mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
1085 lines
39 KiB
Nim
1085 lines
39 KiB
Nim
#
|
|
#
|
|
# The Nimrod Compiler
|
|
# (c) Copyright 2010 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module does the semantic checking for expressions
|
|
const
|
|
ConstAbstractTypes = {tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
|
|
tyArrayConstr, tyTuple, tySet}
|
|
|
|
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
|
|
semCheck: bool = true): PNode =
|
|
markUsed(n, s)
|
|
pushInfoContext(n.info)
|
|
result = evalTemplate(c, n, s)
|
|
if semCheck: result = semAfterMacroCall(c, result, s)
|
|
popInfoContext()
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
|
|
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
var d: PNode
|
|
result = semExpr(c, n, flags)
|
|
if result == nil: InternalError("semExprWithType")
|
|
if (result.typ == nil):
|
|
liMessage(n.info, errExprXHasNoType, renderTree(result, {renderNoComments}))
|
|
if result.typ.kind == tyVar:
|
|
d = newNodeIT(nkHiddenDeref, result.info, result.typ.sons[0])
|
|
addSon(d, result)
|
|
result = d
|
|
|
|
proc semSym(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
|
|
if s.kind == skType and efAllowType notin flags:
|
|
liMessage(n.info, errATypeHasNoValue)
|
|
case s.kind
|
|
of skProc, skMethod, skIterator, skConverter:
|
|
if not (sfProcVar in s.flags) and (s.typ.callConv == ccDefault) and
|
|
(getModule(s).id != c.module.id):
|
|
liMessage(n.info, warnXisPassedToProcVar, s.name.s)
|
|
# XXX change this to
|
|
# errXCannotBePassedToProcVar after version 0.8.2
|
|
# TODO VERSION 0.8.4
|
|
#if (s.magic <> mNone) then
|
|
# liMessage(n.info,
|
|
# errInvalidContextForBuiltinX, s.name.s);
|
|
result = symChoice(c, n, s)
|
|
of skConst:
|
|
#
|
|
# Consider::
|
|
# const x = []
|
|
# proc p(a: openarray[int])
|
|
# proc q(a: openarray[char])
|
|
# p(x)
|
|
# q(x)
|
|
#
|
|
# It is clear that ``[]`` means two totally different things. Thus, we
|
|
# copy `x`'s AST into each context, so that the type fixup phase can
|
|
# deal with two different ``[]``.
|
|
#
|
|
markUsed(n, s)
|
|
if s.typ.kind in ConstAbstractTypes:
|
|
result = copyTree(s.ast)
|
|
result.typ = s.typ
|
|
else:
|
|
result = newSymNode(s)
|
|
result.info = n.info
|
|
of skMacro: result = semMacroExpr(c, n, s)
|
|
of skTemplate: result = semTemplateExpr(c, n, s)
|
|
of skVar:
|
|
markUsed(n, s)
|
|
# if a proc accesses a global variable, it is not side effect free:
|
|
if sfGlobal in s.flags: incl(c.p.owner.flags, sfSideEffect)
|
|
result = newSymNode(s)
|
|
result.info = n.info
|
|
of skGenericParam:
|
|
if s.ast == nil: InternalError(n.info, "no default for")
|
|
result = semExpr(c, s.ast)
|
|
else:
|
|
markUsed(n, s)
|
|
result = newSymNode(s)
|
|
result.info = n.info
|
|
|
|
proc checkConversionBetweenObjects(info: TLineInfo, castDest, src: PType) =
|
|
var diff = inheritanceDiff(castDest, src)
|
|
if diff == high(int):
|
|
liMessage(info, errGenerated, `%`(MsgKindToString(errIllegalConvFromXtoY), [
|
|
typeToString(src), typeToString(castDest)]))
|
|
|
|
proc checkConvertible(info: TLineInfo, castDest, src: PType) =
|
|
const
|
|
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyFloat128}
|
|
if sameType(castDest, src):
|
|
# don't annoy conversions that may be needed on another processor:
|
|
if not (castDest.kind in {tyInt..tyFloat128, tyNil}):
|
|
liMessage(info, hintConvFromXtoItselfNotNeeded, typeToString(castDest))
|
|
return
|
|
var d = skipTypes(castDest, abstractVar)
|
|
var s = skipTypes(src, abstractVar)
|
|
while (d != nil) and (d.Kind in {tyPtr, tyRef}) and (d.Kind == s.Kind):
|
|
d = base(d)
|
|
s = base(s)
|
|
if d == nil:
|
|
liMessage(info, errGenerated, `%`(msgKindToString(errIllegalConvFromXtoY), [
|
|
typeToString(src), typeToString(castDest)]))
|
|
if (d.Kind == tyObject) and (s.Kind == tyObject):
|
|
checkConversionBetweenObjects(info, d, s)
|
|
elif (skipTypes(castDest, abstractVarRange).Kind in IntegralTypes) and
|
|
(skipTypes(src, abstractVarRange).Kind in IntegralTypes):
|
|
# accept conversion between intregral types
|
|
else:
|
|
# we use d, s here to speed up that operation a bit:
|
|
case cmpTypes(d, s)
|
|
of isNone, isGeneric:
|
|
if not equalOrDistinctOf(castDest, src) and
|
|
not equalOrDistinctOf(src, castDest):
|
|
liMessage(info, errGenerated, `%`(
|
|
MsgKindToString(errIllegalConvFromXtoY),
|
|
[typeToString(src), typeToString(castDest)]))
|
|
else:
|
|
nil
|
|
|
|
proc isCastable(dst, src: PType): bool =
|
|
#const
|
|
# castableTypeKinds = {@set}[tyInt, tyPtr, tyRef, tyCstring, tyString,
|
|
# tySequence, tyPointer, tyNil, tyOpenArray,
|
|
# tyProc, tySet, tyEnum, tyBool, tyChar];
|
|
var ds, ss: biggestInt
|
|
# this is very unrestrictive; cast is allowed if castDest.size >= src.size
|
|
ds = computeSize(dst)
|
|
ss = computeSize(src)
|
|
if ds < 0:
|
|
result = false
|
|
elif ss < 0:
|
|
result = false
|
|
else:
|
|
result = (ds >= ss) or
|
|
(skipTypes(dst, abstractInst).kind in {tyInt..tyFloat128}) or
|
|
(skipTypes(src, abstractInst).kind in {tyInt..tyFloat128})
|
|
|
|
proc semConv(c: PContext, n: PNode, s: PSym): PNode =
|
|
if sonsLen(n) != 2: liMessage(n.info, errConvNeedsOneArg)
|
|
result = newNodeI(nkConv, n.info)
|
|
result.typ = semTypeNode(c, n.sons[0], nil)
|
|
addSon(result, copyTree(n.sons[0]))
|
|
addSon(result, semExprWithType(c, n.sons[1]))
|
|
var op = result.sons[1]
|
|
if op.kind != nkSymChoice:
|
|
checkConvertible(result.info, result.typ, op.typ)
|
|
else:
|
|
for i in countup(0, sonsLen(op) - 1):
|
|
if sameType(result.typ, op.sons[i].typ):
|
|
markUsed(n, op.sons[i].sym)
|
|
return op.sons[i]
|
|
liMessage(n.info, errUseQualifier, op.sons[0].sym.name.s)
|
|
|
|
proc semCast(c: PContext, n: PNode): PNode =
|
|
if optSafeCode in gGlobalOptions: liMessage(n.info, errCastNotInSafeMode)
|
|
incl(c.p.owner.flags, sfSideEffect)
|
|
checkSonsLen(n, 2)
|
|
result = newNodeI(nkCast, n.info)
|
|
result.typ = semTypeNode(c, n.sons[0], nil)
|
|
addSon(result, copyTree(n.sons[0]))
|
|
addSon(result, semExprWithType(c, n.sons[1]))
|
|
if not isCastable(result.typ, result.sons[1].Typ):
|
|
liMessage(result.info, errExprCannotBeCastedToX, typeToString(result.Typ))
|
|
|
|
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
|
|
const
|
|
opToStr: array[mLow..mHigh, string] = ["low", "high"]
|
|
if sonsLen(n) != 2:
|
|
liMessage(n.info, errXExpectsTypeOrValue, opToStr[m])
|
|
else:
|
|
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
|
|
var typ = skipTypes(n.sons[1].typ, abstractVarRange)
|
|
case typ.Kind
|
|
of tySequence, tyString, tyOpenArray:
|
|
n.typ = getSysType(tyInt)
|
|
of tyArrayConstr, tyArray:
|
|
n.typ = n.sons[1].typ.sons[0] # indextype
|
|
of tyInt..tyInt64, tyChar, tyBool, tyEnum:
|
|
n.typ = n.sons[1].typ
|
|
else: liMessage(n.info, errInvalidArgForX, opToStr[m])
|
|
result = n
|
|
|
|
proc semSizeof(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) != 2: liMessage(n.info, errXExpectsTypeOrValue, "sizeof")
|
|
else: n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
|
|
n.typ = getSysType(tyInt)
|
|
result = n
|
|
|
|
proc semIs(c: PContext, n: PNode): PNode =
|
|
if sonsLen(n) == 3:
|
|
n.sons[1] = semExprWithType(c, n.sons[1], {efAllowType})
|
|
n.sons[2] = semExprWithType(c, n.sons[2], {efAllowType})
|
|
var a = n.sons[1].typ
|
|
var b = n.sons[2].typ
|
|
if (b.kind != tyObject) or (a.kind != tyObject):
|
|
liMessage(n.info, errIsExpectsObjectTypes)
|
|
while (b != nil) and (b.id != a.id): b = b.sons[0]
|
|
if b == nil: liMessage(n.info, errXcanNeverBeOfThisSubtype, typeToString(a))
|
|
n.typ = getSysType(tyBool)
|
|
else:
|
|
liMessage(n.info, errIsExpectsTwoArguments)
|
|
result = n
|
|
|
|
proc semOpAux(c: PContext, n: PNode) =
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
var a = n.sons[i]
|
|
if a.kind == nkExprEqExpr:
|
|
checkSonsLen(a, 2)
|
|
var info = a.sons[0].info
|
|
a.sons[0] = newIdentNode(considerAcc(a.sons[0]), info)
|
|
a.sons[1] = semExprWithType(c, a.sons[1])
|
|
a.typ = a.sons[1].typ
|
|
else:
|
|
n.sons[i] = semExprWithType(c, a)
|
|
|
|
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
|
|
# quick check if there is *any* () operator overloaded:
|
|
var par = getIdent("()")
|
|
if SymtabGet(c.Tab, par) == nil:
|
|
result = nil
|
|
else:
|
|
result = newNodeI(nkCall, n.info)
|
|
addSon(result, newIdentNode(par, n.info))
|
|
for i in countup(0, sonsLen(n) - 1): addSon(result, n.sons[i])
|
|
result = semExpr(c, result)
|
|
|
|
proc changeType(n: PNode, newType: PType) =
|
|
var
|
|
f: PSym
|
|
a, m: PNode
|
|
case n.kind
|
|
of nkCurly, nkBracket:
|
|
for i in countup(0, sonsLen(n) - 1): changeType(n.sons[i], elemType(newType))
|
|
of nkPar:
|
|
if newType.kind != tyTuple:
|
|
InternalError(n.info, "changeType: no tuple type for constructor")
|
|
if newType.n == nil: InternalError(n.info, "changeType: no tuple fields")
|
|
if (sonsLen(n) > 0) and (n.sons[0].kind == nkExprColonExpr):
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
m = n.sons[i].sons[0]
|
|
if m.kind != nkSym:
|
|
internalError(m.info, "changeType(): invalid tuple constr")
|
|
f = getSymFromList(newType.n, m.sym.name)
|
|
if f == nil: internalError(m.info, "changeType(): invalid identifier")
|
|
changeType(n.sons[i].sons[1], f.typ)
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
m = n.sons[i]
|
|
a = newNodeIT(nkExprColonExpr, m.info, newType.sons[i])
|
|
addSon(a, newSymNode(newType.n.sons[i].sym))
|
|
addSon(a, m)
|
|
changeType(m, newType.sons[i])
|
|
n.sons[i] = a
|
|
else:
|
|
nil
|
|
n.typ = newType
|
|
|
|
proc semArrayConstr(c: PContext, n: PNode): PNode =
|
|
result = newNodeI(nkBracket, n.info)
|
|
result.typ = newTypeS(tyArrayConstr, c)
|
|
addSon(result.typ, nil) # index type
|
|
if sonsLen(n) == 0:
|
|
addSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
else:
|
|
addSon(result, semExprWithType(c, n.sons[0]))
|
|
var typ = skipTypes(result.sons[0].typ, {tyGenericInst, tyVar, tyOrdinal})
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
n.sons[i] = semExprWithType(c, n.sons[i])
|
|
addSon(result, fitNode(c, typ, n.sons[i]))
|
|
addSon(result.typ, typ)
|
|
result.typ.sons[0] = makeRangeType(c, 0, sonsLen(result) - 1, n.info)
|
|
|
|
proc fixAbstractType(c: PContext, n: PNode) =
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
var it = n.sons[i]
|
|
case it.kind
|
|
of nkHiddenStdConv, nkHiddenSubConv:
|
|
if it.sons[1].kind == nkBracket:
|
|
it.sons[1] = semArrayConstr(c, it.sons[1])
|
|
if skipTypes(it.typ, abstractVar).kind == tyOpenArray:
|
|
var s = skipTypes(it.sons[1].typ, abstractVar)
|
|
if (s.kind == tyArrayConstr) and (s.sons[1].kind == tyEmpty):
|
|
s = copyType(s, getCurrOwner(), false)
|
|
skipTypes(s, abstractVar).sons[1] = elemType(
|
|
skipTypes(it.typ, abstractVar))
|
|
it.sons[1].typ = s
|
|
elif skipTypes(it.sons[1].typ, abstractVar).kind in
|
|
{tyNil, tyArrayConstr, tyTuple, tySet}:
|
|
var s = skipTypes(it.typ, abstractVar)
|
|
changeType(it.sons[1], s)
|
|
n.sons[i] = it.sons[1]
|
|
of nkBracket:
|
|
# an implicitely constructed array (passed to an open array):
|
|
n.sons[i] = semArrayConstr(c, it)
|
|
else:
|
|
if (it.typ == nil):
|
|
InternalError(it.info, "fixAbstractType: " & renderTree(it))
|
|
|
|
proc skipObjConv(n: PNode): PNode =
|
|
case n.kind
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
|
|
if skipTypes(n.sons[1].typ, abstractPtrs).kind in {tyTuple, tyObject}:
|
|
result = n.sons[1]
|
|
else:
|
|
result = n
|
|
of nkObjUpConv, nkObjDownConv: result = n.sons[0]
|
|
else: result = n
|
|
|
|
type
|
|
TAssignableResult = enum
|
|
arNone, # no l-value and no discriminant
|
|
arLValue, # is an l-value
|
|
arDiscriminant # is a discriminant
|
|
|
|
proc isAssignable(n: PNode): TAssignableResult =
|
|
result = arNone
|
|
case n.kind
|
|
of nkSym:
|
|
if (n.sym.kind in {skVar, skTemp}): result = arLValue
|
|
of nkDotExpr:
|
|
checkMinSonsLen(n, 1)
|
|
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
|
|
result = arLValue
|
|
else:
|
|
result = isAssignable(n.sons[0])
|
|
if (result == arLValue) and (sfDiscriminant in n.sons[1].sym.flags):
|
|
result = arDiscriminant
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1)
|
|
if skipTypes(n.sons[0].typ, abstractInst).kind in {tyVar, tyPtr, tyRef}:
|
|
result = arLValue
|
|
else:
|
|
result = isAssignable(n.sons[0])
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
|
|
# Object and tuple conversions are still addressable, so we skip them
|
|
#if skipPtrsGeneric(n.sons[1].typ).kind in [tyOpenArray,
|
|
# tyTuple, tyObject] then
|
|
if skipTypes(n.typ, abstractPtrs).kind in {tyOpenArray, tyTuple, tyObject}:
|
|
result = isAssignable(n.sons[1])
|
|
of nkHiddenDeref, nkDerefExpr:
|
|
result = arLValue
|
|
of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
|
|
result = isAssignable(n.sons[0])
|
|
else:
|
|
nil
|
|
|
|
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
|
|
if n.kind == nkHiddenDeref:
|
|
checkSonsLen(n, 1)
|
|
result = n.sons[0]
|
|
else:
|
|
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
|
|
addSon(result, n)
|
|
if isAssignable(n) != arLValue:
|
|
liMessage(n.info, errVarForOutParamNeeded)
|
|
|
|
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkSym:
|
|
if skipTypes(n.sym.typ, abstractInst).kind != tyVar:
|
|
incl(n.sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkDotExpr:
|
|
checkSonsLen(n, 2)
|
|
if n.sons[1].kind != nkSym: internalError(n.info, "analyseIfAddressTaken")
|
|
if skipTypes(n.sons[1].sym.typ, abstractInst).kind != tyVar:
|
|
incl(n.sons[1].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1)
|
|
if skipTypes(n.sons[0].typ, abstractInst).kind != tyVar:
|
|
if n.sons[0].kind == nkSym: incl(n.sons[0].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
else:
|
|
result = newHiddenAddrTaken(c, n) # BUGFIX!
|
|
|
|
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
|
|
const
|
|
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
|
|
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
|
|
mAppendSeqElem, mNewSeq}
|
|
checkMinSonsLen(n, 1)
|
|
var t = n.sons[0].typ
|
|
if (n.sons[0].kind == nkSym) and (n.sons[0].sym.magic in FakeVarParams):
|
|
return
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
if (i < sonsLen(t)) and
|
|
(skipTypes(t.sons[i], abstractInst).kind == tyVar):
|
|
n.sons[i] = analyseIfAddressTaken(c, n.sons[i])
|
|
|
|
proc semDirectCallAnalyseEffects(c: PContext, n: PNode,
|
|
flags: TExprFlags): PNode =
|
|
if not (efWantIterator in flags):
|
|
result = semDirectCall(c, n, {skProc, skMethod, skConverter})
|
|
else:
|
|
result = semDirectCall(c, n, {skIterator})
|
|
if result != nil:
|
|
if result.sons[0].kind != nkSym:
|
|
InternalError("semDirectCallAnalyseEffects")
|
|
var callee = result.sons[0].sym
|
|
if (callee.kind == skIterator) and (callee.id == c.p.owner.id):
|
|
liMessage(n.info, errRecursiveDependencyX, callee.name.s)
|
|
if not (sfNoSideEffect in callee.flags):
|
|
if (sfForward in callee.flags) or
|
|
({sfImportc, sfSideEffect} * callee.flags != {}):
|
|
incl(c.p.owner.flags, sfSideEffect)
|
|
|
|
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = nil
|
|
var prc = n.sons[0]
|
|
checkMinSonsLen(n, 1)
|
|
if n.sons[0].kind == nkDotExpr:
|
|
checkSonsLen(n.sons[0], 2)
|
|
n.sons[0] = semFieldAccess(c, n.sons[0])
|
|
if n.sons[0].kind == nkDotCall:
|
|
# it is a static call!
|
|
result = n.sons[0]
|
|
result.kind = nkCall
|
|
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
|
|
return semExpr(c, result, flags)
|
|
else:
|
|
n.sons[0] = semExpr(c, n.sons[0])
|
|
semOpAux(c, n)
|
|
var t: PType = nil
|
|
if (n.sons[0].typ != nil): t = skipTypes(n.sons[0].typ, abstractInst)
|
|
if (t != nil) and (t.kind == tyProc):
|
|
var m: TCandidate
|
|
initCandidate(m, t)
|
|
matches(c, n, m)
|
|
if m.state != csMatch:
|
|
var msg = msgKindToString(errTypeMismatch)
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
if i > 1: add(msg, ", ")
|
|
add(msg, typeToString(n.sons[i].typ))
|
|
add(msg, ")\n" & msgKindToString(errButExpected) & "\n" &
|
|
typeToString(n.sons[0].typ))
|
|
liMessage(n.Info, errGenerated, msg)
|
|
result = nil
|
|
else:
|
|
result = m.call
|
|
# we assume that a procedure that calls something indirectly
|
|
# has side-effects:
|
|
if not (tfNoSideEffect in t.flags): incl(c.p.owner.flags, sfSideEffect)
|
|
else:
|
|
result = overloadedCallOpr(c, n)
|
|
# Now that nkSym does not imply an iteration over the proc/iterator space,
|
|
# the old ``prc`` (which is likely an nkIdent) has to be restored:
|
|
if result == nil:
|
|
n.sons[0] = prc
|
|
result = semDirectCallAnalyseEffects(c, n, flags)
|
|
if result == nil:
|
|
liMessage(n.info, errExprXCannotBeCalled,
|
|
renderTree(n, {renderNoComments}))
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this seems to be a hotspot in the compiler!
|
|
semOpAux(c, n)
|
|
result = semDirectCallAnalyseEffects(c, n, flags)
|
|
if result == nil:
|
|
result = overloadedCallOpr(c, n)
|
|
if result == nil: liMessage(n.Info, errGenerated, getNotFoundError(c, n))
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc semEcho(c: PContext, n: PNode): PNode =
|
|
# this really is a macro
|
|
checkMinSonsLen(n, 1)
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
var arg = semExprWithType(c, n.sons[i])
|
|
var call = newNodeI(nkCall, arg.info)
|
|
addSon(call, newIdentNode(getIdent("$"), n.info))
|
|
addSon(call, arg)
|
|
n.sons[i] = semExpr(c, call)
|
|
result = n
|
|
|
|
proc LookUpForDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
|
|
case n.kind
|
|
of nkIdent:
|
|
if onlyCurrentScope:
|
|
result = SymtabLocalGet(c.tab, n.ident)
|
|
else:
|
|
result = SymtabGet(c.Tab, n.ident) # no need for stub loading
|
|
of nkDotExpr:
|
|
result = nil
|
|
if onlyCurrentScope: return
|
|
checkSonsLen(n, 2)
|
|
var m = LookupForDefined(c, n.sons[0], onlyCurrentScope)
|
|
if (m != nil) and (m.kind == skModule):
|
|
if (n.sons[1].kind == nkIdent):
|
|
var ident = n.sons[1].ident
|
|
if m == c.module:
|
|
result = StrTableGet(c.tab.stack[ModuleTablePos], ident)
|
|
else:
|
|
result = StrTableGet(m.tab, ident)
|
|
else:
|
|
liMessage(n.sons[1].info, errIdentifierExpected, "")
|
|
of nkAccQuoted:
|
|
checkSonsLen(n, 1)
|
|
result = lookupForDefined(c, n.sons[0], onlyCurrentScope)
|
|
else:
|
|
liMessage(n.info, errIdentifierExpected, renderTree(n))
|
|
result = nil
|
|
|
|
proc semDefined(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
|
|
checkSonsLen(n, 2)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
if LookUpForDefined(c, n.sons[1], onlyCurrentScope) != nil:
|
|
result.intVal = 1
|
|
elif not onlyCurrentScope and (n.sons[1].kind == nkIdent) and
|
|
condsyms.isDefined(n.sons[1].ident):
|
|
result.intVal = 1
|
|
result.info = n.info
|
|
result.typ = getSysType(tyBool)
|
|
|
|
proc setMs(n: PNode, s: PSym): PNode =
|
|
result = n
|
|
n.sons[0] = newSymNode(s)
|
|
n.sons[0].info = n.info
|
|
|
|
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
|
|
# this is a hotspot in the compiler!
|
|
result = n
|
|
case s.magic # magics that need special treatment
|
|
of mDefined: result = semDefined(c, setMs(n, s), false)
|
|
of mDefinedInScope: result = semDefined(c, setMs(n, s), true)
|
|
of mLow: result = semLowHigh(c, setMs(n, s), mLow)
|
|
of mHigh: result = semLowHigh(c, setMs(n, s), mHigh)
|
|
of mSizeOf: result = semSizeof(c, setMs(n, s))
|
|
of mIs: result = semIs(c, setMs(n, s))
|
|
of mEcho: result = semEcho(c, setMs(n, s))
|
|
else: result = semDirectOp(c, n, flags)
|
|
|
|
proc isTypeExpr(n: PNode): bool =
|
|
case n.kind
|
|
of nkType, nkTypeOfExpr: result = true
|
|
of nkSym: result = n.sym.kind == skType
|
|
else: result = false
|
|
|
|
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
|
|
check: var PNode): PSym =
|
|
# transform in a node that contains the runtime check for the
|
|
# field, if it is in a case-part...
|
|
var s, it, inExpr, notExpr: PNode
|
|
result = nil
|
|
case r.kind
|
|
of nkRecList:
|
|
for i in countup(0, sonsLen(r) - 1):
|
|
result = lookupInRecordAndBuildCheck(c, n, r.sons[i], field, check)
|
|
if result != nil: return
|
|
of nkRecCase:
|
|
checkMinSonsLen(r, 2)
|
|
if (r.sons[0].kind != nkSym): IllFormedAst(r)
|
|
result = lookupInRecordAndBuildCheck(c, n, r.sons[0], field, check)
|
|
if result != nil: return
|
|
s = newNodeI(nkCurly, r.info)
|
|
for i in countup(1, sonsLen(r) - 1):
|
|
it = r.sons[i]
|
|
case it.kind
|
|
of nkOfBranch:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result == nil:
|
|
for j in 0..sonsLen(it)-2: addSon(s, copyTree(it.sons[j]))
|
|
else:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
addSon(check, nil) # make space for access node
|
|
s = newNodeI(nkCurly, n.info)
|
|
for j in countup(0, sonsLen(it) - 2): addSon(s, copyTree(it.sons[j]))
|
|
inExpr = newNodeI(nkCall, n.info)
|
|
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
|
|
addSon(inExpr, copyTree(r.sons[0]))
|
|
addSon(inExpr, s) #writeln(output, renderTree(inExpr));
|
|
addSon(check, semExpr(c, inExpr))
|
|
return
|
|
of nkElse:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result != nil:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
addSon(check, nil) # make space for access node
|
|
inExpr = newNodeI(nkCall, n.info)
|
|
addSon(inExpr, newIdentNode(getIdent("in"), n.info))
|
|
addSon(inExpr, copyTree(r.sons[0]))
|
|
addSon(inExpr, s)
|
|
notExpr = newNodeI(nkCall, n.info)
|
|
addSon(notExpr, newIdentNode(getIdent("not"), n.info))
|
|
addSon(notExpr, inExpr)
|
|
addSon(check, semExpr(c, notExpr))
|
|
return
|
|
else: illFormedAst(it)
|
|
of nkSym:
|
|
if r.sym.name.id == field.id: result = r.sym
|
|
else: illFormedAst(n)
|
|
|
|
proc makeDeref(n: PNode): PNode =
|
|
var t = skipTypes(n.typ, {tyGenericInst})
|
|
result = n
|
|
if t.kind == tyVar:
|
|
result = newNodeIT(nkHiddenDeref, n.info, t.sons[0])
|
|
addSon(result, n)
|
|
t = skipTypes(t.sons[0], {tyGenericInst})
|
|
if t.kind in {tyPtr, tyRef}:
|
|
var a = result
|
|
result = newNodeIT(nkDerefExpr, n.info, t.sons[0])
|
|
addSon(result, a)
|
|
|
|
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if it's not a built-in field access
|
|
var s = qualifiedLookup(c, n, true) # check for ambiguity
|
|
if s != nil:
|
|
return semSym(c, n, s, flags)
|
|
|
|
checkSonsLen(n, 2)
|
|
n.sons[0] = semExprWithType(c, n.sons[0], {efAllowType} + flags)
|
|
var i = considerAcc(n.sons[1])
|
|
var ty = n.sons[0].Typ
|
|
var f: PSym = nil
|
|
result = nil
|
|
if ty.kind == tyEnum:
|
|
# look up if the identifier belongs to the enum:
|
|
while ty != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil: break
|
|
ty = ty.sons[0] # enum inheritance
|
|
if f != nil:
|
|
result = newSymNode(f)
|
|
result.info = n.info
|
|
result.typ = ty
|
|
markUsed(n, f)
|
|
else:
|
|
liMessage(n.sons[1].info, errEnumHasNoValueX, i.s)
|
|
return
|
|
elif not (efAllowType in flags) and isTypeExpr(n.sons[0]):
|
|
liMessage(n.sons[0].info, errATypeHasNoValue)
|
|
return
|
|
ty = skipTypes(ty, {tyGenericInst, tyVar, tyPtr, tyRef})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
|
|
if f != nil: break
|
|
if ty.sons[0] == nil: break
|
|
ty = skipTypes(ty.sons[0], {tyGenericInst})
|
|
if f != nil:
|
|
if {sfStar, sfMinus} * f.flags != {} or getModule(f).id == c.module.id:
|
|
# is the access to a public field or in the same module?
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
n.sons[1] = newSymNode(f) # we now have the correct field
|
|
n.typ = f.typ
|
|
markUsed(n, f)
|
|
if check == nil:
|
|
result = n
|
|
else:
|
|
check.sons[0] = n
|
|
check.typ = n.typ
|
|
result = check
|
|
elif ty.kind == tyTuple:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil:
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
n.sons[1] = newSymNode(f)
|
|
n.typ = f.typ
|
|
result = n
|
|
markUsed(n, f)
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this is difficult, because the '.' is used in many different contexts
|
|
# in Nimrod. We first allow types in the semantic checking.
|
|
result = builtinFieldAccess(c, n, flags)
|
|
if result == nil:
|
|
var i = considerAcc(n.sons[1])
|
|
var f = SymTabGet(c.tab, i)
|
|
# if f != nil and f.kind == skStub: loadStub(f)
|
|
# ``loadStub`` is not correct here as we don't care for ``f`` really
|
|
if f != nil:
|
|
# BUGFIX: do not check for (f.kind in [skProc, skMethod, skIterator]) here
|
|
# This special node kind is to merge with the call handler in `semExpr`.
|
|
result = newNodeI(nkDotCall, n.info)
|
|
addSon(result, newIdentNode(i, n.info))
|
|
addSon(result, copyTree(n[0]))
|
|
else:
|
|
liMessage(n.Info, errUndeclaredFieldX, i.s)
|
|
|
|
proc whichSliceOpr(n: PNode): string =
|
|
if (n.sons[0] == nil):
|
|
if (n.sons[1] == nil): result = "[..]"
|
|
else: result = "[..$]"
|
|
elif (n.sons[1] == nil):
|
|
result = "[$..]"
|
|
else:
|
|
result = "[$..$]"
|
|
|
|
proc addSliceOpr(result: var string, n: PNode) =
|
|
if n[0] == nil:
|
|
if n[1] == nil: result.add("..")
|
|
else: result.add("..$")
|
|
elif n[1] == nil: result.add("$..")
|
|
else: result.add("$..$")
|
|
|
|
proc buildOverloadedSubscripts(n: PNode, inAsgn: bool): PNode =
|
|
result = newNodeI(nkCall, n.info)
|
|
add(result, nil) # fill with the correct node later
|
|
add(result, n[0])
|
|
var opr = "["
|
|
for i in 1..n.len-1:
|
|
if i > 1: add(opr, ",")
|
|
if n[i].kind == nkRange:
|
|
# we have a slice argument
|
|
checkSonsLen(n[i], 2)
|
|
addSliceOpr(opr, n[i])
|
|
addSonIfNotNil(result, n[i][0])
|
|
addSonIfNotNil(result, n[i][1])
|
|
else:
|
|
add(result, n[i])
|
|
if inAsgn: add(opr, "]=")
|
|
else: add(opr, "]")
|
|
# now we know the operator
|
|
result.sons[0] = newIdentNode(getIdent(opr), n.info)
|
|
|
|
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if not a built-in subscript operator;
|
|
checkMinSonsLen(n, 2)
|
|
n.sons[0] = semExprWithType(c, n.sons[0], flags - {efAllowType})
|
|
var arr = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar, tyPtr, tyRef})
|
|
case arr.kind
|
|
of tyArray, tyOpenArray, tyArrayConstr, tySequence, tyString, tyCString:
|
|
checkSonsLen(n, 2)
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
n.sons[i] = semExprWithType(c, n.sons[i], flags - {efAllowType})
|
|
var indexType = if arr.kind == tyArray: arr.sons[0] else: getSysType(tyInt)
|
|
var arg = IndexTypesMatch(c, indexType, n.sons[1].typ, n.sons[1])
|
|
if arg != nil: n.sons[1] = arg
|
|
else: liMessage(n.info, errIndexTypesDoNotMatch)
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
of tyTuple:
|
|
checkSonsLen(n, 2)
|
|
n.sons[0] = makeDeref(n.sons[0])
|
|
# [] operator for tuples requires constant expression:
|
|
n.sons[1] = semConstExpr(c, n.sons[1])
|
|
if skipTypes(n.sons[1].typ, {tyGenericInst, tyRange, tyOrdinal}).kind in
|
|
{tyInt..tyInt64}:
|
|
var idx = getOrdValue(n.sons[1])
|
|
if (idx >= 0) and (idx < sonsLen(arr)): n.typ = arr.sons[int(idx)]
|
|
else: liMessage(n.info, errInvalidIndexValueForTuple)
|
|
else:
|
|
liMessage(n.info, errIndexTypesDoNotMatch)
|
|
result = n
|
|
else: nil
|
|
|
|
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = semSubscript(c, n, flags)
|
|
if result == nil:
|
|
# overloaded [] operator:
|
|
when false:
|
|
result = newNodeI(nkCall, n.info)
|
|
if n.sons[1].kind == nkRange:
|
|
checkSonsLen(n.sons[1], 2)
|
|
addSon(result, newIdentNode(getIdent(whichSliceOpr(n.sons[1])), n.info))
|
|
addSon(result, n.sons[0])
|
|
addSonIfNotNil(result, n.sons[1].sons[0])
|
|
addSonIfNotNil(result, n.sons[1].sons[1])
|
|
else:
|
|
addSon(result, newIdentNode(getIdent("[]"), n.info))
|
|
addSon(result, n.sons[0])
|
|
addSon(result, n.sons[1])
|
|
result = semExpr(c, result)
|
|
else:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, inAsgn=false))
|
|
|
|
proc semIfExpr(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 2)
|
|
var typ: PType = nil
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var it = n.sons[i]
|
|
case it.kind
|
|
of nkElifExpr:
|
|
checkSonsLen(it, 2)
|
|
it.sons[0] = semExprWithType(c, it.sons[0])
|
|
checkBool(it.sons[0])
|
|
it.sons[1] = semExprWithType(c, it.sons[1])
|
|
if typ == nil: typ = it.sons[1].typ
|
|
else: it.sons[1] = fitNode(c, typ, it.sons[1])
|
|
of nkElseExpr:
|
|
checkSonsLen(it, 1)
|
|
it.sons[0] = semExprWithType(c, it.sons[0])
|
|
if typ == nil: InternalError(it.info, "semIfExpr")
|
|
it.sons[0] = fitNode(c, typ, it.sons[0])
|
|
else: illFormedAst(n)
|
|
result.typ = typ
|
|
|
|
proc semSetConstr(c: PContext, n: PNode): PNode =
|
|
result = newNodeI(nkCurly, n.info)
|
|
result.typ = newTypeS(tySet, c)
|
|
if sonsLen(n) == 0:
|
|
addSon(result.typ, newTypeS(tyEmpty, c))
|
|
else:
|
|
# only semantic checking for all elements, later type checking:
|
|
var typ: PType = nil
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
if n.sons[i].kind == nkRange:
|
|
checkSonsLen(n.sons[i], 2)
|
|
n.sons[i].sons[0] = semExprWithType(c, n.sons[i].sons[0])
|
|
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
|
|
if typ == nil:
|
|
typ = skipTypes(n.sons[i].sons[0].typ,
|
|
{tyGenericInst, tyVar, tyOrdinal})
|
|
n.sons[i].typ = n.sons[i].sons[1].typ # range node needs type too
|
|
else:
|
|
n.sons[i] = semExprWithType(c, n.sons[i])
|
|
if typ == nil:
|
|
typ = skipTypes(n.sons[i].typ, {tyGenericInst, tyVar, tyOrdinal})
|
|
if not isOrdinalType(typ):
|
|
liMessage(n.info, errOrdinalTypeExpected)
|
|
return
|
|
if lengthOrd(typ) > MaxSetElements:
|
|
typ = makeRangeType(c, 0, MaxSetElements - 1, n.info)
|
|
addSon(result.typ, typ)
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
var m: PNode
|
|
if n.sons[i].kind == nkRange:
|
|
m = newNodeI(nkRange, n.sons[i].info)
|
|
addSon(m, fitNode(c, typ, n.sons[i].sons[0]))
|
|
addSon(m, fitNode(c, typ, n.sons[i].sons[1]))
|
|
else:
|
|
m = fitNode(c, typ, n.sons[i])
|
|
addSon(result, m)
|
|
|
|
type
|
|
TParKind = enum
|
|
paNone, paSingle, paTupleFields, paTuplePositions
|
|
|
|
proc checkPar(n: PNode): TParKind =
|
|
var length = sonsLen(n)
|
|
if length == 0:
|
|
result = paTuplePositions # ()
|
|
elif length == 1:
|
|
result = paSingle # (expr)
|
|
else:
|
|
if n.sons[0].kind == nkExprColonExpr: result = paTupleFields
|
|
else: result = paTuplePositions
|
|
for i in countup(0, length - 1):
|
|
if result == paTupleFields:
|
|
if (n.sons[i].kind != nkExprColonExpr) or
|
|
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
|
|
liMessage(n.sons[i].info, errNamedExprExpected)
|
|
return paNone
|
|
else:
|
|
if n.sons[i].kind == nkExprColonExpr:
|
|
liMessage(n.sons[i].info, errNamedExprNotAllowed)
|
|
return paNone
|
|
|
|
proc semTupleFieldsConstr(c: PContext, n: PNode): PNode =
|
|
var ids: TIntSet
|
|
result = newNodeI(nkPar, n.info)
|
|
var typ = newTypeS(tyTuple, c)
|
|
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
|
|
IntSetInit(ids)
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
if (n.sons[i].kind != nkExprColonExpr) or
|
|
not (n.sons[i].sons[0].kind in {nkSym, nkIdent}):
|
|
illFormedAst(n.sons[i])
|
|
var id: PIdent
|
|
if n.sons[i].sons[0].kind == nkIdent: id = n.sons[i].sons[0].ident
|
|
else: id = n.sons[i].sons[0].sym.name
|
|
if IntSetContainsOrIncl(ids, id.id):
|
|
liMessage(n.sons[i].info, errFieldInitTwice, id.s)
|
|
n.sons[i].sons[1] = semExprWithType(c, n.sons[i].sons[1])
|
|
var f = newSymS(skField, n.sons[i].sons[0], c)
|
|
f.typ = n.sons[i].sons[1].typ
|
|
addSon(typ, f.typ)
|
|
addSon(typ.n, newSymNode(f))
|
|
n.sons[i].sons[0] = newSymNode(f)
|
|
addSon(result, n.sons[i])
|
|
result.typ = typ
|
|
|
|
proc semTuplePositionsConstr(c: PContext, n: PNode): PNode =
|
|
result = n # we don't modify n, but compute the type:
|
|
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
n.sons[i] = semExprWithType(c, n.sons[i])
|
|
addSon(typ, n.sons[i].typ)
|
|
result.typ = typ
|
|
|
|
proc semStmtListExpr(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkMinSonsLen(n, 1)
|
|
var length = sonsLen(n)
|
|
for i in countup(0, length - 2):
|
|
n.sons[i] = semStmt(c, n.sons[i])
|
|
if length > 0:
|
|
n.sons[length - 1] = semExprWithType(c, n.sons[length - 1])
|
|
n.typ = n.sons[length - 1].typ
|
|
|
|
proc semBlockExpr(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
Inc(c.p.nestedBlockCounter)
|
|
checkSonsLen(n, 2)
|
|
openScope(c.tab) # BUGFIX: label is in the scope of block!
|
|
if n.sons[0] != nil: addDecl(c, newSymS(skLabel, n.sons[0], c))
|
|
n.sons[1] = semStmtListExpr(c, n.sons[1])
|
|
n.typ = n.sons[1].typ
|
|
closeScope(c.tab)
|
|
Dec(c.p.nestedBlockCounter)
|
|
|
|
proc isCallExpr(n: PNode): bool =
|
|
result = n.kind in {nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand,
|
|
nkCallStrLit}
|
|
|
|
proc semMacroStmt(c: PContext, n: PNode, semCheck: bool = true): PNode =
|
|
checkMinSonsLen(n, 2)
|
|
var a: PNode
|
|
if isCallExpr(n.sons[0]): a = n.sons[0].sons[0]
|
|
else: a = n.sons[0]
|
|
var s = qualifiedLookup(c, a, false)
|
|
if s != nil:
|
|
case s.kind
|
|
of skMacro:
|
|
result = semMacroExpr(c, n, s, semCheck)
|
|
of skTemplate:
|
|
# transform
|
|
# nkMacroStmt(nkCall(a...), stmt, b...)
|
|
# to
|
|
# nkCall(a..., stmt, b...)
|
|
result = newNodeI(nkCall, n.info)
|
|
addSon(result, a)
|
|
if isCallExpr(n.sons[0]):
|
|
for i in countup(1, sonsLen(n.sons[0]) - 1):
|
|
addSon(result, n.sons[0].sons[i])
|
|
for i in countup(1, sonsLen(n) - 1): addSon(result, n.sons[i])
|
|
result = semTemplateExpr(c, result, s, semCheck)
|
|
else: liMessage(n.info, errXisNoMacroOrTemplate, s.name.s)
|
|
else:
|
|
liMessage(n.info, errInvalidExpressionX, renderTree(a, {renderNoComments}))
|
|
|
|
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = n
|
|
if n == nil: return
|
|
if nfSem in n.flags: return
|
|
case n.kind # atoms:
|
|
of nkIdent:
|
|
var s = lookUp(c, n)
|
|
result = semSym(c, n, s, flags)
|
|
of nkSym:
|
|
#s := n.sym;
|
|
# include(s.flags, sfUsed);
|
|
# if (s.kind = skType) and not (efAllowType in flags) then
|
|
# liMessage(n.info, errATypeHasNoValue);
|
|
# because of the changed symbol binding, this does not mean that we
|
|
# don't have to check the symbol for semantics here again!
|
|
result = semSym(c, n, n.sym, flags)
|
|
of nkEmpty, nkNone:
|
|
nil
|
|
of nkNilLit:
|
|
result.typ = getSysType(tyNil)
|
|
of nkType:
|
|
if not (efAllowType in flags): liMessage(n.info, errATypeHasNoValue)
|
|
n.typ = semTypeNode(c, n, nil)
|
|
of nkIntLit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt)
|
|
of nkInt8Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt8)
|
|
of nkInt16Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt16)
|
|
of nkInt32Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt32)
|
|
of nkInt64Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyInt64)
|
|
of nkFloatLit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat)
|
|
of nkFloat32Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat32)
|
|
of nkFloat64Lit:
|
|
if result.typ == nil: result.typ = getSysType(tyFloat64)
|
|
of nkStrLit..nkTripleStrLit:
|
|
if result.typ == nil: result.typ = getSysType(tyString)
|
|
of nkCharLit:
|
|
if result.typ == nil: result.typ = getSysType(tyChar)
|
|
of nkDotExpr:
|
|
result = semFieldAccess(c, n, flags)
|
|
if result.kind == nkDotCall:
|
|
result.kind = nkCall
|
|
result = semExpr(c, result, flags)
|
|
of nkBind:
|
|
result = semExpr(c, n.sons[0], flags)
|
|
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
|
|
# check if it is an expression macro:
|
|
checkMinSonsLen(n, 1)
|
|
var s = qualifiedLookup(c, n.sons[0], false)
|
|
if s != nil:
|
|
case s.kind
|
|
of skMacro: result = semMacroExpr(c, n, s)
|
|
of skTemplate: result = semTemplateExpr(c, n, s)
|
|
of skType:
|
|
if n.kind != nkCall: liMessage(n.info, errXisNotCallable, s.name.s)
|
|
# XXX does this check make any sense?
|
|
result = semConv(c, n, s)
|
|
of skProc, skMethod, skConverter, skIterator:
|
|
if s.magic == mNone: result = semDirectOp(c, n, flags)
|
|
else: result = semMagic(c, n, s, flags)
|
|
else:
|
|
#liMessage(n.info, warnUser, renderTree(n));
|
|
result = semIndirectOp(c, n, flags)
|
|
elif n.sons[0].kind == nkSymChoice:
|
|
result = semDirectOp(c, n, flags)
|
|
else:
|
|
result = semIndirectOp(c, n, flags)
|
|
of nkMacroStmt:
|
|
result = semMacroStmt(c, n)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1)
|
|
var s = qualifiedLookup(c, n.sons[0], false)
|
|
if s != nil and s.kind in {skProc, skMethod, skConverter, skIterator}:
|
|
# type parameters: partial generic specialization
|
|
# XXX: too implement!
|
|
internalError(n.info, "explicit generic instantation not implemented")
|
|
result = partialSpecialization(c, n, s)
|
|
else:
|
|
result = semArrayAccess(c, n, flags)
|
|
of nkPragmaExpr:
|
|
# which pragmas are allowed for expressions? `likely`, `unlikely`
|
|
internalError(n.info, "semExpr() to implement") # XXX: to implement
|
|
of nkPar:
|
|
case checkPar(n)
|
|
of paNone: result = nil
|
|
of paTuplePositions: result = semTuplePositionsConstr(c, n)
|
|
of paTupleFields: result = semTupleFieldsConstr(c, n)
|
|
of paSingle: result = semExpr(c, n.sons[0])
|
|
of nkCurly: result = semSetConstr(c, n)
|
|
of nkBracket: result = semArrayConstr(c, n)
|
|
of nkLambda: result = semLambda(c, n)
|
|
of nkDerefExpr:
|
|
checkSonsLen(n, 1)
|
|
n.sons[0] = semExprWithType(c, n.sons[0])
|
|
result = n
|
|
var t = skipTypes(n.sons[0].typ, {tyGenericInst, tyVar})
|
|
case t.kind
|
|
of tyRef, tyPtr: n.typ = t.sons[0]
|
|
else: liMessage(n.sons[0].info, errCircumNeedsPointer)
|
|
result = n
|
|
of nkAddr:
|
|
result = n
|
|
checkSonsLen(n, 1)
|
|
n.sons[0] = semExprWithType(c, n.sons[0])
|
|
if isAssignable(n.sons[0]) != arLValue:
|
|
liMessage(n.info, errExprHasNoAddress)
|
|
n.typ = makePtrType(c, n.sons[0].typ)
|
|
of nkHiddenAddr, nkHiddenDeref:
|
|
checkSonsLen(n, 1)
|
|
n.sons[0] = semExpr(c, n.sons[0], flags)
|
|
of nkCast: result = semCast(c, n)
|
|
of nkAccQuoted:
|
|
checkSonsLen(n, 1)
|
|
result = semExpr(c, n.sons[0])
|
|
of nkIfExpr: result = semIfExpr(c, n)
|
|
of nkStmtListExpr: result = semStmtListExpr(c, n)
|
|
of nkBlockExpr: result = semBlockExpr(c, n)
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
|
|
checkSonsLen(n, 2)
|
|
of nkStringToCString, nkCStringToString, nkPassAsOpenArray, nkObjDownConv,
|
|
nkObjUpConv:
|
|
checkSonsLen(n, 1)
|
|
of nkChckRangeF, nkChckRange64, nkChckRange:
|
|
checkSonsLen(n, 3)
|
|
of nkCheckedFieldExpr:
|
|
checkMinSonsLen(n, 2)
|
|
of nkSymChoice:
|
|
liMessage(n.info, errExprXAmbiguous, renderTree(n, {renderNoComments}))
|
|
else:
|
|
#InternalError(n.info, nodeKindToStr[n.kind]);
|
|
liMessage(n.info, errInvalidExpressionX, renderTree(n, {renderNoComments}))
|
|
incl(result.flags, nfSem)
|