Files
Nim/lib/system/sysstr.nim
Jacek Sieka 91febf1f4c Ensure channels don't leak exception effects (#25318)
The forward declarations cause `Exception` to be inferred - also,
`llrecv` is an internal implementation detail and the type of the
received item is controlled by generics, thus the ValueError raised
there seems out of place for the generic api.
2025-12-01 22:59:26 +01:00

363 lines
13 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# string & sequence handling procedures needed by the code generator
# strings are dynamically resized, have a length field
# and are zero-terminated, so they can be casted to C
# strings easily
# we don't use refcounts because that's a behaviour
# the programmer may not want
{.push raises: [], gcsafe.}
proc dataPointer(a: PGenericSeq, elemAlign: int): pointer =
cast[pointer](cast[int](a) +% align(GenericSeqSize, elemAlign))
proc dataPointer(a: PGenericSeq, elemAlign, elemSize, index: int): pointer =
cast[pointer](cast[int](a) +% align(GenericSeqSize, elemAlign) +% (index*%elemSize))
proc resize(old: int): int {.inline.} =
if old <= 0: result = 4
elif old < 65536: result = old * 2
else: result = old div 2 + old # for large arrays * 3/2 is better
when declared(allocAtomic):
template allocStr(size: untyped): untyped =
cast[NimString](allocAtomic(size))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](boehmAllocAtomic(size))
elif defined(gcRegions):
template allocStr(size: untyped): untyped =
cast[NimString](newStr(addr(strDesc), size, true))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](newStr(addr(strDesc), size, false))
else:
template allocStr(size: untyped): untyped =
cast[NimString](newObj(addr(strDesc), size))
template allocStrNoInit(size: untyped): untyped =
cast[NimString](newObjNoInit(addr(strDesc), size))
proc rawNewStringNoInit(space: int): NimString =
## Returns a newly-allocated NimString with `reserved` set.
## .. warning:: `len` and the terminating null-byte are not set!
let s = max(space, 7)
result = allocStrNoInit(sizeof(TGenericSeq) + s + 1)
result.reserved = s
when defined(gogc):
result.elemSize = 1
proc rawNewString(space: int): NimString {.compilerproc.} =
## Returns a newly-allocated and *not* zeroed NimString
## with everything required set:
## - `reserved`
## - `len` (0)
## - terminating null-byte
result = rawNewStringNoInit(space)
result.len = 0
result.data[0] = '\0'
proc mnewString(len: int): NimString {.compilerproc.} =
## Returns a newly-allocated and zeroed NimString
## with everything required set:
## - `reserved`
## - `len`
## - terminating null-byte
result = rawNewStringNoInit(len)
result.len = len
zeroMem(addr result.data[0], len + 1)
proc copyStrLast(s: NimString, start, last: int): NimString {.compilerproc.} =
# This is not used by most recent versions of the compiler anymore, but
# required for bootstrapping purposes.
let start = max(start, 0)
if s == nil: return nil
let len = min(last, s.len-1) - start + 1
result = rawNewStringNoInit(len)
result.len = len
copyMem(addr(result.data), addr(s.data[start]), len)
result.data[len] = '\0'
proc copyStr(s: NimString, start: int): NimString {.compilerproc.} =
# This is not used by most recent versions of the compiler anymore, but
# required for bootstrapping purposes.
if s == nil: return nil
result = copyStrLast(s, start, s.len-1)
proc nimToCStringConv(s: NimString): cstring {.compilerproc, nonReloadable, inline.} =
if s == nil or s.len == 0: result = cstring""
else: result = cast[cstring](addr s.data)
proc toNimStr(str: cstring, len: int): NimString {.compilerproc.} =
result = rawNewStringNoInit(len)
result.len = len
copyMem(addr(result.data), str, len)
result.data[len] = '\0'
proc toOwnedCopy(src: NimString): NimString {.inline, raises: [].} =
## Expects `src` to be not nil and initialized (len and terminating zero set)
result = rawNewStringNoInit(src.len)
result.len = src.len
copyMem(addr(result.data), addr(src.data), src.len + 1)
proc cstrToNimstr(str: cstring): NimString {.compilerRtl.} =
if str == nil: NimString(nil)
else: toNimStr(str, str.len)
proc copyString(src: NimString): NimString {.compilerRtl.} =
## Expects `src` to be initialized (len and terminating zero set)
if src != nil:
if (src.reserved and seqShallowFlag) != 0:
result = src
else:
result = toOwnedCopy(src)
sysAssert((seqShallowFlag and result.reserved) == 0, "copyString")
when defined(nimShallowStrings):
if (src.reserved and strlitFlag) != 0:
result.reserved = (result.reserved and not strlitFlag) or seqShallowFlag
proc copyStringRC1(src: NimString): NimString {.compilerRtl.} =
if src != nil:
if (src.reserved and seqShallowFlag) != 0:
result = src
when declared(incRef):
incRef(usrToCell(result))
else:
when declared(newObjRC1) and not defined(gcRegions):
var s = src.len
if s < 7: s = 7
result = cast[NimString](newObjRC1(addr(strDesc), sizeof(TGenericSeq) +
s+1))
result.reserved = s
when defined(gogc):
result.elemSize = 1
result.len = src.len
copyMem(addr(result.data), addr(src.data), src.len + 1)
else:
result = toOwnedCopy(src)
sysAssert((seqShallowFlag and result.reserved) == 0, "copyStringRC1")
when defined(nimShallowStrings):
if (src.reserved and strlitFlag) != 0:
result.reserved = (result.reserved and not strlitFlag) or seqShallowFlag
proc copyDeepString(src: NimString): NimString {.inline, raises: [].} =
if src != nil:
result = toOwnedCopy(src)
# The following resize- and append- routines should be used like following:
# <Nim code>
# s &= "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# s = resizeString(s, 6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# }
#
# <Nim code>
# s = "Hello " & name & ", how do you feel?"
#
# <generated C code>
# {
# string tmp0;
# tmp0 = rawNewString(6 + name->len + 17);
# appendString(s, strLit1);
# appendString(s, strLit2);
# appendString(s, strLit3);
# s = tmp0;
# }
#
# <Nim code>
# s = ""
#
# <generated C code>
# s = rawNewString(0);
proc resizeString(dest: NimString, addlen: int): NimString {.compilerRtl.} =
## Prepares `dest` for appending up to `addlen` new bytes.
## .. warning:: Does not update `len`!
if dest == nil:
return rawNewString(addlen)
let futureLen = dest.len + addlen
if futureLen <= dest.space:
result = dest
else: # slow path:
# growth strategy: next `resize` step or exact `futureLen` if jumping over
let sp = max(resize(dest.space), futureLen)
result = rawNewStringNoInit(sp)
result.len = dest.len
# newFutureLen > space => addlen is never zero, copy terminating null anyway
copyMem(addr(result.data), addr(dest.data), dest.len + 1)
proc appendChar(dest: NimString, c: char) {.compilerproc, inline.} =
dest.data[dest.len] = c
dest.data[dest.len+1] = '\0'
inc(dest.len)
proc addChar(s: NimString, c: char): NimString =
# is compilerproc! used in `ccgexprs.nim`
if s == nil:
result = rawNewStringNoInit(1)
result.len = 0
else:
result = s
if s.len >= s.space: # len.inc would overflow (`>` just in case)
let sp = resize(s.space)
result = rawNewStringNoInit(sp)
copyMem(addr(result.data), addr(s.data), s.len)
result.len = s.len
result.appendChar(c)
proc appendString(dest, src: NimString) {.compilerproc, inline.} =
## Raw, does not prepare `dest` space for copying
if src != nil:
copyMem(addr(dest.data[dest.len]), addr(src.data), src.len + 1)
inc(dest.len, src.len)
proc setLengthStr(s: NimString, newLen: int): NimString {.compilerRtl.} =
## Sets the `s` length to `newLen` zeroing memory on growth.
## Terminating zero at `s[newLen]` for cstring compatibility is set
## on any length change, including `newLen == 0`.
## Negative `newLen` is bound to zero.
let n = max(newLen, 0)
if s == nil: # early return check
return if n == 0: s else: mnewString(n) # sets everything required
if n <= s.space:
result = s # len and null-byte still need updating
else:
let sp = max(resize(s.space), n)
result = rawNewStringNoInit(sp) # len and null-byte not set
copyMem(addr(result.data), addr(s.data), s.len)
zeroMem(addr result.data[s.len], n - s.len)
result.len = n
result.data[n] = '\0'
# ----------------- sequences ----------------------------------------------
proc incrSeq(seq: PGenericSeq, elemSize, elemAlign: int): PGenericSeq {.compilerproc.} =
# increments the length by one:
# this is needed for supporting ``add``;
#
# add(seq, x) generates:
# seq = incrSeq(seq, sizeof(x));
# seq[seq->len-1] = x;
result = seq
if result.len >= result.space:
let r = resize(result.space)
result = cast[PGenericSeq](growObj(result, align(GenericSeqSize, elemAlign) + elemSize * r))
result.reserved = r
inc(result.len)
proc incrSeqV3(s: PGenericSeq, typ: PNimType): PGenericSeq {.compilerproc.} =
if s == nil:
result = cast[PGenericSeq](newSeq(typ, 1))
result.len = 0
else:
result = s
if result.len >= result.space:
let r = resize(result.space)
result = cast[PGenericSeq](newSeq(typ, r))
result.len = s.len
copyMem(dataPointer(result, typ.base.align), dataPointer(s, typ.base.align), s.len * typ.base.size)
# since we steal the content from 's', it's crucial to set s's len to 0.
s.len = 0
proc extendCapacityRaw(src: PGenericSeq; typ: PNimType;
elemSize, elemAlign, newLen: int): PGenericSeq {.inline.} =
## Reallocs `src` to fit `newLen` elements without any checks.
## Capacity always increases to at least next `resize` step.
let newCap = max(resize(src.space), newLen)
result = cast[PGenericSeq](newSeq(typ, newCap))
copyMem(dataPointer(result, elemAlign), dataPointer(src, elemAlign), src.len * elemSize)
# since we steal the content from 's', it's crucial to set s's len to 0.
src.len = 0
proc truncateRaw(src: PGenericSeq; baseFlags: set[TNimTypeFlag]; isTrivial: bool;
elemSize, elemAlign, newLen: int): PGenericSeq {.inline.} =
## Truncates `src` to `newLen` without any checks.
## Does not set `src.len`
# sysAssert src.space > newlen
# sysAssert newLen < src.len
result = src
# we need to decref here, otherwise the GC leaks!
when not defined(boehmGC) and not defined(nogc) and
not defined(gcMarkAndSweep) and not defined(gogc) and
not defined(gcRegions):
if ntfNoRefs notin baseFlags:
for i in newLen..<result.len:
forAllChildrenAux(dataPointer(result, elemAlign, elemSize, i),
extGetCellType(result).base, waZctDecRef)
# XXX: zeroing out the memory can still result in crashes if a wiped-out
# cell is aliased by another pointer (ie proc parameter or a let variable).
# This is a tough problem, because even if we don't zeroMem here, in the
# presence of user defined destructors, the user will expect the cell to be
# "destroyed" thus creating the same problem. We can destroy the cell in the
# finalizer of the sequence, but this makes destruction non-deterministic.
if not isTrivial: # optimization for trivial types
zeroMem(dataPointer(result, elemAlign, elemSize, newLen),
((result.len-%newLen) *% elemSize))
template setLengthSeqImpl(s: PGenericSeq, typ: PNimType, newLen: int; isTrivial: bool;
doInit: static bool) =
if s == nil:
if newLen == 0: return s
else: return cast[PGenericSeq](newSeq(typ, newLen)) # newSeq zeroes!
else:
let elemSize = typ.base.size
let elemAlign = typ.base.align
result = if newLen > s.space:
s.extendCapacityRaw(typ, elemSize, elemAlign, newLen)
elif newLen < s.len:
s.truncateRaw(typ.base.flags, isTrivial, elemSize, elemAlign, newLen)
else:
when doInit:
zeroMem(dataPointer(s, elemAlign, elemSize, s.len), (newLen-%s.len) *% elemSize)
s
result.len = newLen
proc setLengthSeqUninit(s: PGenericSeq; typ: PNimType; newLen: int; isTrivial: bool): PGenericSeq {.
compilerRtl.} =
sysAssert typ.kind == tySequence, "setLengthSeqUninit: type is not a seq"
setLengthSeqImpl(s, typ, newLen, isTrivial, doInit = false)
proc setLengthSeqV2(s: PGenericSeq, typ: PNimType, newLen: int, isTrivial: bool): PGenericSeq {.
compilerRtl.} =
sysAssert typ.kind == tySequence, "setLengthSeqV2: type is not a seq"
setLengthSeqImpl(s, typ, newLen, isTrivial, doInit = true)
func capacity*(self: string): int {.inline.} =
## Returns the current capacity of the string.
# See https://github.com/nim-lang/RFCs/issues/460
runnableExamples:
var str = newStringOfCap(cap = 42)
str.add "Nim"
assert str.capacity == 42
let str = cast[NimString](self)
result = if str != nil: str.space else: 0
func capacity*[T](self: seq[T]): int {.inline.} =
## Returns the current capacity of the seq.
# See https://github.com/nim-lang/RFCs/issues/460
runnableExamples:
var lst = newSeqOfCap[string](cap = 42)
lst.add "Nim"
assert lst.capacity == 42
let sek = cast[PGenericSeq](self)
result = if sek != nil: sek.space else: 0
{.pop.}