mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
919 lines
29 KiB
Nim
919 lines
29 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## This module implements some common generic algorithms on `openArray`s.
|
|
##
|
|
## Basic usage
|
|
## ===========
|
|
##
|
|
|
|
runnableExamples:
|
|
type People = tuple
|
|
year: int
|
|
name: string
|
|
|
|
var a: seq[People]
|
|
|
|
a.add((2000, "John"))
|
|
a.add((2005, "Marie"))
|
|
a.add((2010, "Jane"))
|
|
|
|
# Sorting with default system.cmp
|
|
a.sort()
|
|
assert a == @[(year: 2000, name: "John"), (year: 2005, name: "Marie"),
|
|
(year: 2010, name: "Jane")]
|
|
|
|
proc myCmp(x, y: People): int =
|
|
cmp(x.name, y.name)
|
|
|
|
# Sorting with custom proc
|
|
a.sort(myCmp)
|
|
assert a == @[(year: 2010, name: "Jane"), (year: 2000, name: "John"),
|
|
(year: 2005, name: "Marie")]
|
|
|
|
## See also
|
|
## ========
|
|
## * `sequtils module<sequtils.html>`_ for working with the built-in seq type
|
|
## * `tables module<tables.html>`_ for sorting tables
|
|
|
|
import std/private/since
|
|
|
|
when defined(nimPreviewSlimSystem):
|
|
import std/assertions
|
|
|
|
|
|
type
|
|
SortOrder* = enum
|
|
Descending, Ascending
|
|
|
|
proc `*`*(x: int, order: SortOrder): int {.inline.} =
|
|
## Flips the sign of `x` if `order == Descending`.
|
|
## If `order == Ascending` then `x` is returned.
|
|
##
|
|
## `x` is supposed to be the result of a comparator, i.e.
|
|
## | `< 0` for *less than*,
|
|
## | `== 0` for *equal*,
|
|
## | `> 0` for *greater than*.
|
|
runnableExamples:
|
|
assert -123 * Descending == 123
|
|
assert 123 * Descending == -123
|
|
assert -123 * Ascending == -123
|
|
assert 123 * Ascending == 123
|
|
var y = order.ord - 1
|
|
result = (x xor y) - y
|
|
|
|
template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
|
|
var x = first
|
|
while x <= last:
|
|
a[x] = value
|
|
inc(x)
|
|
|
|
proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
|
|
## Assigns `value` to all elements of the slice `a[first..last]`.
|
|
##
|
|
## If an invalid range is passed, it raises `IndexDefect`.
|
|
runnableExamples:
|
|
var a: array[6, int]
|
|
a.fill(1, 3, 9)
|
|
assert a == [0, 9, 9, 9, 0, 0]
|
|
a.fill(3, 5, 7)
|
|
assert a == [0, 9, 9, 7, 7, 7]
|
|
doAssertRaises(IndexDefect, a.fill(1, 7, 9))
|
|
fillImpl(a, first, last, value)
|
|
|
|
proc fill*[T](a: var openArray[T], value: T) =
|
|
## Assigns `value` to all elements of the container `a`.
|
|
runnableExamples:
|
|
var a: array[6, int]
|
|
a.fill(9)
|
|
assert a == [9, 9, 9, 9, 9, 9]
|
|
a.fill(4)
|
|
assert a == [4, 4, 4, 4, 4, 4]
|
|
fillImpl(a, 0, a.high, value)
|
|
|
|
|
|
proc reverse*[T](a: var openArray[T], first, last: Natural) =
|
|
## Reverses the slice `a[first..last]`.
|
|
##
|
|
## If an invalid range is passed, it raises `IndexDefect`.
|
|
##
|
|
## **See also:**
|
|
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
|
|
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4, 5, 6]
|
|
a.reverse(1, 3)
|
|
assert a == [1, 4, 3, 2, 5, 6]
|
|
a.reverse(1, 3)
|
|
assert a == [1, 2, 3, 4, 5, 6]
|
|
doAssertRaises(IndexDefect, a.reverse(1, 7))
|
|
var x = first
|
|
var y = last
|
|
while x < y:
|
|
swap(a[x], a[y])
|
|
dec(y)
|
|
inc(x)
|
|
|
|
proc reverse*[T](a: var openArray[T]) =
|
|
## Reverses the contents of the container `a`.
|
|
##
|
|
## **See also:**
|
|
## * `reversed proc<#reversed,openArray[T],Natural,int>`_ reverse a slice and returns a `seq[T]`
|
|
## * `reversed proc<#reversed,openArray[T]>`_ reverse and returns a `seq[T]`
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4, 5, 6]
|
|
a.reverse()
|
|
assert a == [6, 5, 4, 3, 2, 1]
|
|
a.reverse()
|
|
assert a == [1, 2, 3, 4, 5, 6]
|
|
# the max is needed, since a.high is -1 if a is empty
|
|
reverse(a, 0, max(0, a.high))
|
|
|
|
proc reversed*[T](a: openArray[T]): seq[T] {.inline.} =
|
|
## Returns the elements of `a` in reverse order.
|
|
##
|
|
## **See also:**
|
|
## * `reverse proc<#reverse,openArray[T]>`_
|
|
runnableExamples:
|
|
assert [10, 11, 12].reversed == @[12, 11, 10]
|
|
assert seq[string].default.reversed == @[]
|
|
result = @[]
|
|
let n = a.len
|
|
result.setLen(n)
|
|
for i in 0..<n: result[i] = a[n - (i + 1)]
|
|
|
|
proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T]
|
|
{.inline, deprecated: "use: `reversed(toOpenArray(a, first, last))`".} =
|
|
reversed(toOpenArray(a, first, last))
|
|
|
|
when defined(nimHasEffectsOf):
|
|
{.experimental: "strictEffects".}
|
|
else:
|
|
{.pragma: effectsOf.}
|
|
|
|
proc binarySearch*[T, K](a: openArray[T], key: K,
|
|
cmp: proc (x: T, y: K): int {.closure.}): int {.effectsOf: cmp.} =
|
|
## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
|
|
## Assumes that `a` is sorted according to `cmp`.
|
|
##
|
|
## `cmp` is the comparator function to use, the expected return values are
|
|
## the same as those of system.cmp.
|
|
runnableExamples:
|
|
assert binarySearch(["a", "b", "c", "d"], "d", system.cmp[string]) == 3
|
|
assert binarySearch(["a", "b", "c", "d"], "c", system.cmp[string]) == 2
|
|
let len = a.len
|
|
|
|
if len == 0:
|
|
return -1
|
|
|
|
if len == 1:
|
|
if cmp(a[0], key) == 0:
|
|
return 0
|
|
else:
|
|
return -1
|
|
|
|
result = 0
|
|
if (len and (len - 1)) == 0:
|
|
# when `len` is a power of 2, a faster shr can be used.
|
|
var step = len shr 1
|
|
var cmpRes: int
|
|
while step > 0:
|
|
let i = result or step
|
|
cmpRes = cmp(a[i], key)
|
|
if cmpRes == 0:
|
|
return i
|
|
|
|
if cmpRes < 0:
|
|
result = i
|
|
step = step shr 1
|
|
if cmp(a[result], key) != 0: result = -1
|
|
else:
|
|
var b = len
|
|
var cmpRes: int
|
|
while result < b:
|
|
var mid = (result + b) shr 1
|
|
cmpRes = cmp(a[mid], key)
|
|
if cmpRes == 0:
|
|
return mid
|
|
|
|
if cmpRes < 0:
|
|
result = mid + 1
|
|
else:
|
|
b = mid
|
|
if result >= len or cmp(a[result], key) != 0: result = -1
|
|
|
|
proc binarySearch*[T](a: openArray[T], key: T): int =
|
|
## Binary search for `key` in `a`. Return the index of `key` or -1 if not found.
|
|
## Assumes that `a` is sorted.
|
|
runnableExamples:
|
|
assert binarySearch([0, 1, 2, 3, 4], 4) == 4
|
|
assert binarySearch([0, 1, 2, 3, 4], 2) == 2
|
|
binarySearch(a, key, cmp[T])
|
|
|
|
const
|
|
onlySafeCode = true
|
|
|
|
proc lowerBound*[T, K](a: openArray[T], key: K,
|
|
cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
|
|
## Returns the index of the first element in `a` that is not less than
|
|
## (i.e. greater or equal to) `key`, or last if no such element is found.
|
|
## In other words if you have a sorted sequence and you call
|
|
## `insert(thing, elm, lowerBound(thing, elm))`
|
|
## the sequence will still be sorted.
|
|
## Assumes that `a` is sorted according to `cmp`.
|
|
##
|
|
## If an invalid range is passed, it raises `IndexDefect`.
|
|
##
|
|
## This version uses `cmp` to compare the elements.
|
|
## The expected return values are the same as those of `system.cmp`.
|
|
##
|
|
## **See also:**
|
|
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
|
|
## * `upperBound proc<#upperBound,openArray[T],T>`_
|
|
runnableExamples:
|
|
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
|
|
assert arr.lowerBound(3, system.cmp[int]) == 2
|
|
assert arr.lowerBound(4, system.cmp[int]) == 3
|
|
assert arr.lowerBound(5, system.cmp[int]) == 3
|
|
arr.insert(4, arr.lowerBound(4, system.cmp[int]))
|
|
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
result = a.low
|
|
var count = a.high - a.low + 1
|
|
var step, pos: int
|
|
while count != 0:
|
|
step = count shr 1
|
|
pos = result + step
|
|
if cmp(a[pos], key) < 0:
|
|
result = pos + 1
|
|
count -= step + 1
|
|
else:
|
|
count = step
|
|
|
|
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
|
|
## Returns the index of the first element in `a` that is not less than
|
|
## (i.e. greater or equal to) `key`, or last if no such element is found.
|
|
## In other words if you have a sorted sequence and you call
|
|
## `insert(thing, elm, lowerBound(thing, elm))`
|
|
## the sequence will still be sorted.
|
|
## Assumes that `a` is sorted.
|
|
##
|
|
## This version uses the default comparison function `cmp`.
|
|
##
|
|
## **See also:**
|
|
## * `upperBound proc<#upperBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
|
|
## * `upperBound proc<#upperBound,openArray[T],T>`_
|
|
|
|
proc upperBound*[T, K](a: openArray[T], key: K,
|
|
cmp: proc(x: T, k: K): int {.closure.}): int {.effectsOf: cmp.} =
|
|
## Returns the index of the first element in `a` that is greater than
|
|
## `key`, or last if no such element is found.
|
|
## In other words if you have a sorted sequence and you call
|
|
## `insert(thing, elm, upperBound(thing, elm))`
|
|
## the sequence will still be sorted.
|
|
## Assumes that `a` is sorted according to `cmp`.
|
|
##
|
|
## If an invalid range is passed, it raises `IndexDefect`.
|
|
##
|
|
## This version uses `cmp` to compare the elements. The expected
|
|
## return values are the same as those of `system.cmp`.
|
|
##
|
|
## **See also:**
|
|
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
|
|
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
|
|
runnableExamples:
|
|
var arr = @[1, 2, 3, 5, 6, 7, 8, 9]
|
|
assert arr.upperBound(2, system.cmp[int]) == 2
|
|
assert arr.upperBound(3, system.cmp[int]) == 3
|
|
assert arr.upperBound(4, system.cmp[int]) == 3
|
|
arr.insert(4, arr.upperBound(3, system.cmp[int]))
|
|
assert arr == [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
|
result = a.low
|
|
var count = a.high - a.low + 1
|
|
var step, pos: int
|
|
while count != 0:
|
|
step = count shr 1
|
|
pos = result + step
|
|
if cmp(a[pos], key) <= 0:
|
|
result = pos + 1
|
|
count -= step + 1
|
|
else:
|
|
count = step
|
|
|
|
proc upperBound*[T](a: openArray[T], key: T): int = upperBound(a, key, cmp[T])
|
|
## Returns the index of the first element in `a` that is greater than
|
|
## `key`, or last if no such element is found.
|
|
## In other words if you have a sorted sequence and you call
|
|
## `insert(thing, elm, upperBound(thing, elm))`
|
|
## the sequence will still be sorted.
|
|
## Assumes that `a` is sorted.
|
|
##
|
|
## This version uses the default comparison function `cmp`.
|
|
##
|
|
## **See also:**
|
|
## * `lowerBound proc<#lowerBound,openArray[T],K,proc(T,K)>`_ sorted by `cmp` in the specified order
|
|
## * `lowerBound proc<#lowerBound,openArray[T],T>`_
|
|
|
|
template `<-`(a, b) =
|
|
when defined(gcDestructors):
|
|
a = move b
|
|
elif onlySafeCode:
|
|
shallowCopy(a, b)
|
|
else:
|
|
copyMem(addr(a), addr(b), sizeof(T))
|
|
|
|
proc mergeAlt[T](a, b: var openArray[T], lo, m, hi: int,
|
|
cmp: proc (x, y: T): int {.closure.}, order: SortOrder) {.effectsOf: cmp.} =
|
|
# Optimization: If max(left) <= min(right) there is nothing to do!
|
|
# 1 2 3 4 ## 5 6 7 8
|
|
# -> O(n) for sorted arrays.
|
|
# On random data this saves up to 40% of mergeAlt calls.
|
|
if cmp(a[m], a[m+1]) * order <= 0: return
|
|
var j = lo
|
|
# copy a[j..m] into b:
|
|
assert j <= m
|
|
when onlySafeCode:
|
|
var bb = 0
|
|
while j <= m:
|
|
b[bb] <- a[j]
|
|
inc(bb)
|
|
inc(j)
|
|
else:
|
|
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
|
|
j = m+1
|
|
var i = 0
|
|
var k = lo
|
|
# copy proper element back:
|
|
while k < j and j <= hi:
|
|
if cmp(b[i], a[j]) * order <= 0:
|
|
a[k] <- b[i]
|
|
inc(i)
|
|
else:
|
|
a[k] <- a[j]
|
|
inc(j)
|
|
inc(k)
|
|
# copy rest of b:
|
|
when onlySafeCode:
|
|
while k < j:
|
|
a[k] <- b[i]
|
|
inc(k)
|
|
inc(i)
|
|
else:
|
|
if k < j: copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k))
|
|
|
|
func sort*[T](a: var openArray[T],
|
|
cmp: proc (x, y: T): int {.closure.},
|
|
order = SortOrder.Ascending) {.effectsOf: cmp.} =
|
|
## Default Nim sort (an implementation of merge sort). The sorting
|
|
## is guaranteed to be stable (that is, equal elements stay in the same order)
|
|
## and the worst case is guaranteed to be O(n log n).
|
|
## Sorts by `cmp` in the specified `order`.
|
|
##
|
|
## The current implementation uses an iterative
|
|
## mergesort to achieve this. It uses a temporary sequence of
|
|
## length `a.len div 2`. If you do not wish to provide your own
|
|
## `cmp`, you may use `system.cmp` or instead call the overloaded
|
|
## version of `sort`, which uses `system.cmp`.
|
|
##
|
|
## ```nim
|
|
## sort(myIntArray, system.cmp[int])
|
|
## # do not use cmp[string] here as we want to use the specialized
|
|
## # overload:
|
|
## sort(myStrArray, system.cmp)
|
|
## ```
|
|
##
|
|
## You can inline adhoc comparison procs with the `do notation
|
|
## <manual.html#procedures-do-notation>`_. Example:
|
|
##
|
|
## ```nim
|
|
## people.sort do (x, y: Person) -> int:
|
|
## result = cmp(x.surname, y.surname)
|
|
## if result == 0:
|
|
## result = cmp(x.name, y.name)
|
|
## ```
|
|
##
|
|
## **See also:**
|
|
## * `sort proc<#sort,openArray[T]>`_
|
|
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
|
|
## * `sorted proc<#sorted,openArray[T]>`_
|
|
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
|
|
runnableExamples:
|
|
var d = ["boo", "fo", "barr", "qux"]
|
|
proc myCmp(x, y: string): int =
|
|
if x.len() > y.len() or x.len() == y.len(): 1
|
|
else: -1
|
|
sort(d, myCmp)
|
|
assert d == ["fo", "qux", "boo", "barr"]
|
|
var n = a.len
|
|
var b = newSeq[T](n div 2)
|
|
var s = 1
|
|
while s < n:
|
|
var m = n-1-s
|
|
while m >= 0:
|
|
mergeAlt(a, b, max(m-s+1, 0), m, m+s, cmp, order)
|
|
dec(m, s*2)
|
|
s = s*2
|
|
|
|
proc sort*[T](a: var openArray[T], order = SortOrder.Ascending) = sort[T](a,
|
|
system.cmp[T], order)
|
|
## Shortcut version of `sort` that uses `system.cmp[T]` as the comparison function.
|
|
##
|
|
## **See also:**
|
|
## * `sort func<#sort,openArray[T],proc(T,T)>`_
|
|
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
|
|
## * `sorted proc<#sorted,openArray[T]>`_
|
|
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
|
|
|
|
proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
|
|
order = SortOrder.Ascending): seq[T] {.effectsOf: cmp.} =
|
|
## Returns `a` sorted by `cmp` in the specified `order`.
|
|
##
|
|
## **See also:**
|
|
## * `sort func<#sort,openArray[T],proc(T,T)>`_
|
|
## * `sort proc<#sort,openArray[T]>`_
|
|
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
|
|
runnableExamples:
|
|
let
|
|
a = [2, 3, 1, 5, 4]
|
|
b = sorted(a, system.cmp[int])
|
|
c = sorted(a, system.cmp[int], Descending)
|
|
d = sorted(["adam", "dande", "brian", "cat"], system.cmp[string])
|
|
assert b == @[1, 2, 3, 4, 5]
|
|
assert c == @[5, 4, 3, 2, 1]
|
|
assert d == @["adam", "brian", "cat", "dande"]
|
|
result = newSeq[T](a.len)
|
|
for i in 0 .. a.high:
|
|
result[i] = a[i]
|
|
sort(result, cmp, order)
|
|
|
|
proc sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
|
|
## Shortcut version of `sorted` that uses `system.cmp[T]` as the comparison function.
|
|
##
|
|
## **See also:**
|
|
## * `sort func<#sort,openArray[T],proc(T,T)>`_
|
|
## * `sort proc<#sort,openArray[T]>`_
|
|
## * `sortedByIt template<#sortedByIt.t,untyped,untyped>`_
|
|
runnableExamples:
|
|
let
|
|
a = [2, 3, 1, 5, 4]
|
|
b = sorted(a)
|
|
c = sorted(a, Descending)
|
|
d = sorted(["adam", "dande", "brian", "cat"])
|
|
assert b == @[1, 2, 3, 4, 5]
|
|
assert c == @[5, 4, 3, 2, 1]
|
|
assert d == @["adam", "brian", "cat", "dande"]
|
|
sorted[T](a, system.cmp[T], order)
|
|
|
|
template sortedByIt*(seq1, op: untyped): untyped =
|
|
## Convenience template around the `sorted` proc to reduce typing.
|
|
##
|
|
## The template injects the `it` variable which you can use directly in an
|
|
## expression.
|
|
##
|
|
## Because the underlying `cmp()` is defined for tuples you can also do
|
|
## a nested sort.
|
|
##
|
|
## **See also:**
|
|
## * `sort func<#sort,openArray[T],proc(T,T)>`_
|
|
## * `sort proc<#sort,openArray[T]>`_
|
|
## * `sorted proc<#sorted,openArray[T],proc(T,T)>`_ sorted by `cmp` in the specified order
|
|
## * `sorted proc<#sorted,openArray[T]>`_
|
|
runnableExamples:
|
|
type Person = tuple[name: string, age: int]
|
|
var
|
|
p1: Person = (name: "p1", age: 60)
|
|
p2: Person = (name: "p2", age: 20)
|
|
p3: Person = (name: "p3", age: 30)
|
|
p4: Person = (name: "p4", age: 30)
|
|
people = @[p1, p2, p4, p3]
|
|
|
|
assert people.sortedByIt(it.name) == @[(name: "p1", age: 60), (name: "p2",
|
|
age: 20), (name: "p3", age: 30), (name: "p4", age: 30)]
|
|
# Nested sort
|
|
assert people.sortedByIt((it.age, it.name)) == @[(name: "p2", age: 20),
|
|
(name: "p3", age: 30), (name: "p4", age: 30), (name: "p1", age: 60)]
|
|
var result = sorted(seq1, proc(x, y: typeof(items(seq1), typeOfIter)): int =
|
|
var it {.inject.} = x
|
|
let a = op
|
|
it = y
|
|
let b = op
|
|
result = cmp(a, b))
|
|
result
|
|
|
|
func isSorted*[T](a: openArray[T],
|
|
cmp: proc(x, y: T): int {.closure.},
|
|
order = SortOrder.Ascending): bool {.effectsOf: cmp.} =
|
|
## Checks to see whether `a` is already sorted in `order`
|
|
## using `cmp` for the comparison. The parameters are identical
|
|
## to `sort`. Requires O(n) time.
|
|
##
|
|
## **See also:**
|
|
## * `isSorted proc<#isSorted,openArray[T]>`_
|
|
runnableExamples:
|
|
let
|
|
a = [2, 3, 1, 5, 4]
|
|
b = [1, 2, 3, 4, 5]
|
|
c = [5, 4, 3, 2, 1]
|
|
d = ["adam", "brian", "cat", "dande"]
|
|
e = ["adam", "dande", "brian", "cat"]
|
|
assert isSorted(a) == false
|
|
assert isSorted(b) == true
|
|
assert isSorted(c) == false
|
|
assert isSorted(c, Descending) == true
|
|
assert isSorted(d) == true
|
|
assert isSorted(e) == false
|
|
result = true
|
|
for i in 0..<len(a)-1:
|
|
if cmp(a[i], a[i+1]) * order > 0:
|
|
return false
|
|
|
|
proc isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
|
|
## Shortcut version of `isSorted` that uses `system.cmp[T]` as the comparison function.
|
|
##
|
|
## **See also:**
|
|
## * `isSorted func<#isSorted,openArray[T],proc(T,T)>`_
|
|
runnableExamples:
|
|
let
|
|
a = [2, 3, 1, 5, 4]
|
|
b = [1, 2, 3, 4, 5]
|
|
c = [5, 4, 3, 2, 1]
|
|
d = ["adam", "brian", "cat", "dande"]
|
|
e = ["adam", "dande", "brian", "cat"]
|
|
assert isSorted(a) == false
|
|
assert isSorted(b) == true
|
|
assert isSorted(c) == false
|
|
assert isSorted(c, Descending) == true
|
|
assert isSorted(d) == true
|
|
assert isSorted(e) == false
|
|
isSorted(a, system.cmp[T], order)
|
|
|
|
proc merge*[T](
|
|
result: var seq[T],
|
|
x, y: openArray[T], cmp: proc(x, y: T): int {.closure.}
|
|
) {.since: (1, 5, 1), effectsOf: cmp.} =
|
|
## Merges two sorted `openArray`. `x` and `y` are assumed to be sorted.
|
|
## If you do not wish to provide your own `cmp`,
|
|
## you may use `system.cmp` or instead call the overloaded
|
|
## version of `merge`, which uses `system.cmp`.
|
|
##
|
|
## .. note:: The original data of `result` is not cleared,
|
|
## new data is appended to `result`.
|
|
##
|
|
## **See also:**
|
|
## * `merge proc<#merge,seq[T],openArray[T],openArray[T]>`_
|
|
runnableExamples:
|
|
let x = @[1, 3, 6]
|
|
let y = @[2, 3, 4]
|
|
|
|
block:
|
|
var merged = @[7] # new data is appended to merged sequence
|
|
merged.merge(x, y, system.cmp[int])
|
|
assert merged == @[7, 1, 2, 3, 3, 4, 6]
|
|
|
|
block:
|
|
var merged = @[7] # if you only want new data, clear merged sequence first
|
|
merged.setLen(0)
|
|
merged.merge(x, y, system.cmp[int])
|
|
assert merged.isSorted
|
|
assert merged == @[1, 2, 3, 3, 4, 6]
|
|
|
|
import std/sugar
|
|
|
|
var res: seq[(int, int)]
|
|
res.merge([(1, 1)], [(1, 2)], (a, b) => a[0] - b[0])
|
|
assert res == @[(1, 1), (1, 2)]
|
|
|
|
assert seq[int].default.dup(merge([1, 3], [2, 4])) == @[1, 2, 3, 4]
|
|
|
|
let
|
|
sizeX = x.len
|
|
sizeY = y.len
|
|
oldLen = result.len
|
|
|
|
result.setLen(oldLen + sizeX + sizeY)
|
|
|
|
var
|
|
ix = 0
|
|
iy = 0
|
|
i = oldLen
|
|
|
|
while true:
|
|
if ix == sizeX:
|
|
while iy < sizeY:
|
|
result[i] = y[iy]
|
|
inc i
|
|
inc iy
|
|
return
|
|
|
|
if iy == sizeY:
|
|
while ix < sizeX:
|
|
result[i] = x[ix]
|
|
inc i
|
|
inc ix
|
|
return
|
|
|
|
let itemX = x[ix]
|
|
let itemY = y[iy]
|
|
|
|
if cmp(itemX, itemY) > 0: # to have a stable sort
|
|
result[i] = itemY
|
|
inc iy
|
|
else:
|
|
result[i] = itemX
|
|
inc ix
|
|
|
|
inc i
|
|
|
|
proc merge*[T](result: var seq[T], x, y: openArray[T]) {.inline, since: (1, 5, 1).} =
|
|
## Shortcut version of `merge` that uses `system.cmp[T]` as the comparison function.
|
|
##
|
|
## **See also:**
|
|
## * `merge proc<#merge,seq[T],openArray[T],openArray[T],proc(T,T)>`_
|
|
runnableExamples:
|
|
let x = [5, 10, 15, 20, 25]
|
|
let y = [50, 40, 30, 20, 10].sorted
|
|
|
|
var merged: seq[int]
|
|
merged.merge(x, y)
|
|
assert merged.isSorted
|
|
assert merged == @[5, 10, 10, 15, 20, 20, 25, 30, 40, 50]
|
|
merge(result, x, y, system.cmp)
|
|
|
|
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
|
|
## Produces the Cartesian product of the array.
|
|
## Every element of the result is a combination of one element from each seq in `x`,
|
|
## with the ith element coming from `x[i]`.
|
|
##
|
|
## .. warning:: complexity may explode.
|
|
runnableExamples:
|
|
assert product(@[@[1], @[2]]) == @[@[1, 2]]
|
|
assert product(@[@["A", "K"], @["Q"]]) == @[@["K", "Q"], @["A", "Q"]]
|
|
let xLen = x.len
|
|
result = newSeq[seq[T]]()
|
|
if xLen == 0:
|
|
return
|
|
if xLen == 1:
|
|
result = @x
|
|
return
|
|
var
|
|
indices = newSeq[int](xLen)
|
|
initial = newSeq[int](xLen)
|
|
index = 0
|
|
var next = newSeq[T](xLen)
|
|
for i in 0 ..< xLen:
|
|
if len(x[i]) == 0: return
|
|
initial[i] = len(x[i]) - 1
|
|
indices = initial
|
|
while true:
|
|
while indices[index] == -1:
|
|
indices[index] = initial[index]
|
|
index += 1
|
|
if index == xLen: return
|
|
indices[index] -= 1
|
|
for ni, i in indices:
|
|
next[ni] = x[ni][i]
|
|
result.add(next)
|
|
index = 0
|
|
indices[index] -= 1
|
|
|
|
proc nextPermutation*[T](x: var openArray[T]): bool {.discardable.} =
|
|
## Calculates the next lexicographic permutation, directly modifying `x`.
|
|
## The result is whether a permutation happened, otherwise we have reached
|
|
## the last-ordered permutation.
|
|
##
|
|
## If you start with an unsorted array/seq, the repeated permutations
|
|
## will **not** give you all permutations but stop with the last.
|
|
##
|
|
## **See also:**
|
|
## * `prevPermutation proc<#prevPermutation,openArray[T]>`_
|
|
runnableExamples:
|
|
var v = @[0, 1, 2, 3]
|
|
assert v.nextPermutation() == true
|
|
assert v == @[0, 1, 3, 2]
|
|
assert v.nextPermutation() == true
|
|
assert v == @[0, 2, 1, 3]
|
|
assert v.prevPermutation() == true
|
|
assert v == @[0, 1, 3, 2]
|
|
v = @[3, 2, 1, 0]
|
|
assert v.nextPermutation() == false
|
|
assert v == @[3, 2, 1, 0]
|
|
if x.len < 2:
|
|
return false
|
|
|
|
var i = x.high
|
|
while i > 0 and x[i-1] >= x[i]:
|
|
dec i
|
|
|
|
if i == 0:
|
|
return false
|
|
|
|
var j = x.high
|
|
while j >= i and x[j] <= x[i-1]:
|
|
dec j
|
|
|
|
swap x[j], x[i-1]
|
|
x.reverse(i, x.high)
|
|
|
|
result = true
|
|
|
|
proc prevPermutation*[T](x: var openArray[T]): bool {.discardable.} =
|
|
## Calculates the previous lexicographic permutation, directly modifying
|
|
## `x`. The result is whether a permutation happened, otherwise we have
|
|
## reached the first-ordered permutation.
|
|
##
|
|
## **See also:**
|
|
## * `nextPermutation proc<#nextPermutation,openArray[T]>`_
|
|
runnableExamples:
|
|
var v = @[0, 1, 2, 3]
|
|
assert v.prevPermutation() == false
|
|
assert v == @[0, 1, 2, 3]
|
|
assert v.nextPermutation() == true
|
|
assert v == @[0, 1, 3, 2]
|
|
assert v.prevPermutation() == true
|
|
assert v == @[0, 1, 2, 3]
|
|
if x.len < 2:
|
|
return false
|
|
|
|
var i = x.high
|
|
while i > 0 and x[i-1] <= x[i]:
|
|
dec i
|
|
|
|
if i == 0:
|
|
return false
|
|
|
|
x.reverse(i, x.high)
|
|
|
|
var j = x.high
|
|
while j >= i and x[j-1] < x[i-1]:
|
|
dec j
|
|
|
|
swap x[i-1], x[j]
|
|
|
|
result = true
|
|
|
|
proc rotateInternal[T](arg: var openArray[T]; first, middle, last: int): int =
|
|
## A port of std::rotate from C++.
|
|
## Ported from [this reference](https://www.cplusplus.com/reference/algorithm/rotate/).
|
|
result = first + last - middle
|
|
|
|
if first == middle or middle == last:
|
|
return
|
|
|
|
assert first < middle
|
|
assert middle < last
|
|
|
|
# m prefix for mutable
|
|
var
|
|
mFirst = first
|
|
mMiddle = middle
|
|
next = middle
|
|
|
|
swap(arg[mFirst], arg[next])
|
|
mFirst += 1
|
|
next += 1
|
|
if mFirst == mMiddle:
|
|
mMiddle = next
|
|
|
|
while next != last:
|
|
swap(arg[mFirst], arg[next])
|
|
mFirst += 1
|
|
next += 1
|
|
if mFirst == mMiddle:
|
|
mMiddle = next
|
|
|
|
next = mMiddle
|
|
while next != last:
|
|
swap(arg[mFirst], arg[next])
|
|
mFirst += 1
|
|
next += 1
|
|
if mFirst == mMiddle:
|
|
mMiddle = next
|
|
elif next == last:
|
|
next = mMiddle
|
|
|
|
proc rotatedInternal[T](arg: openArray[T]; first, middle, last: int): seq[T] =
|
|
let argLen = arg.len
|
|
result = newSeq[T](argLen)
|
|
for i in 0 ..< first:
|
|
result[i] = arg[i]
|
|
let n = last - middle
|
|
let m = middle - first
|
|
for i in 0 ..< n:
|
|
result[first+i] = arg[middle+i]
|
|
for i in 0 ..< m:
|
|
result[first+n+i] = arg[first+i]
|
|
for i in last ..< argLen:
|
|
result[i] = arg[i]
|
|
|
|
proc rotateLeft*[T](arg: var openArray[T]; slice: HSlice[int, int];
|
|
dist: int): int {.discardable.} =
|
|
## Performs a left rotation on a range of elements. If you want to rotate
|
|
## right, use a negative `dist`. Specifically, `rotateLeft` rotates
|
|
## the elements at `slice` by `dist` positions.
|
|
##
|
|
## | The element at index `slice.a + dist` will be at index `slice.a`.
|
|
## | The element at index `slice.b` will be at `slice.a + dist - 1`.
|
|
## | The element at index `slice.a` will be at `slice.b + 1 - dist`.
|
|
## | The element at index `slice.a + dist - 1` will be at `slice.b`.
|
|
##
|
|
## Elements outside of `slice` will be left unchanged.
|
|
## The time complexity is linear to `slice.b - slice.a + 1`.
|
|
## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
|
|
##
|
|
## `slice`
|
|
## : The indices of the element range that should be rotated.
|
|
##
|
|
## `dist`
|
|
## : The distance in amount of elements that the data should be rotated.
|
|
## Can be negative, can be any number.
|
|
##
|
|
## **See also:**
|
|
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for a version which rotates the whole container
|
|
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which returns a `seq[T]`
|
|
runnableExamples:
|
|
var a = [0, 1, 2, 3, 4, 5]
|
|
a.rotateLeft(1 .. 4, 3)
|
|
assert a == [0, 4, 1, 2, 3, 5]
|
|
a.rotateLeft(1 .. 4, 3)
|
|
assert a == [0, 3, 4, 1, 2, 5]
|
|
a.rotateLeft(1 .. 4, -3)
|
|
assert a == [0, 4, 1, 2, 3, 5]
|
|
doAssertRaises(IndexDefect, a.rotateLeft(1 .. 7, 2))
|
|
let sliceLen = slice.b + 1 - slice.a
|
|
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
|
|
arg.rotateInternal(slice.a, slice.a + distLeft, slice.b + 1)
|
|
|
|
proc rotateLeft*[T](arg: var openArray[T]; dist: int): int {.discardable.} =
|
|
## Same as `rotateLeft`, but with default arguments for slice,
|
|
## so that this procedure operates on the entire
|
|
## `arg`, and not just on a part of it.
|
|
##
|
|
## **See also:**
|
|
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
|
|
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which returns a `seq[T]`
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4, 5]
|
|
a.rotateLeft(2)
|
|
assert a == [3, 4, 5, 1, 2]
|
|
a.rotateLeft(4)
|
|
assert a == [2, 3, 4, 5, 1]
|
|
a.rotateLeft(-6)
|
|
assert a == [1, 2, 3, 4, 5]
|
|
let argLen = arg.len
|
|
let distLeft = ((dist mod argLen) + argLen) mod argLen
|
|
arg.rotateInternal(0, distLeft, argLen)
|
|
|
|
proc rotatedLeft*[T](arg: openArray[T]; slice: HSlice[int, int],
|
|
dist: int): seq[T] =
|
|
## Same as `rotateLeft`, just with the difference that it does
|
|
## not modify the argument. It creates a new `seq` instead.
|
|
##
|
|
## Elements outside of `slice` will be left unchanged.
|
|
## If an invalid range (`HSlice`) is passed, it raises `IndexDefect`.
|
|
##
|
|
## `slice`
|
|
## : The indices of the element range that should be rotated.
|
|
##
|
|
## `dist`
|
|
## : The distance in amount of elements that the data should be rotated.
|
|
## Can be negative, can be any number.
|
|
##
|
|
## **See also:**
|
|
## * `rotateLeft proc<#rotateLeft,openArray[T],HSlice[int,int],int>`_ for the in-place version of this proc
|
|
## * `rotatedLeft proc<#rotatedLeft,openArray[T],int>`_ for a version which rotates the whole container
|
|
runnableExamples:
|
|
var a = @[1, 2, 3, 4, 5]
|
|
a = rotatedLeft(a, 1 .. 4, 3)
|
|
assert a == @[1, 5, 2, 3, 4]
|
|
a = rotatedLeft(a, 1 .. 3, 2)
|
|
assert a == @[1, 3, 5, 2, 4]
|
|
a = rotatedLeft(a, 1 .. 3, -2)
|
|
assert a == @[1, 5, 2, 3, 4]
|
|
let sliceLen = slice.b + 1 - slice.a
|
|
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
|
|
arg.rotatedInternal(slice.a, slice.a + distLeft, slice.b + 1)
|
|
|
|
proc rotatedLeft*[T](arg: openArray[T]; dist: int): seq[T] =
|
|
## Same as `rotateLeft`, just with the difference that it does
|
|
## not modify the argument. It creates a new `seq` instead.
|
|
##
|
|
## **See also:**
|
|
## * `rotateLeft proc<#rotateLeft,openArray[T],int>`_ for the in-place version of this proc
|
|
## * `rotatedLeft proc<#rotatedLeft,openArray[T],HSlice[int,int],int>`_ for a version which rotates a range
|
|
runnableExamples:
|
|
var a = @[1, 2, 3, 4, 5]
|
|
a = rotatedLeft(a, 2)
|
|
assert a == @[3, 4, 5, 1, 2]
|
|
a = rotatedLeft(a, 4)
|
|
assert a == @[2, 3, 4, 5, 1]
|
|
a = rotatedLeft(a, -6)
|
|
assert a == @[1, 2, 3, 4, 5]
|
|
let argLen = arg.len
|
|
let distLeft = ((dist mod argLen) + argLen) mod argLen
|
|
arg.rotatedInternal(0, distLeft, argLen)
|