incl tfNonConstExpr
else:
result = base
fixupTypeOf(c, prev, result)
proc semTypeOf2(c: PContext; n: PNode; prev: PType): PType =
openScope(c)
var m = BiggestInt 1 # typeOfIter
if n.len == 3:
let mode = semConstExpr(c, n[2])
if mode.kind != nkIntLit:
localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
else:
m = mode.intVal
inc c.inTypeofContext
defer: dec c.inTypeofContext # compiles can raise an exception
let ex = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
closeScope(c)
result = ex.typ
if result.kind == tyFromExpr:
result.flags.incl tfNonConstExpr
elif result.kind == tyStatic:
let base = result.skipTypes({tyStatic})
if c.inGenericContext > 0 and base.containsGenericType:
result = makeTypeFromExpr(c, copyTree(ex))
result.flags.incl tfNonConstExpr
else:
result = base
fixupTypeOf(c, prev, result)
proc semTypeIdent(c: PContext, n: PNode): PSym =
if n.kind == nkSym:
result = getGenSym(c, n.sym)
else:
result = pickSym(c, n, {skType, skGenericParam, skParam})
if result.isNil:
result = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared})
if result != nil:
markUsed(c, n.info, result)
onUse(n.info, result)
# alias syntax, see semSym for skTemplate, skMacro
if result.kind in {skTemplate, skMacro} and sfNoalias notin result.flags:
let t = semTypeExpr(c, n, nil)
result = symFromType(c, t, n.info)
if result.kind == skParam and result.typ.kind == tyTypeDesc:
# This is a typedesc param. is it already bound?
# it's not bound when it's used multiple times in the
# proc signature for example
if c.inGenericInst > 0:
let bound = result.typ.elementType.sym
if bound != nil: return bound
return result
if result.typ.sym == nil:
localError(c.config, n.info, errTypeExpected)
return errorSym(c, n)
result = result.typ.sym.copySym(c.idgen)
result.typ = exactReplica(result.typ)
result.typ.flags.incl tfUnresolved
if result.kind == skGenericParam:
if result.typ.kind == tyGenericParam and result.typ.len == 0 and
tfWildcard in result.typ.flags:
# collapse the wild-card param to a type
result.transitionGenericParamToType()
result.typ.flags.excl tfWildcard
return
else:
localError(c.config, n.info, errTypeExpected)
return errorSym(c, n)
if result.kind != skType and result.magic notin {mStatic, mType, mTypeOf}:
# this implements the wanted ``var v: V, x: V`` feature ...
var ov: TOverloadIter = default(TOverloadIter)
var amb = initOverloadIter(ov, c, n)
while amb != nil and amb.kind != skType:
amb = nextOverloadIter(ov, c, n)
if amb != nil: result = amb
else:
if result.kind != skError: localError(c.config, n.info, errTypeExpected)
return errorSym(c, n)
if result.typ.kind != tyGenericParam:
# XXX get rid of this hack!
var oldInfo = n.info
when defined(useNodeIds):
let oldId = n.id
reset(n[])
when defined(useNodeIds):
n.id = oldId
n.transitionNoneToSym()
n.sym = result
n.info = oldInfo
n.typ() = result.typ
else:
localError(c.config, n.info, "identifier expected")
result = errorSym(c, n)
proc semTypeNode(c: PContext, n: PNode, prev: PType): PType =
result = nil
inc c.inTypeContext
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
case n.kind
of nkEmpty: result = n.typ
of nkTypeOfExpr:
# for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
checkSonsLen(n, 1, c.config)
result = semTypeOf(c, n[0], prev)
if result.kind == tyTypeDesc: result.flags.incl tfExplicit
of nkPar:
if n.len == 1: result = semTypeNode(c, n[0], prev)
else:
result = semAnonTuple(c, n, prev)
of nkTupleConstr: result = semAnonTuple(c, n, prev)
of nkCallKinds:
let x = n[0]
let ident = x.getPIdent
if ident != nil and ident.s == "[]":
let b = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: b.add(n[i])
result = semTypeNode(c, b, prev)
elif ident != nil and ident.id == ord(wDotDot):
result = semRangeAux(c, n, prev)
elif n[0].kind == nkNilLit and n.len == 2:
result = semTypeNode(c, n[1], prev)
if result.skipTypes({tyGenericInst, tyAlias, tySink, tyOwned}).kind in NilableTypes+GenericTypes:
if tfNotNil in result.flags:
result = freshType(c, result, prev)
result.flags.excl(tfNotNil)
else:
localError(c.config, n.info, errGenerated, "invalid type")
elif n[0].kind notin nkIdentKinds:
result = semTypeExpr(c, n, prev)
else:
let op = considerQuotedIdent(c, n[0])
if op.id == ord(wAnd) or op.id == ord(wOr) or op.s == "|":
checkSonsLen(n, 3, c.config)
var
t1 = semTypeNode(c, n[1], nil)
t2 = semTypeNode(c, n[2], nil)
if t1 == nil:
localError(c.config, n[1].info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
elif t2 == nil:
localError(c.config, n[2].info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
else:
result = if op.id == ord(wAnd): makeAndType(c, t1, t2)
else: makeOrType(c, t1, t2)
elif op.id == ord(wNot):
case n.len
of 3:
result = semTypeNode(c, n[1], prev)
if result.kind == tyTypeDesc and tfUnresolved notin result.flags:
result = result.base
if n[2].kind != nkNilLit:
localError(c.config, n.info,
"Invalid syntax. When used with a type, 'not' can be followed only by 'nil'")
if notnil notin c.features and strictNotNil notin c.features:
localError(c.config, n.info,
"enable the 'not nil' annotation with {.experimental: \"notnil\".} or " &
" the `strict not nil` annotation with {.experimental: \"strictNotNil\".} " &
" the \"notnil\" one is going to be deprecated, so please use \"strictNotNil\"")
let resolvedType = result.skipTypes({tyGenericInst, tyAlias, tySink, tyOwned})
case resolvedType.kind
of tyGenericParam, tyTypeDesc, tyFromExpr:
# XXX: This is a really inappropraite hack, but it solves
# https://github.com/nim-lang/Nim/issues/4907 for now.
#
# A proper solution is to introduce a new type kind such
# as `tyNotNil[tyRef[SomeGenericParam]]`. This will allow
# semtypinst to replace the generic param correctly in
# situations like the following:
#
# type Foo[T] = object
# bar: ref T not nil
# baz: ref T
#
# The root of the problem is that `T` here must have a specific
# ID that is bound to a concrete type during instantiation.
# The use of `freshType` below breaks this. Another hack would
# be to reuse the same ID for the not nil type, but this will
# fail if the `T` parameter is referenced multiple times as in
# the example above.
#
# I suggest revisiting this once the language decides on whether
# `not nil` should be the default. We can then map nilable refs
# to other types such as `Option[T]`.
result = makeTypeFromExpr(c, newTree(nkStmtListType, n.copyTree))
of NilableTypes + {tyGenericInvocation, tyForward}:
result = freshType(c, result, prev)
result.flags.incl(tfNotNil)
else:
localError(c.config, n.info, errGenerated, "invalid type")
of 2:
let negated = semTypeNode(c, n[1], prev)
result = makeNotType(c, negated)
else:
localError(c.config, n.info, errGenerated, "invalid type")
elif op.id == ord(wPtr):
result = semAnyRef(c, n, tyPtr, prev)
elif op.id == ord(wRef):
result = semAnyRef(c, n, tyRef, prev)
elif op.id == ord(wType):
checkSonsLen(n, 2, c.config)
result = semTypeOf(c, n[1], prev)
elif op.s == "typeof" and (
(n[0].kind == nkSym and n[0].sym.magic == mTypeOf) or
(n[0].kind == nkOpenSym and n[0][0].sym.magic == mTypeOf)):
result = semTypeOf2(c, n, prev)
elif op.s == "owned" and optOwnedRefs notin c.config.globalOptions and n.len == 2:
result = semTypeExpr(c, n[1], prev)
else:
result = semTypeExpr(c, n, prev)
of nkWhenStmt:
var whenResult = semWhen(c, n, false)
if whenResult.kind == nkStmtList: whenResult.transitionSonsKind(nkStmtListType)
if whenResult.kind == nkWhenStmt:
result = whenResult.typ
else:
result = semTypeNode(c, whenResult, prev)
of nkBracketExpr:
checkMinSonsLen(n, 2, c.config)
var head = n[0]
var s = if head.kind notin nkCallKinds: semTypeIdent(c, head)
else: symFromExpectedTypeNode(c, semExpr(c, head))
case s.magic
of mArray: result = semArray(c, n, prev)
of mOpenArray: result = semContainer(c, n, tyOpenArray, "openarray", prev)
of mUncheckedArray: result = semContainer(c, n, tyUncheckedArray, "UncheckedArray", prev)
of mRange: result = semRange(c, n, prev)
of mSet: result = semSet(c, n, prev)
of mOrdinal: result = semOrdinal(c, n, prev)
of mIterableType: result = semIterableType(c, n, prev)
of mSeq:
result = semContainer(c, n, tySequence, "seq", prev)
if optSeqDestructors in c.config.globalOptions:
incl result.flags, tfHasAsgn
of mVarargs: result = semVarargs(c, n, prev)
of mTypeDesc, mType, mTypeOf:
result = makeTypeDesc(c, semTypeNode(c, n[1], nil))
result.flags.incl tfExplicit
of mStatic:
result = semStaticType(c, n[1], prev)
of mExpr:
result = semTypeNode(c, n[0], nil)
if result != nil:
let old = result
result = copyType(result, c.idgen, getCurrOwner(c))
copyTypeProps(c.graph, c.idgen.module, result, old)
for i in 1..<n.len:
result.rawAddSon(semTypeNode(c, n[i], nil))
of mDistinct:
result = newOrPrevType(tyDistinct, prev, c)
addSonSkipIntLit(result, semTypeNode(c, n[1], nil), c.idgen)
of mVar:
result = newOrPrevType(tyVar, prev, c)
var base = semTypeNode(c, n[1], nil)
if base.kind in {tyVar, tyLent}:
localError(c.config, n.info, "type 'var var' is not allowed")
base = base[0]
addSonSkipIntLit(result, base, c.idgen)
of mRef: result = semAnyRef(c, n, tyRef, prev)
of mPtr: result = semAnyRef(c, n, tyPtr, prev)
of mTuple: result = semTuple(c, n, prev)
of mBuiltinType:
case s.name.s
of "lent": result = semAnyRef(c, n, tyLent, prev)
of "sink": result = semAnyRef(c, n, tySink, prev)
of "owned": result = semAnyRef(c, n, tyOwned, prev)
else: result = semGeneric(c, n, s, prev)
else: result = semGeneric(c, n, s, prev)
of nkDotExpr:
let typeExpr = semExpr(c, n)
if typeExpr.typ.isNil:
localError(c.config, n.info, "object constructor needs an object type;" &
" for named arguments use '=' instead of ':'")
result = errorType(c)
elif typeExpr.typ.kind == tyFromExpr:
result = typeExpr.typ
elif typeExpr.typ.kind != tyTypeDesc:
localError(c.config, n.info, errTypeExpected)
result = errorType(c)
else:
result = typeExpr.typ.base
if result.isMetaType and
result.kind != tyUserTypeClass:
# the dot expression may refer to a concept type in
# a different module. allow a normal alias then.
let preprocessed = semGenericStmt(c, n)
result = makeTypeFromExpr(c, preprocessed.copyTree)
else:
let alias = maybeAliasType(c, result, prev)
if alias != nil: result = alias
of nkIdent, nkAccQuoted:
var s = semTypeIdent(c, n)
if s.typ == nil:
if s.kind != skError: localError(c.config, n.info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
elif s.kind == skParam and s.typ.kind == tyTypeDesc:
internalAssert c.config, s.typ.base.kind != tyNone
result = s.typ.base
elif prev == nil:
result = s.typ
else:
let alias = maybeAliasType(c, s.typ, prev)
if alias != nil:
result = alias
elif prev.kind == tyGenericBody:
result = s.typ
else:
assignType(prev, s.typ)
# bugfix: keep the fresh id for aliases to integral types:
if s.typ.kind notin {tyBool, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64}:
prev.itemId = s.typ.itemId
result = prev
of nkSym:
let s = getGenSym(c, n.sym)
if s.typ != nil and (s.kind == skType or s.typ.kind == tyTypeDesc):
var t =
if s.kind == skType:
s.typ
else:
internalAssert c.config, s.typ.base.kind != tyNone
s.typ.base
let alias = maybeAliasType(c, t, prev)
if alias != nil:
result = alias
elif prev == nil or prev.kind == tyGenericBody:
result = t
else:
assignType(prev, t)
result = prev
markUsed(c, n.info, n.sym)
onUse(n.info, n.sym)
else:
if s.kind != skError:
if s.typ == nil:
localError(c.config, n.info, "type expected, but symbol '$1' has no type." % [s.name.s])
else:
localError(c.config, n.info, "type expected, but got symbol '$1' of kind '$2'" %
[s.name.s, s.kind.toHumanStr])
result = newOrPrevType(tyError, prev, c)
of nkObjectTy: result = semObjectNode(c, n, prev, {})
of nkTupleTy: result = semTuple(c, n, prev)
of nkTupleClassTy: result = newConstraint(c, tyTuple)
of nkTypeClassTy: result = semTypeClass(c, n, prev)
of nkRefTy: result = semAnyRef(c, n, tyRef, prev)
of nkPtrTy: result = semAnyRef(c, n, tyPtr, prev)
of nkVarTy: result = semVarOutType(c, n, prev, {})
of nkOutTy: result = semVarOutType(c, n, prev, {tfIsOutParam})
of nkDistinctTy: result = semDistinct(c, n, prev)
of nkStaticTy: result = semStaticType(c, n[0], prev)
of nkProcTy, nkIteratorTy:
if n.len == 0 or n[0].kind == nkEmpty:
# 0 length or empty param list with possible pragmas imply typeclass
result = newTypeS(tyBuiltInTypeClass, c)
let child = newTypeS(tyProc, c)
if n.kind == nkIteratorTy:
child.flags.incl tfIterator
if n.len > 0 and n[1].kind != nkEmpty and n[1].len > 0:
# typeclass with pragma
let symKind = if n.kind == nkIteratorTy: skIterator else: skProc
# dummy symbol for `pragma`:
var s = newSymS(symKind, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
s.typ = child
# for now only call convention pragmas supported in proc typeclass
pragma(c, s, n[1], {FirstCallConv..LastCallConv})
result.addSonSkipIntLit(child, c.idgen)
else:
let symKind = if n.kind == nkIteratorTy: skIterator else: skProc
result = semProcTypeWithScope(c, n, prev, symKind)
if result == nil:
localError(c.config, n.info, "type expected, but got: " & renderTree(n))
result = newOrPrevType(tyError, prev, c)
if n.kind == nkIteratorTy and result.kind == tyProc:
result.flags.incl(tfIterator)
if result.callConv == ccClosure and c.config.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
result.flags.incl tfHasAsgn
of nkEnumTy: result = semEnum(c, n, prev)
of nkType: result = n.typ
of nkStmtListType: result = semStmtListType(c, n, prev)
of nkBlockType: result = semBlockType(c, n, prev)
of nkOpenSym: result = semTypeNode(c, n[0], prev)
else:
result = semTypeExpr(c, n, prev)
when false:
localError(c.config, n.info, "type expected, but got: " & renderTree(n))
result = newOrPrevType(tyError, prev, c)
n.typ() = result
dec c.inTypeContext
proc setMagicType(conf: ConfigRef; m: PSym, kind: TTypeKind, size: int) =
# source : https://en.wikipedia.org/wiki/Data_structure_alignment#x86
m.typ.kind = kind
m.typ.size = size
# this usually works for most basic types
# Assuming that since ARM, ARM64 don't support unaligned access
# data is aligned to type size
m.typ.align = size.int16
# FIXME: proper support for clongdouble should be added.
# long double size can be 8, 10, 12, 16 bytes depending on platform & compiler
if kind in {tyFloat64, tyFloat, tyInt, tyUInt, tyInt64, tyUInt64} and size == 8:
m.typ.align = int16(conf.floatInt64Align)
proc setMagicIntegral(conf: ConfigRef; m: PSym, kind: TTypeKind, size: int) =
setMagicType(conf, m, kind, size)
incl m.typ.flags, tfCheckedForDestructor
proc processMagicType(c: PContext, m: PSym) =
case m.magic
of mInt: setMagicIntegral(c.config, m, tyInt, c.config.target.intSize)
of mInt8: setMagicIntegral(c.config, m, tyInt8, 1)
of mInt16: setMagicIntegral(c.config, m, tyInt16, 2)
of mInt32: setMagicIntegral(c.config, m, tyInt32, 4)
of mInt64: setMagicIntegral(c.config, m, tyInt64, 8)
of mUInt: setMagicIntegral(c.config, m, tyUInt, c.config.target.intSize)
of mUInt8: setMagicIntegral(c.config, m, tyUInt8, 1)
of mUInt16: setMagicIntegral(c.config, m, tyUInt16, 2)
of mUInt32: setMagicIntegral(c.config, m, tyUInt32, 4)
of mUInt64: setMagicIntegral(c.config, m, tyUInt64, 8)
of mFloat: setMagicIntegral(c.config, m, tyFloat, c.config.target.floatSize)
of mFloat32: setMagicIntegral(c.config, m, tyFloat32, 4)
of mFloat64: setMagicIntegral(c.config, m, tyFloat64, 8)
of mFloat128: setMagicIntegral(c.config, m, tyFloat128, 16)
of mBool: setMagicIntegral(c.config, m, tyBool, 1)
of mChar: setMagicIntegral(c.config, m, tyChar, 1)
of mString:
setMagicType(c.config, m, tyString, szUncomputedSize)
rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
if optSeqDestructors in c.config.globalOptions:
incl m.typ.flags, tfHasAsgn
of mCstring:
setMagicIntegral(c.config, m, tyCstring, c.config.target.ptrSize)
rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
of mPointer: setMagicIntegral(c.config, m, tyPointer, c.config.target.ptrSize)
of mNil: setMagicType(c.config, m, tyNil, c.config.target.ptrSize)
of mExpr:
if m.name.s == "auto":
setMagicIntegral(c.config, m, tyAnything, 0)
else:
setMagicIntegral(c.config, m, tyUntyped, 0)
of mStmt:
setMagicIntegral(c.config, m, tyTyped, 0)
of mTypeDesc, mType:
setMagicIntegral(c.config, m, tyTypeDesc, 0)
rawAddSon(m.typ, newTypeS(tyNone, c))
of mStatic:
setMagicType(c.config, m, tyStatic, 0)
rawAddSon(m.typ, newTypeS(tyNone, c))
of mVoidType:
setMagicIntegral(c.config, m, tyVoid, 0)
of mArray:
setMagicType(c.config, m, tyArray, szUncomputedSize)
of mOpenArray:
setMagicType(c.config, m, tyOpenArray, szUncomputedSize)
of mVarargs:
setMagicType(c.config, m, tyVarargs, szUncomputedSize)
of mRange:
setMagicIntegral(c.config, m, tyRange, szUncomputedSize)
rawAddSon(m.typ, newTypeS(tyNone, c))
of mSet:
setMagicIntegral(c.config, m, tySet, szUncomputedSize)
of mUncheckedArray:
setMagicIntegral(c.config, m, tyUncheckedArray, szUncomputedSize)
of mSeq:
setMagicType(c.config, m, tySequence, szUncomputedSize)
if optSeqDestructors in c.config.globalOptions:
incl m.typ.flags, tfHasAsgn
if defined(nimsuggest) or c.config.cmd == cmdCheck: # bug #18985
discard
else:
assert c.graph.sysTypes[tySequence] == nil
c.graph.sysTypes[tySequence] = m.typ
of mOrdinal:
setMagicIntegral(c.config, m, tyOrdinal, szUncomputedSize)
rawAddSon(m.typ, newTypeS(tyNone, c))
of mIterableType:
setMagicIntegral(c.config, m, tyIterable, 0)
rawAddSon(m.typ, newTypeS(tyNone, c))
of mPNimrodNode:
incl m.typ.flags, tfTriggersCompileTime
incl m.typ.flags, tfCheckedForDestructor
of mException: discard
of mBuiltinType:
case m.name.s
of "lent": setMagicType(c.config, m, tyLent, c.config.target.ptrSize)
of "sink": setMagicType(c.config, m, tySink, szUncomputedSize)
of "owned":
setMagicType(c.config, m, tyOwned, c.config.target.ptrSize)
incl m.typ.flags, tfHasOwned
else: localError(c.config, m.info, errTypeExpected)
else: localError(c.config, m.info, errTypeExpected)
proc semGenericConstraints(c: PContext, x: PType): PType =
result = newTypeS(tyGenericParam, c, x)
proc semGenericParamList(c: PContext, n: PNode, father: PType = nil): PNode =
template addSym(result: PNode, s: PSym): untyped =
if father != nil: addSonSkipIntLit(father, s.typ, c.idgen)
if sfGenSym notin s.flags: addDecl(c, s)
result.add newSymNode(s)
result = copyNode(n)
if n.kind != nkGenericParams:
illFormedAst(n, c.config)
return
for i in 0..<n.len:
var a = n[i]
case a.kind
of nkSym: result.addSym(a.sym)
of nkIdentDefs:
var def = a[^1]
let constraint = a[^2]
var typ: PType = nil
if constraint.kind != nkEmpty:
typ = semTypeNode(c, constraint, nil)
if typ.kind != tyStatic or typ.len == 0:
if typ.kind == tyTypeDesc:
if typ.elementType.kind == tyNone:
typ = newTypeS(tyTypeDesc, c, newTypeS(tyNone, c))
incl typ.flags, tfCheckedForDestructor
else:
typ = semGenericConstraints(c, typ)
if def.kind != nkEmpty:
def = semConstExpr(c, def)
if typ == nil:
if def.typ.kind != tyTypeDesc:
typ = newTypeS(tyStatic, c, def.typ)
else:
# the following line fixes ``TV2*[T:SomeNumber=TR] = array[0..1, T]``
# from manyloc/named_argument_bug/triengine:
def.typ() = def.typ.skipTypes({tyTypeDesc})
if not containsGenericType(def.typ):
def = fitNode(c, typ, def, def.info)
if typ == nil:
typ = newTypeS(tyGenericParam, c)
if father == nil: typ.flags.incl tfWildcard
typ.flags.incl tfGenericTypeParam
for j in 0..<a.len-2:
var finalType: PType
if j == 0:
finalType = typ
else:
finalType = copyType(typ, c.idgen, typ.owner)
copyTypeProps(c.graph, c.idgen.module, finalType, typ)
# it's important the we create an unique
# type for each generic param. the index
# of the parameter will be stored in the
# attached symbol.
var paramName = a[j]
var covarianceFlag = tfUnresolved
if paramName.safeLen == 2:
if not nimEnableCovariance or paramName[0].ident.s == "in":
if father == nil or sfImportc notin father.sym.flags:
localError(c.config, paramName.info, errInOutFlagNotExtern % $paramName[0])
covarianceFlag = if paramName[0].ident.s == "in": tfContravariant
else: tfCovariant
if father != nil: father.flags.incl tfCovariant
paramName = paramName[1]
var s = if finalType.kind == tyStatic or tfWildcard in typ.flags:
newSymG(skGenericParam, paramName, c).linkTo(finalType)
else:
newSymG(skType, paramName, c).linkTo(finalType)
if covarianceFlag != tfUnresolved: s.typ.flags.incl(covarianceFlag)
if def.kind != nkEmpty: s.ast = def
s.position = result.len
result.addSym(s)
else:
illFormedAst(n, c.config)