mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
closes https://github.com/nim-lang/RFCs/issues/380, fixes #4773, fixes
#14729, fixes #16755, fixes #18150, fixes #22984, refs #11167 (only some
comments fixed), refs #12620 (needs tiny workaround)
The compiler gains a concept of root "nominal" types (i.e. objects,
enums, distincts, direct `Foo = ref object`s, generic versions of all of
these). Exported top-level routines in the same module as the nominal
types that their parameter types derive from (i.e. with
`var`/`sink`/`typedesc`/generic constraints) are considered attached to
the respective type, as the RFC states. This happens for every argument
regardless of placement.
When a call is overloaded and overload matching starts, for all
arguments in the call that already have a type, we add any operation
with the same name in the scope of the root nominal type of each
argument (if it exists) to the overload match. This also happens as
arguments gradually get typed after every overload match. This restricts
the considered overloads to ones attached to the given arguments, as
well as preventing `untyped` arguments from being forcefully typed due
to unrelated overloads. There are some caveats:
* If no overloads with a name are in scope, type bound ops are not
triggered, i.e. if `foo` is not declared, `foo(x)` will not consider a
type bound op for `x`.
* If overloads in scope do not have enough parameters up to the argument
which needs its type bound op considered, then type bound ops are also
not added. For example, if only `foo()` is in scope, `foo(x)` will not
consider a type bound op for `x`.
In the cases of "generic interfaces" like `hash`, `$`, `items` etc. this
is not really a problem since any code using it will have at least one
typed overload imported. For arbitrary versions of these though, as in
the test case for #12620, a workaround is to declare a temporary
"template" overload that never matches:
```nim
# neither have to be exported, just needed for any use of `foo`:
type Placeholder = object
proc foo(_: Placeholder) = discard
```
I don't know what a "proper" version of this could be, maybe something
to do with the new concepts.
Possible directions:
A limitation with the proposal is that parameters like `a: ref Foo` are
not attached to any type, even if `Foo` is nominal. Fixing this for just
`ptr`/`ref` would be a special case, parameters like `seq[Foo]` would
still not be attached to `Foo`. We could also skip any *structural* type
but this could produce more than one nominal type, i.e. `(Foo, Bar)`
(not that this is hard to implement, it just might be unexpected).
Converters do not use type bound ops, they still need to be in scope to
implicitly convert. But maybe they could also participate in the nominal
type consideration: if `Generic[T] = distinct T` has a converter to `T`,
both `Generic` and `T` can be considered as nominal roots.
The other restriction in the proposal, being in the same scope as the
nominal type, could maybe be worked around by explicitly attaching to
the type, i.e.: `proc foo(x: T) {.attach: T.}`, similar to class
extensions in newer OOP languages. The given type `T` needs to be
obtainable from the type of the given argument `x` however, i.e.
something like `proc foo(x: ref T) {.attach: T.}` doesn't work to fix
the `ref` issue since the compiler never obtains `T` from a given `ref
T` argument. Edit: Since the module is queried now, this is likely not
possible.
---------
Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
(cherry picked from commit 2864830941)
14 lines
258 B
Nim
14 lines
258 B
Nim
# original example used queues
|
|
import deques
|
|
|
|
type
|
|
QueueContainer*[T] = object
|
|
q: ref Deque[T]
|
|
|
|
proc init*[T](c: var QueueContainer[T]) =
|
|
new(c.q)
|
|
c.q[] = initDeque[T](64)
|
|
|
|
proc addToQ*[T](c: var QueueContainer[T], item: T) =
|
|
c.q[].addLast(item)
|