Files
Nim/compiler/modulegraphs.nim
Ivan Yonchovski b41226001c Initial implementation of nimsuggest v3 (#19826)
* Initial implementation of nimsuggest v3

Rework `nimsuggest` to use caching to make usage of ide commands more efficient.
Previously, all commands no matter what the state of the process is were causing
clean build. In the context of Language Server Protocol(LSP) and lsp clients
this was causing perf issues and overall instability. Overall, the goal of v3 is
to fit to LSP Server needs

- added two new commands:
  - `recompile` to do clean compilation
  - `changed` which can be used by the IDEs to notify that a particular file has been changed.
The later can be utilized when using LSP file watches.
  - `globalSymbols` - searching global references

- added `segfaults` dependency to allow fallback to clean build when incremental
fails. I wish the error to be propagated to the client so we can work on fixing
the incremental build failures (typically hitting pointer)

- more efficient rebuild flow. ATM incremental rebuild is triggered when the
command needs that(i. e. it is global) while the commands that work on the
current source rebuild only it

Things missing in this PR:

- Documentation
- Extensive unit testing.

Although functional I still see this more as a POC that this approach can work.

Next steps:
- Implement `sug` request.
- Rework/extend the protocol to allow better client/server communication.
Ideally we will need push events, diagnostics should be restructored to allow
per file notifications, etc.
- implement v3 test suite.
- better logging

* Add tests for v3 and implement ideSug

* Remove typeInstCache/procInstCache cleanup

* Add ideChkFile command

* Avoid contains call when adding symbol info

* Remove log

* Remove segfaults
2022-06-13 11:33:44 +02:00

668 lines
25 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the module graph data structure. The module graph
## represents a complete Nim project. Single modules can either be kept in RAM
## or stored in a rod-file.
import intsets, tables, hashes, md5_old, sequtils
import ast, astalgo, options, lineinfos,idents, btrees, ropes, msgs, pathutils, packages
import ic / [packed_ast, ic]
when defined(nimPreviewSlimSystem):
import std/assertions
type
SigHash* = distinct MD5Digest
LazySym* = object
id*: FullId
sym*: PSym
Iface* = object ## data we don't want to store directly in the
## ast.PSym type for s.kind == skModule
module*: PSym ## module this "Iface" belongs to
converters*: seq[LazySym]
patterns*: seq[LazySym]
pureEnums*: seq[LazySym]
interf: TStrTable
interfHidden: TStrTable
uniqueName*: Rope
Operators* = object
opNot*, opContains*, opLe*, opLt*, opAnd*, opOr*, opIsNil*, opEq*: PSym
opAdd*, opSub*, opMul*, opDiv*, opLen*: PSym
FullId* = object
module*: int
packed*: PackedItemId
LazyType* = object
id*: FullId
typ*: PType
LazyInstantiation* = object
module*: int
sym*: FullId
concreteTypes*: seq[FullId]
inst*: PInstantiation
ModuleGraph* {.acyclic.} = ref object
ifaces*: seq[Iface] ## indexed by int32 fileIdx
packed*: PackedModuleGraph
encoders*: seq[PackedEncoder]
typeInstCache*: Table[ItemId, seq[LazyType]] # A symbol's ItemId.
procInstCache*: Table[ItemId, seq[LazyInstantiation]] # A symbol's ItemId.
attachedOps*: array[TTypeAttachedOp, Table[ItemId, PSym]] # Type ID, destructors, etc.
methodsPerType*: Table[ItemId, seq[(int, LazySym)]] # Type ID, attached methods
enumToStringProcs*: Table[ItemId, LazySym]
emittedTypeInfo*: Table[string, FileIndex]
startupPackedConfig*: PackedConfig
packageSyms*: TStrTable
deps*: IntSet # the dependency graph or potentially its transitive closure.
importDeps*: Table[FileIndex, seq[FileIndex]] # explicit import module dependencies
suggestMode*: bool # whether we are in nimsuggest mode or not.
invalidTransitiveClosure: bool
inclToMod*: Table[FileIndex, FileIndex] # mapping of include file to the
# first module that included it
importStack*: seq[FileIndex] # The current import stack. Used for detecting recursive
# module dependencies.
backend*: RootRef # minor hack so that a backend can extend this easily
config*: ConfigRef
cache*: IdentCache
vm*: RootRef # unfortunately the 'vm' state is shared project-wise, this will
# be clarified in later compiler implementations.
doStopCompile*: proc(): bool {.closure.}
usageSym*: PSym # for nimsuggest
owners*: seq[PSym]
suggestSymbols*: Table[FileIndex, seq[tuple[sym: PSym, info: TLineInfo]]]
suggestErrors*: Table[FileIndex, seq[Suggest]]
methods*: seq[tuple[methods: seq[PSym], dispatcher: PSym]] # needs serialization!
systemModule*: PSym
sysTypes*: array[TTypeKind, PType]
compilerprocs*: TStrTable
exposed*: TStrTable
packageTypes*: TStrTable
emptyNode*: PNode
canonTypes*: Table[SigHash, PType]
symBodyHashes*: Table[int, SigHash] # symId to digest mapping
importModuleCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PSym {.nimcall.}
includeFileCallback*: proc (graph: ModuleGraph; m: PSym, fileIdx: FileIndex): PNode {.nimcall.}
cacheSeqs*: Table[string, PNode] # state that is shared to support the 'macrocache' API; IC: implemented
cacheCounters*: Table[string, BiggestInt] # IC: implemented
cacheTables*: Table[string, BTree[string, PNode]] # IC: implemented
passes*: seq[TPass]
onDefinition*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onDefinitionResolveForward*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
onUsage*: proc (graph: ModuleGraph; s: PSym; info: TLineInfo) {.nimcall.}
globalDestructors*: seq[PNode]
strongSemCheck*: proc (graph: ModuleGraph; owner: PSym; body: PNode) {.nimcall.}
compatibleProps*: proc (graph: ModuleGraph; formal, actual: PType): bool {.nimcall.}
idgen*: IdGenerator
operators*: Operators
TPassContext* = object of RootObj # the pass's context
idgen*: IdGenerator
PPassContext* = ref TPassContext
TPassOpen* = proc (graph: ModuleGraph; module: PSym; idgen: IdGenerator): PPassContext {.nimcall.}
TPassClose* = proc (graph: ModuleGraph; p: PPassContext, n: PNode): PNode {.nimcall.}
TPassProcess* = proc (p: PPassContext, topLevelStmt: PNode): PNode {.nimcall.}
TPass* = tuple[open: TPassOpen,
process: TPassProcess,
close: TPassClose,
isFrontend: bool]
proc resetForBackend*(g: ModuleGraph) =
initStrTable(g.compilerprocs)
g.typeInstCache.clear()
g.procInstCache.clear()
for a in mitems(g.attachedOps):
a.clear()
g.methodsPerType.clear()
g.enumToStringProcs.clear()
const
cb64 = [
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N",
"O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9a",
"9b", "9c"]
proc toBase64a(s: cstring, len: int): string =
## encodes `s` into base64 representation.
result = newStringOfCap(((len + 2) div 3) * 4)
result.add "__"
var i = 0
while i < len - 2:
let a = ord(s[i])
let b = ord(s[i+1])
let c = ord(s[i+2])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2) or ((c and 0xC0) shr 6)]
result.add cb64[c and 0x3F]
inc(i, 3)
if i < len-1:
let a = ord(s[i])
let b = ord(s[i+1])
result.add cb64[a shr 2]
result.add cb64[((a and 3) shl 4) or ((b and 0xF0) shr 4)]
result.add cb64[((b and 0x0F) shl 2)]
elif i < len:
let a = ord(s[i])
result.add cb64[a shr 2]
result.add cb64[(a and 3) shl 4]
template interfSelect(iface: Iface, importHidden: bool): TStrTable =
var ret = iface.interf.addr # without intermediate ptr, it creates a copy and compiler becomes 15x slower!
if importHidden: ret = iface.interfHidden.addr
ret[]
template semtab(g: ModuleGraph, m: PSym): TStrTable =
g.ifaces[m.position].interf
template semtabAll*(g: ModuleGraph, m: PSym): TStrTable =
g.ifaces[m.position].interfHidden
proc initStrTables*(g: ModuleGraph, m: PSym) =
initStrTable(semtab(g, m))
initStrTable(semtabAll(g, m))
proc strTableAdds*(g: ModuleGraph, m: PSym, s: PSym) =
strTableAdd(semtab(g, m), s)
strTableAdd(semtabAll(g, m), s)
proc isCachedModule(g: ModuleGraph; module: int): bool {.inline.} =
result = module < g.packed.len and g.packed[module].status == loaded
proc isCachedModule(g: ModuleGraph; m: PSym): bool {.inline.} =
isCachedModule(g, m.position)
proc simulateCachedModule*(g: ModuleGraph; moduleSym: PSym; m: PackedModule) =
when false:
echo "simulating ", moduleSym.name.s, " ", moduleSym.position
simulateLoadedModule(g.packed, g.config, g.cache, moduleSym, m)
proc initEncoder*(g: ModuleGraph; module: PSym) =
let id = module.position
if id >= g.encoders.len:
setLen g.encoders, id+1
ic.initEncoder(g.encoders[id],
g.packed[id].fromDisk, module, g.config, g.startupPackedConfig)
type
ModuleIter* = object
fromRod: bool
modIndex: int
ti: TIdentIter
rodIt: RodIter
importHidden: bool
proc initModuleIter*(mi: var ModuleIter; g: ModuleGraph; m: PSym; name: PIdent): PSym =
assert m.kind == skModule
mi.modIndex = m.position
mi.fromRod = isCachedModule(g, mi.modIndex)
mi.importHidden = optImportHidden in m.options
if mi.fromRod:
result = initRodIter(mi.rodIt, g.config, g.cache, g.packed, FileIndex mi.modIndex, name, mi.importHidden)
else:
result = initIdentIter(mi.ti, g.ifaces[mi.modIndex].interfSelect(mi.importHidden), name)
proc nextModuleIter*(mi: var ModuleIter; g: ModuleGraph): PSym =
if mi.fromRod:
result = nextRodIter(mi.rodIt, g.packed)
else:
result = nextIdentIter(mi.ti, g.ifaces[mi.modIndex].interfSelect(mi.importHidden))
iterator allSyms*(g: ModuleGraph; m: PSym): PSym =
let importHidden = optImportHidden in m.options
if isCachedModule(g, m):
var rodIt: RodIter
var r = initRodIterAllSyms(rodIt, g.config, g.cache, g.packed, FileIndex m.position, importHidden)
while r != nil:
yield r
r = nextRodIter(rodIt, g.packed)
else:
for s in g.ifaces[m.position].interfSelect(importHidden).data:
if s != nil:
yield s
proc someSym*(g: ModuleGraph; m: PSym; name: PIdent): PSym =
let importHidden = optImportHidden in m.options
if isCachedModule(g, m):
result = interfaceSymbol(g.config, g.cache, g.packed, FileIndex(m.position), name, importHidden)
else:
result = strTableGet(g.ifaces[m.position].interfSelect(importHidden), name)
proc systemModuleSym*(g: ModuleGraph; name: PIdent): PSym =
result = someSym(g, g.systemModule, name)
iterator systemModuleSyms*(g: ModuleGraph; name: PIdent): PSym =
var mi: ModuleIter
var r = initModuleIter(mi, g, g.systemModule, name)
while r != nil:
yield r
r = nextModuleIter(mi, g)
proc resolveType(g: ModuleGraph; t: var LazyType): PType =
result = t.typ
if result == nil and isCachedModule(g, t.id.module):
result = loadTypeFromId(g.config, g.cache, g.packed, t.id.module, t.id.packed)
t.typ = result
assert result != nil
proc resolveSym(g: ModuleGraph; t: var LazySym): PSym =
result = t.sym
if result == nil and isCachedModule(g, t.id.module):
result = loadSymFromId(g.config, g.cache, g.packed, t.id.module, t.id.packed)
t.sym = result
assert result != nil
proc resolveInst(g: ModuleGraph; t: var LazyInstantiation): PInstantiation =
result = t.inst
if result == nil and isCachedModule(g, t.module):
result = PInstantiation(sym: loadSymFromId(g.config, g.cache, g.packed, t.sym.module, t.sym.packed))
result.concreteTypes = newSeq[PType](t.concreteTypes.len)
for i in 0..high(result.concreteTypes):
result.concreteTypes[i] = loadTypeFromId(g.config, g.cache, g.packed,
t.concreteTypes[i].module, t.concreteTypes[i].packed)
t.inst = result
assert result != nil
iterator typeInstCacheItems*(g: ModuleGraph; s: PSym): PType =
if g.typeInstCache.contains(s.itemId):
let x = addr(g.typeInstCache[s.itemId])
for t in mitems(x[]):
yield resolveType(g, t)
iterator procInstCacheItems*(g: ModuleGraph; s: PSym): PInstantiation =
if g.procInstCache.contains(s.itemId):
let x = addr(g.procInstCache[s.itemId])
for t in mitems(x[]):
yield resolveInst(g, t)
proc getAttachedOp*(g: ModuleGraph; t: PType; op: TTypeAttachedOp): PSym =
## returns the requested attached operation for type `t`. Can return nil
## if no such operation exists.
result = g.attachedOps[op].getOrDefault(t.itemId)
proc setAttachedOp*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) =
## we also need to record this to the packed module.
g.attachedOps[op][t.itemId] = value
proc setAttachedOpPartial*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) =
## we also need to record this to the packed module.
g.attachedOps[op][t.itemId] = value
# XXX Also add to the packed module!
proc completePartialOp*(g: ModuleGraph; module: int; t: PType; op: TTypeAttachedOp; value: PSym) =
if g.config.symbolFiles != disabledSf:
assert module < g.encoders.len
assert isActive(g.encoders[module])
toPackedGeneratedProcDef(value, g.encoders[module], g.packed[module].fromDisk)
proc getToStringProc*(g: ModuleGraph; t: PType): PSym =
result = resolveSym(g, g.enumToStringProcs[t.itemId])
assert result != nil
proc setToStringProc*(g: ModuleGraph; t: PType; value: PSym) =
g.enumToStringProcs[t.itemId] = LazySym(sym: value)
iterator methodsForGeneric*(g: ModuleGraph; t: PType): (int, PSym) =
if g.methodsPerType.contains(t.itemId):
for it in mitems g.methodsPerType[t.itemId]:
yield (it[0], resolveSym(g, it[1]))
proc addMethodToGeneric*(g: ModuleGraph; module: int; t: PType; col: int; m: PSym) =
g.methodsPerType.mgetOrPut(t.itemId, @[]).add (col, LazySym(sym: m))
proc hasDisabledAsgn*(g: ModuleGraph; t: PType): bool =
let op = getAttachedOp(g, t, attachedAsgn)
result = op != nil and sfError in op.flags
proc copyTypeProps*(g: ModuleGraph; module: int; dest, src: PType) =
for k in low(TTypeAttachedOp)..high(TTypeAttachedOp):
let op = getAttachedOp(g, src, k)
if op != nil:
setAttachedOp(g, module, dest, k, op)
proc loadCompilerProc*(g: ModuleGraph; name: string): PSym =
if g.config.symbolFiles == disabledSf: return nil
# slow, linear search, but the results are cached:
for module in 0..high(g.packed):
#if isCachedModule(g, module):
let x = searchForCompilerproc(g.packed[module], name)
if x >= 0:
result = loadSymFromId(g.config, g.cache, g.packed, module, toPackedItemId(x))
if result != nil:
strTableAdd(g.compilerprocs, result)
return result
proc loadPackedSym*(g: ModuleGraph; s: var LazySym) =
if s.sym == nil:
s.sym = loadSymFromId(g.config, g.cache, g.packed, s.id.module, s.id.packed)
proc `$`*(u: SigHash): string =
toBase64a(cast[cstring](unsafeAddr u), sizeof(u))
proc `==`*(a, b: SigHash): bool =
result = equalMem(unsafeAddr a, unsafeAddr b, sizeof(a))
proc hash*(u: SigHash): Hash =
result = 0
for x in 0..3:
result = (result shl 8) or u.MD5Digest[x].int
proc hash*(x: FileIndex): Hash {.borrow.}
template getPContext(): untyped =
when c is PContext: c
else: c.c
when defined(nimfind):
template onUse*(info: TLineInfo; s: PSym) =
let c = getPContext()
if c.graph.onUsage != nil: c.graph.onUsage(c.graph, s, info)
template onDef*(info: TLineInfo; s: PSym) =
let c = getPContext()
if c.graph.onDefinition != nil: c.graph.onDefinition(c.graph, s, info)
template onDefResolveForward*(info: TLineInfo; s: PSym) =
let c = getPContext()
if c.graph.onDefinitionResolveForward != nil:
c.graph.onDefinitionResolveForward(c.graph, s, info)
else:
when defined(nimsuggest):
template onUse*(info: TLineInfo; s: PSym) = discard
template onDef*(info: TLineInfo; s: PSym) =
let c = getPContext()
if c.graph.config.suggestVersion == 3:
suggestSym(c.graph, info, s, c.graph.usageSym)
template onDefResolveForward*(info: TLineInfo; s: PSym) = discard
else:
template onUse*(info: TLineInfo; s: PSym) = discard
template onDef*(info: TLineInfo; s: PSym) = discard
template onDefResolveForward*(info: TLineInfo; s: PSym) = discard
proc stopCompile*(g: ModuleGraph): bool {.inline.} =
result = g.doStopCompile != nil and g.doStopCompile()
proc createMagic*(g: ModuleGraph; idgen: IdGenerator; name: string, m: TMagic): PSym =
result = newSym(skProc, getIdent(g.cache, name), nextSymId(idgen), nil, unknownLineInfo, {})
result.magic = m
result.flags = {sfNeverRaises}
proc createMagic(g: ModuleGraph; name: string, m: TMagic): PSym =
result = createMagic(g, g.idgen, name, m)
proc registerModule*(g: ModuleGraph; m: PSym) =
assert m != nil
assert m.kind == skModule
if m.position >= g.ifaces.len:
setLen(g.ifaces, m.position + 1)
if m.position >= g.packed.len:
setLen(g.packed, m.position + 1)
g.ifaces[m.position] = Iface(module: m, converters: @[], patterns: @[],
uniqueName: rope(uniqueModuleName(g.config, FileIndex(m.position))))
initStrTables(g, m)
proc registerModuleById*(g: ModuleGraph; m: FileIndex) =
registerModule(g, g.packed[int m].module)
proc initOperators*(g: ModuleGraph): Operators =
# These are safe for IC.
# Public because it's used by DrNim.
result.opLe = createMagic(g, "<=", mLeI)
result.opLt = createMagic(g, "<", mLtI)
result.opAnd = createMagic(g, "and", mAnd)
result.opOr = createMagic(g, "or", mOr)
result.opIsNil = createMagic(g, "isnil", mIsNil)
result.opEq = createMagic(g, "==", mEqI)
result.opAdd = createMagic(g, "+", mAddI)
result.opSub = createMagic(g, "-", mSubI)
result.opMul = createMagic(g, "*", mMulI)
result.opDiv = createMagic(g, "div", mDivI)
result.opLen = createMagic(g, "len", mLengthSeq)
result.opNot = createMagic(g, "not", mNot)
result.opContains = createMagic(g, "contains", mInSet)
proc initModuleGraphFields(result: ModuleGraph) =
# A module ID of -1 means that the symbol is not attached to a module at all,
# but to the module graph:
result.idgen = IdGenerator(module: -1'i32, symId: 0'i32, typeId: 0'i32)
initStrTable(result.packageSyms)
result.deps = initIntSet()
result.importDeps = initTable[FileIndex, seq[FileIndex]]()
result.ifaces = @[]
result.importStack = @[]
result.inclToMod = initTable[FileIndex, FileIndex]()
result.owners = @[]
result.suggestSymbols = initTable[FileIndex, seq[tuple[sym: PSym, info: TLineInfo]]]()
result.suggestErrors = initTable[FileIndex, seq[Suggest]]()
result.methods = @[]
initStrTable(result.compilerprocs)
initStrTable(result.exposed)
initStrTable(result.packageTypes)
result.emptyNode = newNode(nkEmpty)
result.cacheSeqs = initTable[string, PNode]()
result.cacheCounters = initTable[string, BiggestInt]()
result.cacheTables = initTable[string, BTree[string, PNode]]()
result.canonTypes = initTable[SigHash, PType]()
result.symBodyHashes = initTable[int, SigHash]()
result.operators = initOperators(result)
result.emittedTypeInfo = initTable[string, FileIndex]()
proc newModuleGraph*(cache: IdentCache; config: ConfigRef): ModuleGraph =
result = ModuleGraph()
result.config = config
result.cache = cache
initModuleGraphFields(result)
proc resetAllModules*(g: ModuleGraph) =
initStrTable(g.packageSyms)
g.deps = initIntSet()
g.ifaces = @[]
g.importStack = @[]
g.inclToMod = initTable[FileIndex, FileIndex]()
g.usageSym = nil
g.owners = @[]
g.methods = @[]
initStrTable(g.compilerprocs)
initStrTable(g.exposed)
initModuleGraphFields(g)
proc getModule*(g: ModuleGraph; fileIdx: FileIndex): PSym =
if fileIdx.int32 >= 0:
if isCachedModule(g, fileIdx.int32):
result = g.packed[fileIdx.int32].module
elif fileIdx.int32 < g.ifaces.len:
result = g.ifaces[fileIdx.int32].module
proc moduleOpenForCodegen*(g: ModuleGraph; m: FileIndex): bool {.inline.} =
if g.config.symbolFiles == disabledSf:
result = true
else:
result = g.packed[m.int32].status notin {undefined, stored, loaded}
proc rememberEmittedTypeInfo*(g: ModuleGraph; m: FileIndex; ti: string) =
#assert(not isCachedModule(g, m.int32))
if g.config.symbolFiles != disabledSf:
#assert g.encoders[m.int32].isActive
assert g.packed[m.int32].status != stored
g.packed[m.int32].fromDisk.emittedTypeInfo.add ti
#echo "added typeinfo ", m.int32, " ", ti, " suspicious ", not g.encoders[m.int32].isActive
proc rememberFlag*(g: ModuleGraph; m: PSym; flag: ModuleBackendFlag) =
if g.config.symbolFiles != disabledSf:
#assert g.encoders[m.int32].isActive
assert g.packed[m.position].status != stored
g.packed[m.position].fromDisk.backendFlags.incl flag
proc closeRodFile*(g: ModuleGraph; m: PSym) =
if g.config.symbolFiles in {readOnlySf, v2Sf}:
# For stress testing we seek to reload the symbols from memory. This
# way much of the logic is tested but the test is reproducible as it does
# not depend on the hard disk contents!
let mint = m.position
saveRodFile(toRodFile(g.config, AbsoluteFile toFullPath(g.config, FileIndex(mint))),
g.encoders[mint], g.packed[mint].fromDisk)
g.packed[mint].status = stored
elif g.config.symbolFiles == stressTest:
# debug code, but maybe a good idea for production? Could reduce the compiler's
# memory consumption considerably at the cost of more loads from disk.
let mint = m.position
simulateCachedModule(g, m, g.packed[mint].fromDisk)
g.packed[mint].status = loaded
proc dependsOn(a, b: int): int {.inline.} = (a shl 15) + b
proc addDep*(g: ModuleGraph; m: PSym, dep: FileIndex) =
assert m.position == m.info.fileIndex.int32
if g.suggestMode:
g.deps.incl m.position.dependsOn(dep.int)
# we compute the transitive closure later when querying the graph lazily.
# this improves efficiency quite a lot:
#invalidTransitiveClosure = true
proc addIncludeDep*(g: ModuleGraph; module, includeFile: FileIndex) =
discard hasKeyOrPut(g.inclToMod, includeFile, module)
proc parentModule*(g: ModuleGraph; fileIdx: FileIndex): FileIndex =
## returns 'fileIdx' if the file belonging to this index is
## directly used as a module or else the module that first
## references this include file.
if fileIdx.int32 >= 0 and fileIdx.int32 < g.ifaces.len and g.ifaces[fileIdx.int32].module != nil:
result = fileIdx
else:
result = g.inclToMod.getOrDefault(fileIdx)
proc transitiveClosure(g: var IntSet; n: int) =
# warshall's algorithm
for k in 0..<n:
for i in 0..<n:
for j in 0..<n:
if i != j and not g.contains(i.dependsOn(j)):
if g.contains(i.dependsOn(k)) and g.contains(k.dependsOn(j)):
g.incl i.dependsOn(j)
proc markDirty*(g: ModuleGraph; fileIdx: FileIndex) =
let m = g.getModule fileIdx
if m != nil:
g.suggestSymbols.del(fileIdx)
g.suggestErrors.del(fileIdx)
incl m.flags, sfDirty
proc unmarkAllDirty*(g: ModuleGraph) =
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil:
m.flags.excl sfDirty
proc isDirty*(g: ModuleGraph; m: PSym): bool =
result = g.suggestMode and sfDirty in m.flags
proc markClientsDirty*(g: ModuleGraph; fileIdx: FileIndex) =
# we need to mark its dependent modules D as dirty right away because after
# nimsuggest is done with this module, the module's dirty flag will be
# cleared but D still needs to be remembered as 'dirty'.
if g.invalidTransitiveClosure:
g.invalidTransitiveClosure = false
transitiveClosure(g.deps, g.ifaces.len)
# every module that *depends* on this file is also dirty:
for i in 0i32..<g.ifaces.len.int32:
if g.deps.contains(i.dependsOn(fileIdx.int)):
g.markDirty(FileIndex(i))
proc needsCompilation*(g: ModuleGraph): bool =
# every module that *depends* on this file is also dirty:
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil:
if sfDirty in m.flags:
return true
proc needsCompilation*(g: ModuleGraph, fileIdx: FileIndex): bool =
let module = g.getModule(fileIdx)
if module != nil and g.isDirty(module):
return true
for i in 0i32..<g.ifaces.len.int32:
let m = g.ifaces[i].module
if m != nil and g.isDirty(m) and g.deps.contains(fileIdx.int32.dependsOn(i)):
return true
proc getBody*(g: ModuleGraph; s: PSym): PNode {.inline.} =
result = s.ast[bodyPos]
if result == nil and g.config.symbolFiles in {readOnlySf, v2Sf, stressTest}:
result = loadProcBody(g.config, g.cache, g.packed, s)
s.ast[bodyPos] = result
assert result != nil
proc moduleFromRodFile*(g: ModuleGraph; fileIdx: FileIndex;
cachedModules: var seq[FileIndex]): PSym =
## Returns 'nil' if the module needs to be recompiled.
if g.config.symbolFiles in {readOnlySf, v2Sf, stressTest}:
result = moduleFromRodFile(g.packed, g.config, g.cache, fileIdx, cachedModules)
proc configComplete*(g: ModuleGraph) =
rememberStartupConfig(g.startupPackedConfig, g.config)
from std/strutils import repeat, `%`
proc onProcessing*(graph: ModuleGraph, fileIdx: FileIndex, moduleStatus: string, fromModule: PSym, ) =
let conf = graph.config
let isNimscript = conf.isDefined("nimscript")
if (not isNimscript) or hintProcessing in conf.cmdlineNotes:
let path = toFilenameOption(conf, fileIdx, conf.filenameOption)
let indent = ">".repeat(graph.importStack.len)
let fromModule2 = if fromModule != nil: $fromModule.name.s else: "(toplevel)"
let mode = if isNimscript: "(nims) " else: ""
rawMessage(conf, hintProcessing, "$#$# $#: $#: $#" % [mode, indent, fromModule2, moduleStatus, path])
proc getPackage*(graph: ModuleGraph; fileIdx: FileIndex): PSym =
## Returns a package symbol for yet to be defined module for fileIdx.
## The package symbol is added to the graph if it doesn't exist.
let pkgSym = getPackage(graph.config, graph.cache, fileIdx)
# check if the package is already in the graph
result = graph.packageSyms.strTableGet(pkgSym.name)
if result == nil:
# the package isn't in the graph, so create and add it
result = pkgSym
graph.packageSyms.strTableAdd(pkgSym)
func belongsToStdlib*(graph: ModuleGraph, sym: PSym): bool =
## Check if symbol belongs to the 'stdlib' package.
sym.getPackageSymbol.getPackageId == graph.systemModule.getPackageId
iterator suggestSymbolsIter*(g: ModuleGraph): tuple[sym: PSym, info: TLineInfo] =
for xs in g.suggestSymbols.values:
for x in xs.deduplicate:
yield x
iterator suggestErrorsIter*(g: ModuleGraph): Suggest =
for xs in g.suggestErrors.values:
for x in xs:
yield x