Files
Nim/compiler/semmagic.nim
quantimnot 800cb006e7 Change styleCheck to ignore foreign packages (#19822)
* Change `styleCheck` to ignore foreign packages

* Symbols from foreign packages are now ignored.
* Fixed `styleCheck` violations in `compiler` package.
* Added symbol ownership to custom annotation pragmas.
* Minor refactors to cleanup style check callsites.
* Minor internal documentation of reasons why a symbol isn't checked.

Style violations were fixed in the compiler after thet were exposed by
the changes. The compiler wouldn't compile otherwise.

Symbol ownership for custom pragma annotations is needed for checking
the annotation's style. A NPE was raised otherwise.

Fixes #10201
See also nim-lang/RFCs#456

* Fix a misunderstanding about excluding field style checks

I had refactored the callsites of `styleCheckUse` to apply the DRY
principle, but I misunderstood the field access handling in a template
as a general case. This corrects it.

* Fix some `styleCheck` violations in `compiler/evalffi`

The violations were exposed in CI when the compiler was built with
libffi.

* Removed some uneeded transitionary code

* Add changelog entry

Co-authored-by: quantimnot <quantimnot@users.noreply.github.com>
2022-07-14 14:20:40 +02:00

583 lines
21 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This include file implements the semantic checking for magics.
# included from sem.nim
proc semAddrArg(c: PContext; n: PNode): PNode =
let x = semExprWithType(c, n)
if x.kind == nkSym:
x.sym.flags.incl(sfAddrTaken)
if isAssignable(c, x) notin {arLValue, arLocalLValue, arAddressableConst, arLentValue}:
localError(c.config, n.info, errExprHasNoAddress)
result = x
proc semTypeOf(c: PContext; n: PNode): PNode =
var m = BiggestInt 1 # typeOfIter
if n.len == 3:
let mode = semConstExpr(c, n[2])
if mode.kind != nkIntLit:
localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
else:
m = mode.intVal
result = newNodeI(nkTypeOfExpr, n.info)
let typExpr = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
result.add typExpr
result.typ = makeTypeDesc(c, typExpr.typ)
type
SemAsgnMode = enum asgnNormal, noOverloadedSubscript, noOverloadedAsgn
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semArrGet(c: PContext; n: PNode; flags: TExprFlags): PNode =
result = newNodeI(nkBracketExpr, n.info)
for i in 1..<n.len: result.add(n[i])
result = semSubscript(c, result, flags)
if result.isNil:
let x = copyTree(n)
x[0] = newIdentNode(getIdent(c.cache, "[]"), n.info)
bracketNotFoundError(c, x)
#localError(c.config, n.info, "could not resolve: " & $n)
result = n
proc semArrPut(c: PContext; n: PNode; flags: TExprFlags): PNode =
# rewrite `[]=`(a, i, x) back to ``a[i] = x``.
let b = newNodeI(nkBracketExpr, n.info)
b.add(n[1].skipAddr)
for i in 2..<n.len-1: b.add(n[i])
result = newNodeI(nkAsgn, n.info, 2)
result[0] = b
result[1] = n.lastSon
result = semAsgn(c, result, noOverloadedSubscript)
proc semAsgnOpr(c: PContext; n: PNode): PNode =
result = newNodeI(nkAsgn, n.info, 2)
result[0] = n[1]
result[1] = n[2]
result = semAsgn(c, result, noOverloadedAsgn)
proc semIsPartOf(c: PContext, n: PNode, flags: TExprFlags): PNode =
var r = isPartOf(n[1], n[2])
result = newIntNodeT(toInt128(ord(r)), n, c.idgen, c.graph)
proc expectIntLit(c: PContext, n: PNode): int =
let x = c.semConstExpr(c, n)
case x.kind
of nkIntLit..nkInt64Lit: result = int(x.intVal)
else: localError(c.config, n.info, errIntLiteralExpected)
proc semInstantiationInfo(c: PContext, n: PNode): PNode =
result = newNodeIT(nkTupleConstr, n.info, n.typ)
let idx = expectIntLit(c, n[1])
let useFullPaths = expectIntLit(c, n[2])
let info = getInfoContext(c.config, idx)
var filename = newNodeIT(nkStrLit, n.info, getSysType(c.graph, n.info, tyString))
filename.strVal = if useFullPaths != 0: toFullPath(c.config, info) else: toFilename(c.config, info)
var line = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
line.intVal = toLinenumber(info)
var column = newNodeIT(nkIntLit, n.info, getSysType(c.graph, n.info, tyInt))
column.intVal = toColumn(info)
# filename: string, line: int, column: int
result.add(newTree(nkExprColonExpr, n.typ.n[0], filename))
result.add(newTree(nkExprColonExpr, n.typ.n[1], line))
result.add(newTree(nkExprColonExpr, n.typ.n[2], column))
proc toNode(t: PType, i: TLineInfo): PNode =
result = newNodeIT(nkType, i, t)
const
# these are types that use the bracket syntax for instantiation
# they can be subjected to the type traits `genericHead` and
# `Uninstantiated`
tyUserDefinedGenerics* = {tyGenericInst, tyGenericInvocation,
tyUserTypeClassInst}
tyMagicGenerics* = {tySet, tySequence, tyArray, tyOpenArray}
tyGenericLike* = tyUserDefinedGenerics +
tyMagicGenerics +
{tyCompositeTypeClass}
proc uninstantiate(t: PType): PType =
result = case t.kind
of tyMagicGenerics: t
of tyUserDefinedGenerics: t.base
of tyCompositeTypeClass: uninstantiate t[1]
else: t
proc getTypeDescNode(c: PContext; typ: PType, sym: PSym, info: TLineInfo): PNode =
var resType = newType(tyTypeDesc, nextTypeId c.idgen, sym)
rawAddSon(resType, typ)
result = toNode(resType, info)
proc evalTypeTrait(c: PContext; traitCall: PNode, operand: PType, context: PSym): PNode =
const skippedTypes = {tyTypeDesc, tyAlias, tySink}
let trait = traitCall[0]
internalAssert c.config, trait.kind == nkSym
var operand = operand.skipTypes(skippedTypes)
template operand2: PType =
traitCall[2].typ.skipTypes({tyTypeDesc})
template typeWithSonsResult(kind, sons): PNode =
newTypeWithSons(context, kind, sons, c.idgen).toNode(traitCall.info)
if operand.kind == tyGenericParam or (traitCall.len > 2 and operand2.kind == tyGenericParam):
return traitCall ## too early to evaluate
let s = trait.sym.name.s
case s
of "or", "|":
return typeWithSonsResult(tyOr, @[operand, operand2])
of "and":
return typeWithSonsResult(tyAnd, @[operand, operand2])
of "not":
return typeWithSonsResult(tyNot, @[operand])
of "typeToString":
var prefer = preferTypeName
if traitCall.len >= 2:
let preferStr = traitCall[2].strVal
prefer = parseEnum[TPreferedDesc](preferStr)
result = newStrNode(nkStrLit, operand.typeToString(prefer))
result.typ = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "name", "$":
result = newStrNode(nkStrLit, operand.typeToString(preferTypeName))
result.typ = getSysType(c.graph, traitCall[1].info, tyString)
result.info = traitCall.info
of "arity":
result = newIntNode(nkIntLit, operand.len - ord(operand.kind==tyProc))
result.typ = newType(tyInt, nextTypeId c.idgen, context)
result.info = traitCall.info
of "genericHead":
var arg = operand
case arg.kind
of tyGenericInst:
result = getTypeDescNode(c, arg.base, operand.owner, traitCall.info)
# of tySequence: # this doesn't work
# var resType = newType(tySequence, operand.owner)
# result = toNode(resType, traitCall.info) # doesn't work yet
else:
localError(c.config, traitCall.info, "expected generic type, got: type $2 of kind $1" % [arg.kind.toHumanStr, typeToString(operand)])
result = newType(tyError, nextTypeId c.idgen, context).toNode(traitCall.info)
of "stripGenericParams":
result = uninstantiate(operand).toNode(traitCall.info)
of "supportsCopyMem":
let t = operand.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
let complexObj = containsGarbageCollectedRef(t) or
hasDestructor(t)
result = newIntNodeT(toInt128(ord(not complexObj)), traitCall, c.idgen, c.graph)
of "isNamedTuple":
var operand = operand.skipTypes({tyGenericInst})
let cond = operand.kind == tyTuple and operand.n != nil
result = newIntNodeT(toInt128(ord(cond)), traitCall, c.idgen, c.graph)
of "tupleLen":
var operand = operand.skipTypes({tyGenericInst})
assert operand.kind == tyTuple, $operand.kind
result = newIntNodeT(toInt128(operand.len), traitCall, c.idgen, c.graph)
of "distinctBase":
var arg = operand.skipTypes({tyGenericInst})
let rec = semConstExpr(c, traitCall[2]).intVal != 0
while arg.kind == tyDistinct:
arg = arg.base.skipTypes(skippedTypes + {tyGenericInst})
if not rec: break
result = getTypeDescNode(c, arg, operand.owner, traitCall.info)
else:
localError(c.config, traitCall.info, "unknown trait: " & s)
result = newNodeI(nkEmpty, traitCall.info)
proc semTypeTraits(c: PContext, n: PNode): PNode =
checkMinSonsLen(n, 2, c.config)
let t = n[1].typ
internalAssert c.config, t != nil and t.kind == tyTypeDesc
if t.len > 0:
# This is either a type known to sem or a typedesc
# param to a regular proc (again, known at instantiation)
result = evalTypeTrait(c, n, t, getCurrOwner(c))
else:
# a typedesc variable, pass unmodified to evals
result = n
proc semOrd(c: PContext, n: PNode): PNode =
result = n
let parType = n[1].typ
if isOrdinalType(parType, allowEnumWithHoles=true):
discard
else:
localError(c.config, n.info, errOrdinalTypeExpected)
result.typ = errorType(c)
proc semBindSym(c: PContext, n: PNode): PNode =
result = copyNode(n)
result.add(n[0])
let sl = semConstExpr(c, n[1])
if sl.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit}:
return localErrorNode(c, n, n[1].info, errStringLiteralExpected)
let isMixin = semConstExpr(c, n[2])
if isMixin.kind != nkIntLit or isMixin.intVal < 0 or
isMixin.intVal > high(TSymChoiceRule).int:
return localErrorNode(c, n, n[2].info, errConstExprExpected)
let id = newIdentNode(getIdent(c.cache, sl.strVal), n.info)
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
var sc = symChoice(c, id, s, TSymChoiceRule(isMixin.intVal))
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
return sc
result.add(sc)
else:
errorUndeclaredIdentifier(c, n[1].info, sl.strVal)
proc opBindSym(c: PContext, scope: PScope, n: PNode, isMixin: int, info: PNode): PNode =
if n.kind notin {nkStrLit, nkRStrLit, nkTripleStrLit, nkIdent}:
return localErrorNode(c, n, info.info, errStringOrIdentNodeExpected)
if isMixin < 0 or isMixin > high(TSymChoiceRule).int:
return localErrorNode(c, n, info.info, errConstExprExpected)
let id = if n.kind == nkIdent: n
else: newIdentNode(getIdent(c.cache, n.strVal), info.info)
let tmpScope = c.currentScope
c.currentScope = scope
let s = qualifiedLookUp(c, id, {checkUndeclared})
if s != nil:
# we need to mark all symbols:
result = symChoice(c, id, s, TSymChoiceRule(isMixin))
else:
errorUndeclaredIdentifier(c, info.info, if n.kind == nkIdent: n.ident.s
else: n.strVal)
c.currentScope = tmpScope
proc semDynamicBindSym(c: PContext, n: PNode): PNode =
# inside regular code, bindSym resolves to the sym-choice
# nodes (see tinspectsymbol)
if not (c.inStaticContext > 0 or getCurrOwner(c).isCompileTimeProc):
return semBindSym(c, n)
if c.graph.vm.isNil:
setupGlobalCtx(c.module, c.graph, c.idgen)
let
vm = PCtx c.graph.vm
# cache the current scope to
# prevent it lost into oblivion
scope = c.currentScope
# cannot use this
# vm.config.features.incl dynamicBindSym
proc bindSymWrapper(a: VmArgs) =
# capture PContext and currentScope
# param description:
# 0. ident, a string literal / computed string / or ident node
# 1. bindSym rule
# 2. info node
a.setResult opBindSym(c, scope, a.getNode(0), a.getInt(1).int, a.getNode(2))
let
# although we use VM callback here, it is not
# executed like 'normal' VM callback
idx = vm.registerCallback("bindSymImpl", bindSymWrapper)
# dummy node to carry idx information to VM
idxNode = newIntTypeNode(idx, c.graph.getSysType(TLineInfo(), tyInt))
result = copyNode(n)
for x in n: result.add x
result.add n # info node
result.add idxNode
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode
proc semOf(c: PContext, n: PNode): PNode =
if n.len == 3:
n[1] = semExprWithType(c, n[1])
n[2] = semExprWithType(c, n[2], {efDetermineType})
#restoreOldStyleType(n[1])
#restoreOldStyleType(n[2])
let a = skipTypes(n[1].typ, abstractPtrs)
let b = skipTypes(n[2].typ, abstractPtrs)
let x = skipTypes(n[1].typ, abstractPtrs-{tyTypeDesc})
let y = skipTypes(n[2].typ, abstractPtrs-{tyTypeDesc})
if x.kind == tyTypeDesc or y.kind != tyTypeDesc:
localError(c.config, n.info, "'of' takes object types")
elif b.kind != tyObject or a.kind != tyObject:
localError(c.config, n.info, "'of' takes object types")
else:
let diff = inheritanceDiff(a, b)
# | returns: 0 iff `a` == `b`
# | returns: -x iff `a` is the x'th direct superclass of `b`
# | returns: +x iff `a` is the x'th direct subclass of `b`
# | returns: `maxint` iff `a` and `b` are not compatible at all
if diff <= 0:
# optimize to true:
message(c.config, n.info, hintConditionAlwaysTrue, renderTree(n))
result = newIntNode(nkIntLit, 1)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
return result
elif diff == high(int):
if commonSuperclass(a, b) == nil:
localError(c.config, n.info, "'$1' cannot be of this subtype" % typeToString(a))
else:
message(c.config, n.info, hintConditionAlwaysFalse, renderTree(n))
result = newIntNode(nkIntLit, 0)
result.info = n.info
result.typ = getSysType(c.graph, n.info, tyBool)
else:
localError(c.config, n.info, "'of' takes 2 arguments")
n.typ = getSysType(c.graph, n.info, tyBool)
result = n
proc semUnown(c: PContext; n: PNode): PNode =
proc unownedType(c: PContext; t: PType): PType =
case t.kind
of tyTuple:
var elems = newSeq[PType](t.len)
var someChange = false
for i in 0..<t.len:
elems[i] = unownedType(c, t[i])
if elems[i] != t[i]: someChange = true
if someChange:
result = newType(tyTuple, nextTypeId c.idgen, t.owner)
# we have to use 'rawAddSon' here so that type flags are
# properly computed:
for e in elems: result.rawAddSon(e)
else:
result = t
of tyOwned: result = t[0]
of tySequence, tyOpenArray, tyArray, tyVarargs, tyVar, tyLent,
tyGenericInst, tyAlias:
let b = unownedType(c, t[^1])
if b != t[^1]:
result = copyType(t, nextTypeId c.idgen, t.owner)
copyTypeProps(c.graph, c.idgen.module, result, t)
result[^1] = b
result.flags.excl tfHasOwned
else:
result = t
else:
result = t
result = copyTree(n[1])
result.typ = unownedType(c, result.typ)
# little hack for injectdestructors.nim (see bug #11350):
#result[0].typ = nil
proc turnFinalizerIntoDestructor(c: PContext; orig: PSym; info: TLineInfo): PSym =
# We need to do 2 things: Replace n.typ which is a 'ref T' by a 'var T' type.
# Replace nkDerefExpr by nkHiddenDeref
# nkDeref is for 'ref T': x[].field
# nkHiddenDeref is for 'var T': x<hidden deref [] here>.field
proc transform(c: PContext; procSym: PSym; n: PNode; old, fresh: PType; oldParam, newParam: PSym): PNode =
result = shallowCopy(n)
if sameTypeOrNil(n.typ, old):
result.typ = fresh
if n.kind == nkSym:
if n.sym == oldParam:
result.sym = newParam
elif n.sym.owner == orig:
result.sym = copySym(n.sym, nextSymId c.idgen)
result.sym.owner = procSym
for i in 0 ..< safeLen(n):
result[i] = transform(c, procSym, n[i], old, fresh, oldParam, newParam)
#if n.kind == nkDerefExpr and sameType(n[0].typ, old):
# result =
result = copySym(orig, nextSymId c.idgen)
result.info = info
result.flags.incl sfFromGeneric
result.owner = orig
let origParamType = orig.typ[1]
let newParamType = makeVarType(result, origParamType.skipTypes(abstractPtrs), c.idgen)
let oldParam = orig.typ.n[1].sym
let newParam = newSym(skParam, oldParam.name, nextSymId c.idgen, result, result.info)
newParam.typ = newParamType
# proc body:
result.ast = transform(c, result, orig.ast, origParamType, newParamType, oldParam, newParam)
# proc signature:
result.typ = newProcType(result.info, nextTypeId c.idgen, result)
result.typ.addParam newParam
proc semQuantifier(c: PContext; n: PNode): PNode =
checkSonsLen(n, 2, c.config)
openScope(c)
result = newNodeIT(n.kind, n.info, n.typ)
result.add n[0]
let args = n[1]
assert args.kind == nkArgList
for i in 0..args.len-2:
let it = args[i]
var valid = false
if it.kind == nkInfix:
let op = considerQuotedIdent(c, it[0])
if op.id == ord(wIn):
let v = newSymS(skForVar, it[1], c)
styleCheckDef(c, v)
onDef(it[1].info, v)
let domain = semExprWithType(c, it[2], {efWantIterator})
v.typ = domain.typ
valid = true
addDecl(c, v)
result.add newTree(nkInfix, it[0], newSymNode(v), domain)
if not valid:
localError(c.config, n.info, "<quantifier> 'in' <range> expected")
result.add forceBool(c, semExprWithType(c, args[^1]))
closeScope(c)
proc semOld(c: PContext; n: PNode): PNode =
if n[1].kind == nkHiddenDeref:
n[1] = n[1][0]
if n[1].kind != nkSym or n[1].sym.kind != skParam:
localError(c.config, n[1].info, "'old' takes a parameter name")
elif n[1].sym.owner != getCurrOwner(c):
localError(c.config, n[1].info, n[1].sym.name.s & " does not belong to " & getCurrOwner(c).name.s)
result = n
proc semPrivateAccess(c: PContext, n: PNode): PNode =
let t = n[1].typ[0].toObjectFromRefPtrGeneric
c.currentScope.allowPrivateAccess.add t.sym
result = newNodeIT(nkEmpty, n.info, getSysType(c.graph, n.info, tyVoid))
proc magicsAfterOverloadResolution(c: PContext, n: PNode,
flags: TExprFlags): PNode =
## This is the preferred code point to implement magics.
## ``c`` the current module, a symbol table to a very good approximation
## ``n`` the ast like it would be passed to a real macro
## ``flags`` Some flags for more contextual information on how the
## "macro" is calld.
case n[0].sym.magic
of mAddr:
checkSonsLen(n, 2, c.config)
result = n
result[1] = semAddrArg(c, n[1])
result.typ = makePtrType(c, result[1].typ)
of mTypeOf:
result = semTypeOf(c, n)
of mSizeOf:
result = foldSizeOf(c.config, n, n)
of mAlignOf:
result = foldAlignOf(c.config, n, n)
of mOffsetOf:
result = foldOffsetOf(c.config, n, n)
of mArrGet:
result = semArrGet(c, n, flags)
of mArrPut:
result = semArrPut(c, n, flags)
of mAsgn:
if n[0].sym.name.s == "=":
result = semAsgnOpr(c, n)
else:
result = semShallowCopy(c, n, flags)
of mIsPartOf: result = semIsPartOf(c, n, flags)
of mTypeTrait: result = semTypeTraits(c, n)
of mAstToStr:
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
result.typ = getSysType(c.graph, n.info, tyString)
of mInstantiationInfo: result = semInstantiationInfo(c, n)
of mOrd: result = semOrd(c, n)
of mOf: result = semOf(c, n)
of mHigh, mLow: result = semLowHigh(c, n, n[0].sym.magic)
of mShallowCopy: result = semShallowCopy(c, n, flags)
of mNBindSym:
if dynamicBindSym notin c.features:
result = semBindSym(c, n)
else:
result = semDynamicBindSym(c, n)
of mProcCall:
result = n
result.typ = n[1].typ
of mDotDot:
result = n
of mPlugin:
let plugin = getPlugin(c.cache, n[0].sym)
if plugin.isNil:
localError(c.config, n.info, "cannot find plugin " & n[0].sym.name.s)
result = n
else:
result = plugin(c, n)
of mNewFinalize:
# Make sure the finalizer procedure refers to a procedure
if n[^1].kind == nkSym and n[^1].sym.kind notin {skProc, skFunc}:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
elif optTinyRtti in c.config.globalOptions:
let nfin = skipConvCastAndClosure(n[^1])
let fin = case nfin.kind
of nkSym: nfin.sym
of nkLambda, nkDo: nfin[namePos].sym
else:
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
nil
if fin != nil:
if fin.kind notin {skProc, skFunc}:
# calling convention is checked in codegen
localError(c.config, n.info, "finalizer must be a direct reference to a proc")
# check if we converted this finalizer into a destructor already:
let t = whereToBindTypeHook(c, fin.typ[1].skipTypes(abstractInst+{tyRef}))
if t != nil and getAttachedOp(c.graph, t, attachedDestructor) != nil and
getAttachedOp(c.graph, t, attachedDestructor).owner == fin:
discard "already turned this one into a finalizer"
else:
bindTypeHook(c, turnFinalizerIntoDestructor(c, fin, n.info), n, attachedDestructor)
result = n
of mDestroy:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedDestructor)
if op != nil:
result[0] = newSymNode(op)
of mTrace:
result = n
let t = n[1].typ.skipTypes(abstractVar)
let op = getAttachedOp(c.graph, t, attachedTrace)
if op != nil:
result[0] = newSymNode(op)
of mUnown:
result = semUnown(c, n)
of mExists, mForall:
result = semQuantifier(c, n)
of mOld:
result = semOld(c, n)
of mSetLengthSeq:
result = n
let seqType = result[1].typ.skipTypes({tyPtr, tyRef, # in case we had auto-dereferencing
tyVar, tyGenericInst, tyOwned, tySink,
tyAlias, tyUserTypeClassInst})
if seqType.kind == tySequence and seqType.base.requiresInit:
message(c.config, n.info, warnUnsafeSetLen, typeToString(seqType.base))
of mDefault:
result = n
c.config.internalAssert result[1].typ.kind == tyTypeDesc
let constructed = result[1].typ.base
if constructed.requiresInit:
message(c.config, n.info, warnUnsafeDefault, typeToString(constructed))
of mIsolate:
if not checkIsolate(n[1]):
localError(c.config, n.info, "expression cannot be isolated: " & $n[1])
result = n
of mPred:
if n[1].typ.skipTypes(abstractInst).kind in {tyUInt..tyUInt64}:
n[0].sym.magic = mSubU
result = n
of mPrivateAccess:
result = semPrivateAccess(c, n)
else:
result = n