mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
* test implicitly huge set types refs https://github.com/nim-lang/RFCs/issues/298 * oh my god * boot at least * don't error, fix remaining issues, no 2 len arrays * fix runnable example * test assuming 0..255 for int literal * test refactor, add changelog, test
90 lines
2.9 KiB
Nim
90 lines
2.9 KiB
Nim
func incl*[T](x: var set[T], y: T) {.magic: "Incl".} =
|
|
## Includes element `y` in the set `x`.
|
|
##
|
|
## This is the same as `x = x + {y}`, but it might be more efficient.
|
|
runnableExamples:
|
|
var a = {1, 3, 5}
|
|
a.incl(2)
|
|
assert a == {1, 2, 3, 5}
|
|
a.incl(4)
|
|
assert a == {1, 2, 3, 4, 5}
|
|
|
|
when not defined(nimHasCallsitePragma):
|
|
{.pragma: callsite.}
|
|
|
|
template incl*[T](x: var set[T], y: set[T]) {.callsite.} =
|
|
## Includes the set `y` in the set `x`.
|
|
runnableExamples:
|
|
var a = {1, 3, 5, 7}
|
|
var b = {4, 5, 6}
|
|
a.incl(b)
|
|
assert a == {1, 3, 4, 5, 6, 7}
|
|
x = x + y
|
|
|
|
func excl*[T](x: var set[T], y: T) {.magic: "Excl".} =
|
|
## Excludes element `y` from the set `x`.
|
|
##
|
|
## This is the same as `x = x - {y}`, but it might be more efficient.
|
|
runnableExamples:
|
|
var b = {2, 3, 5, 6, 12, 54}
|
|
b.excl(5)
|
|
assert b == {2, 3, 6, 12, 54}
|
|
|
|
template excl*[T](x: var set[T], y: set[T]) {.callsite.} =
|
|
## Excludes the set `y` from the set `x`.
|
|
runnableExamples:
|
|
var a = {1, 3, 5, 7}
|
|
var b = {3, 4, 5}
|
|
a.excl(b)
|
|
assert a == {1, 7}
|
|
x = x - y
|
|
|
|
func card*[T](x: set[T]): int {.magic: "Card".} =
|
|
## Returns the cardinality of the set `x`, i.e. the number of elements
|
|
## in the set.
|
|
runnableExamples:
|
|
var a = {1, 3, 5, 7}
|
|
assert card(a) == 4
|
|
var b = {1, 3, 5, 7, 5}
|
|
assert card(b) == 4 # repeated 5 doesn't count
|
|
|
|
func len*[T](x: set[T]): int {.magic: "Card".}
|
|
## An alias for `card(x)`.
|
|
|
|
|
|
func `*`*[T](x, y: set[T]): set[T] {.magic: "MulSet".} =
|
|
## This operator computes the intersection of two sets.
|
|
runnableExamples:
|
|
assert {1, 2, 3} * {2, 3, 4} == {2, 3}
|
|
|
|
func `+`*[T](x, y: set[T]): set[T] {.magic: "PlusSet".} =
|
|
## This operator computes the union of two sets.
|
|
runnableExamples:
|
|
assert {1, 2, 3} + {2, 3, 4} == {1, 2, 3, 4}
|
|
|
|
func `-`*[T](x, y: set[T]): set[T] {.magic: "MinusSet".} =
|
|
## This operator computes the difference of two sets.
|
|
runnableExamples:
|
|
assert {1, 2, 3} - {2, 3, 4} == {1}
|
|
|
|
func contains*[T](x: set[T], y: T): bool {.magic: "InSet".} =
|
|
## One should overload this proc if one wants to overload the `in` operator.
|
|
##
|
|
## The parameters are in reverse order! `a in b` is a template for
|
|
## `contains(b, a)`.
|
|
## This is because the unification algorithm that Nim uses for overload
|
|
## resolution works from left to right.
|
|
## But for the `in` operator that would be the wrong direction for this
|
|
## piece of code:
|
|
runnableExamples:
|
|
var s: set[range['a'..'z']] = {'a'..'c'}
|
|
assert s.contains('c')
|
|
assert 'b' in s
|
|
assert 'd' notin s
|
|
assert set['a'..'z'] is set[range['a'..'z']]
|
|
## If `in` had been declared as `[T](elem: T, s: set[T])` then `T` would
|
|
## have been bound to `char`. But `s` is not compatible to type
|
|
## `set[char]`! The solution is to bind `T` to `range['a'..'z']`. This
|
|
## is achieved by reversing the parameters for `contains`; `in` then
|
|
## passes its arguments in reverse order.
|