Files
Nim/compiler/types.nim
2020-11-02 08:56:51 +01:00

1570 lines
54 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module contains routines for accessing and iterating over types
import
intsets, ast, astalgo, trees, msgs, strutils, platform, renderer, options,
lineinfos, int128
type
TPreferedDesc* = enum
preferName, # default
preferDesc, # probably should become what preferResolved is
preferExported,
preferModuleInfo, # fully qualified
preferGenericArg,
preferTypeName,
preferResolved, # fully resolved symbols
preferMixed,
# most useful, shows: symbol + resolved symbols if it differs, eg:
# tuple[a: MyInt{int}, b: float]
proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string
template `$`*(typ: PType): string = typeToString(typ)
proc base*(t: PType): PType =
result = t[0]
# ------------------- type iterator: ----------------------------------------
type
TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
TTypeMutator* = proc (t: PType, closure: RootRef): PType {.nimcall.} # copy t and mutate it
TTypePredicate* = proc (t: PType): bool {.nimcall.}
proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
# Returns result of `iter`.
proc mutateType*(t: PType, iter: TTypeMutator, closure: RootRef): PType
# Returns result of `iter`.
type
TParamsEquality* = enum # they are equal, but their
# identifiers or their return
# type differ (i.e. they cannot be
# overloaded)
# this used to provide better error messages
paramsNotEqual, # parameters are not equal
paramsEqual, # parameters are equal
paramsIncompatible
proc equalParams*(a, b: PNode): TParamsEquality
# returns whether the parameter lists of the procs a, b are exactly the same
const
# TODO: Remove tyTypeDesc from each abstractX and (where necessary)
# replace with typedescX
abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias, tyInferred, tySink, tyLent, tyOwned}
abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
tyAlias, tyInferred, tySink, tyLent, tyOwned}
abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
tyAlias, tyInferred, tySink, tyOwned}
# see also ast.abstractVarRange
abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
tyInferred, tySink, tyOwned}
abstractInstOwned* = abstractInst + {tyOwned}
skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
tyInferred, tySink, tyLent, tyOwned}
# typedescX is used if we're sure tyTypeDesc should be included (or skipped)
typedescPtrs* = abstractPtrs + {tyTypeDesc}
typedescInst* = abstractInst + {tyTypeDesc, tyOwned}
proc invalidGenericInst*(f: PType): bool =
result = f.kind == tyGenericInst and lastSon(f) == nil
proc isPureObject*(typ: PType): bool =
var t = typ
while t.kind == tyObject and t[0] != nil:
t = t[0].skipTypes(skipPtrs)
result = t.sym != nil and sfPure in t.sym.flags
proc isUnsigned*(t: PType): bool =
t.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}
proc getOrdValue*(n: PNode; onError = high(Int128)): Int128 =
var k = n.kind
if n.typ != nil and n.typ.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}:
k = nkUIntLit
case k
of nkCharLit, nkUIntLit..nkUInt64Lit:
# XXX: enable this assert
#assert n.typ == nil or isUnsigned(n.typ), $n.typ
toInt128(cast[uint64](n.intVal))
of nkIntLit..nkInt64Lit:
# XXX: enable this assert
#assert n.typ == nil or not isUnsigned(n.typ), $n.typ.kind
toInt128(n.intVal)
of nkNilLit:
int128.Zero
of nkHiddenStdConv: getOrdValue(n[1], onError)
else:
# XXX: The idea behind the introduction of int128 was to finally
# have all calculations numerically far away from any
# overflows. This command just introduces such overflows and
# should therefore really be revisited.
onError
proc getFloatValue*(n: PNode): BiggestFloat =
case n.kind
of nkFloatLiterals: n.floatVal
of nkHiddenStdConv: getFloatValue(n[1])
else: NaN
proc isIntLit*(t: PType): bool {.inline.} =
result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit
proc isFloatLit*(t: PType): bool {.inline.} =
result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit
proc addDeclaredLoc*(result: var string, conf: ConfigRef; sym: PSym) =
result.add " [$1 declared in $2]" % [sym.kind.toHumanStr, toFileLineCol(conf, sym.info)]
proc addDeclaredLocMaybe*(result: var string, conf: ConfigRef; sym: PSym) =
if optDeclaredLocs in conf.globalOptions and sym != nil:
addDeclaredLoc(result, conf, sym)
proc addDeclaredLoc(result: var string, conf: ConfigRef; typ: PType) =
let typ = typ.skipTypes(abstractInst - {tyRange})
result.add " [$1" % typ.kind.toHumanStr
if typ.sym != nil:
result.add " declared in " & toFileLineCol(conf, typ.sym.info)
result.add "]"
proc addDeclaredLocMaybe*(result: var string, conf: ConfigRef; typ: PType) =
if optDeclaredLocs in conf.globalOptions: addDeclaredLoc(result, conf, typ)
proc addTypeHeader*(result: var string, conf: ConfigRef; typ: PType; prefer: TPreferedDesc = preferMixed; getDeclarationPath = true) =
result.add typeToString(typ, prefer)
if getDeclarationPath: result.addDeclaredLoc(conf, typ.sym)
proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName; getDeclarationPath = true): string =
assert sym != nil
# consider using `skipGenericOwner` to avoid fun2.fun2 when fun2 is generic
result = sym.owner.name.s & '.' & sym.name.s
if sym.kind in routineKinds:
result.add '('
var n = sym.typ.n
for i in 1..<n.len:
let p = n[i]
if p.kind == nkSym:
result.add(p.sym.name.s)
result.add(": ")
result.add(typeToString(p.sym.typ, prefer))
if i != n.len-1: result.add(", ")
else:
result.add renderTree(p)
result.add(')')
if n[0].typ != nil:
result.add(": " & typeToString(n[0].typ, prefer))
if getDeclarationPath: result.addDeclaredLoc(conf, sym)
proc elemType*(t: PType): PType =
assert(t != nil)
case t.kind
of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(lastSon(t))
of tyArray: result = t[1]
of tyError: result = t
else: result = t.lastSon
assert(result != nil)
proc enumHasHoles*(t: PType): bool =
var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
result = b.kind == tyEnum and tfEnumHasHoles in b.flags
proc isOrdinalType*(t: PType, allowEnumWithHoles: bool = false): bool =
assert(t != nil)
const
baseKinds = {tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyEnum}
parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
result = (t.kind in baseKinds and (not t.enumHasHoles or allowEnumWithHoles)) or
(t.kind in parentKinds and isOrdinalType(t.lastSon, allowEnumWithHoles))
proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
closure: RootRef): bool
proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
closure: RootRef): bool =
if n != nil:
case n.kind
of nkNone..nkNilLit:
# a leaf
result = iterOverTypeAux(marker, n.typ, iter, closure)
else:
for i in 0..<n.len:
result = iterOverNode(marker, n[i], iter, closure)
if result: return
proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
closure: RootRef): bool =
result = false
if t == nil: return
result = iter(t, closure)
if result: return
if not containsOrIncl(marker, t.id):
case t.kind
of tyGenericInst, tyGenericBody, tyAlias, tySink, tyInferred:
result = iterOverTypeAux(marker, lastSon(t), iter, closure)
else:
for i in 0..<t.len:
result = iterOverTypeAux(marker, t[i], iter, closure)
if result: return
if t.n != nil and t.kind != tyProc: result = iterOverNode(marker, t.n, iter, closure)
proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
var marker = initIntSet()
result = iterOverTypeAux(marker, t, iter, closure)
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
marker: var IntSet): bool
proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
marker: var IntSet): bool =
result = false
case n.kind
of nkRecList:
for i in 0..<n.len:
result = searchTypeNodeForAux(n[i], p, marker)
if result: return
of nkRecCase:
assert(n[0].kind == nkSym)
result = searchTypeNodeForAux(n[0], p, marker)
if result: return
for i in 1..<n.len:
case n[i].kind
of nkOfBranch, nkElse:
result = searchTypeNodeForAux(lastSon(n[i]), p, marker)
if result: return
else: discard
of nkSym:
result = searchTypeForAux(n.sym.typ, p, marker)
else: discard
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
marker: var IntSet): bool =
# iterates over VALUE types!
result = false
if t == nil: return
if containsOrIncl(marker, t.id): return
result = predicate(t)
if result: return
case t.kind
of tyObject:
if t[0] != nil:
result = searchTypeForAux(t[0].skipTypes(skipPtrs), predicate, marker)
if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
of tyGenericInst, tyDistinct, tyAlias, tySink:
result = searchTypeForAux(lastSon(t), predicate, marker)
of tyArray, tySet, tyTuple:
for i in 0..<t.len:
result = searchTypeForAux(t[i], predicate, marker)
if result: return
else:
discard
proc searchTypeFor*(t: PType, predicate: TTypePredicate): bool =
var marker = initIntSet()
result = searchTypeForAux(t, predicate, marker)
proc isObjectPredicate(t: PType): bool =
result = t.kind == tyObject
proc containsObject*(t: PType): bool =
result = searchTypeFor(t, isObjectPredicate)
proc isObjectWithTypeFieldPredicate(t: PType): bool =
result = t.kind == tyObject and t[0] == nil and
not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
tfFinal notin t.flags
type
TTypeFieldResult* = enum
frNone, # type has no object type field
frHeader, # type has an object type field only in the header
frEmbedded # type has an object type field somewhere embedded
proc analyseObjectWithTypeFieldAux(t: PType,
marker: var IntSet): TTypeFieldResult =
var res: TTypeFieldResult
result = frNone
if t == nil: return
case t.kind
of tyObject:
if t.n != nil:
if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
return frEmbedded
for i in 0..<t.len:
var x = t[i]
if x != nil: x = x.skipTypes(skipPtrs)
res = analyseObjectWithTypeFieldAux(x, marker)
if res == frEmbedded:
return frEmbedded
if res == frHeader: result = frHeader
if result == frNone:
if isObjectWithTypeFieldPredicate(t): result = frHeader
of tyGenericInst, tyDistinct, tyAlias, tySink:
result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
of tyArray, tyTuple:
for i in 0..<t.len:
res = analyseObjectWithTypeFieldAux(t[i], marker)
if res != frNone:
return frEmbedded
else:
discard
proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult =
# this does a complex analysis whether a call to ``objectInit`` needs to be
# made or initializing of the type field suffices or if there is no type field
# at all in this type.
var marker = initIntSet()
result = analyseObjectWithTypeFieldAux(t, marker)
proc isGCRef(t: PType): bool =
result = t.kind in GcTypeKinds or
(t.kind == tyProc and t.callConv == ccClosure)
if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
result = false
proc containsGarbageCollectedRef*(typ: PType): bool =
# returns true if typ contains a reference, sequence or string (all the
# things that are garbage-collected)
result = searchTypeFor(typ, isGCRef)
proc isManagedMemory(t: PType): bool =
result = t.kind in GcTypeKinds or
(t.kind == tyProc and t.callConv == ccClosure)
proc containsManagedMemory*(typ: PType): bool =
result = searchTypeFor(typ, isManagedMemory)
proc isTyRef(t: PType): bool =
result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)
proc containsTyRef*(typ: PType): bool =
# returns true if typ contains a 'ref'
result = searchTypeFor(typ, isTyRef)
proc isHiddenPointer(t: PType): bool =
result = t.kind in {tyString, tySequence, tyOpenArray, tyVarargs}
proc containsHiddenPointer*(typ: PType): bool =
# returns true if typ contains a string, table or sequence (all the things
# that need to be copied deeply)
result = searchTypeFor(typ, isHiddenPointer)
proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool
proc canFormAcycleNode(marker: var IntSet, n: PNode, startId: int): bool =
result = false
if n != nil:
result = canFormAcycleAux(marker, n.typ, startId)
if not result:
case n.kind
of nkNone..nkNilLit:
discard
else:
for i in 0..<n.len:
result = canFormAcycleNode(marker, n[i], startId)
if result: return
proc canFormAcycleAux(marker: var IntSet, typ: PType, startId: int): bool =
result = false
if typ == nil: return
if tfAcyclic in typ.flags: return
var t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
if tfAcyclic in t.flags: return
case t.kind
of tyTuple, tyObject, tyRef, tySequence, tyArray, tyOpenArray, tyVarargs:
if not containsOrIncl(marker, t.id):
for i in 0..<t.len:
result = canFormAcycleAux(marker, t[i], startId)
if result: return
if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
else:
result = t.id == startId
# Inheritance can introduce cyclic types, however this is not relevant
# as the type that is passed to 'new' is statically known!
# er but we use it also for the write barrier ...
if t.kind == tyObject and tfFinal notin t.flags:
# damn inheritance may introduce cycles:
result = true
of tyProc: result = typ.callConv == ccClosure
else: discard
proc isFinal*(t: PType): bool =
let t = t.skipTypes(abstractInst)
result = t.kind != tyObject or tfFinal in t.flags or isPureObject(t)
proc canFormAcycle*(typ: PType): bool =
var marker = initIntSet()
result = canFormAcycleAux(marker, typ, typ.id)
proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
closure: RootRef): PType
proc mutateNode(marker: var IntSet, n: PNode, iter: TTypeMutator,
closure: RootRef): PNode =
result = nil
if n != nil:
result = copyNode(n)
result.typ = mutateTypeAux(marker, n.typ, iter, closure)
case n.kind
of nkNone..nkNilLit:
# a leaf
discard
else:
for i in 0..<n.len:
result.add mutateNode(marker, n[i], iter, closure)
proc mutateTypeAux(marker: var IntSet, t: PType, iter: TTypeMutator,
closure: RootRef): PType =
result = nil
if t == nil: return
result = iter(t, closure)
if not containsOrIncl(marker, t.id):
for i in 0..<t.len:
result[i] = mutateTypeAux(marker, result[i], iter, closure)
if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
assert(result != nil)
proc mutateType(t: PType, iter: TTypeMutator, closure: RootRef): PType =
var marker = initIntSet()
result = mutateTypeAux(marker, t, iter, closure)
proc valueToString(a: PNode): string =
case a.kind
of nkCharLit..nkUInt64Lit: result = $a.intVal
of nkFloatLit..nkFloat128Lit: result = $a.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal
else: result = "<invalid value>"
proc rangeToStr(n: PNode): string =
assert(n.kind == nkRange)
result = valueToString(n[0]) & ".." & valueToString(n[1])
const
typeToStr: array[TTypeKind, string] = ["None", "bool", "char", "empty",
"Alias", "typeof(nil)", "untyped", "typed", "typeDesc",
"GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
"distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
"set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
"pointer", "OpenArray[$1]", "string", "cstring", "Forward",
"int", "int8", "int16", "int32", "int64",
"float", "float32", "float64", "float128",
"uint", "uint8", "uint16", "uint32", "uint64",
"owned", "sink",
"lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
"BuiltInTypeClass", "UserTypeClass",
"UserTypeClassInst", "CompositeTypeClass", "inferred",
"and", "or", "not", "any", "static", "TypeFromExpr", "out ",
"void"]
const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo,
preferGenericArg, preferResolved, preferMixed}
template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
tc.add concrete
tc.flags.incl tfResolved
# TODO: It would be a good idea to kill the special state of a resolved
# concept by switching to tyAlias within the instantiated procs.
# Currently, tyAlias is always skipped with lastSon, which means that
# we can store information about the matched concept in another position.
# Then builtInFieldAccess can be modified to properly read the derived
# consts and types stored within the concept.
template isResolvedUserTypeClass*(t: PType): bool =
tfResolved in t.flags
proc addTypeFlags(name: var string, typ: PType) {.inline.} =
if tfNotNil in typ.flags: name.add(" not nil")
proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
let preferToplevel = prefer
proc getPrefer(prefer: TPreferedDesc): TPreferedDesc =
if preferToplevel in {preferResolved, preferMixed}:
preferToplevel # sticky option
else:
prefer
proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
result = ""
let prefer = getPrefer(prefer)
let t = typ
if t == nil: return
if prefer in preferToResolveSymbols and t.sym != nil and
sfAnon notin t.sym.flags and t.kind != tySequence:
if t.kind == tyInt and isIntLit(t):
result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
elif t.kind == tyAlias and t[0].kind != tyAlias:
result = typeToString(t[0])
elif prefer in {preferResolved, preferMixed}:
case t.kind
of IntegralTypes + {tyFloat..tyFloat128} + {tyString, tyCString}:
result = typeToStr[t.kind]
of tyGenericBody:
result = typeToString(t.lastSon)
of tyCompositeTypeClass:
# avoids showing `A[any]` in `proc fun(a: A)` with `A = object[T]`
result = typeToString(t.lastSon.lastSon)
else:
result = t.sym.name.s
if prefer == preferMixed and result != t.sym.name.s:
result = t.sym.name.s & "{" & result & "}"
elif prefer in {preferName, preferTypeName} or t.sym.owner.isNil:
# note: should probably be: {preferName, preferTypeName, preferGenericArg}
result = t.sym.name.s
if t.kind == tyGenericParam and t.len > 0:
result.add ": "
var first = true
for son in t.sons:
if not first: result.add " or "
result.add son.typeToString
first = false
else:
result = t.sym.owner.name.s & '.' & t.sym.name.s
result.addTypeFlags(t)
return
case t.kind
of tyInt:
if not isIntLit(t) or prefer == preferExported:
result = typeToStr[t.kind]
else:
if prefer == preferGenericArg:
result = $t.n.intVal
else:
result = "int literal(" & $t.n.intVal & ")"
of tyGenericInst, tyGenericInvocation:
result = typeToString(t[0]) & '['
for i in 1..<t.len-ord(t.kind != tyGenericInvocation):
if i > 1: result.add(", ")
result.add(typeToString(t[i], preferGenericArg))
result.add(']')
of tyGenericBody:
result = typeToString(t.lastSon) & '['
for i in 0..<t.len-1:
if i > 0: result.add(", ")
result.add(typeToString(t[i], preferTypeName))
result.add(']')
of tyTypeDesc:
if t[0].kind == tyNone: result = "typedesc"
else: result = "type " & typeToString(t[0])
of tyStatic:
if prefer == preferGenericArg and t.n != nil:
result = t.n.renderTree
else:
result = "static[" & (if t.len > 0: typeToString(t[0]) else: "") & "]"
if t.n != nil: result.add "(" & renderTree(t.n) & ")"
of tyUserTypeClass:
if t.sym != nil and t.sym.owner != nil:
if t.isResolvedUserTypeClass: return typeToString(t.lastSon)
return t.sym.owner.name.s
else:
result = "<invalid tyUserTypeClass>"
of tyBuiltInTypeClass:
result = case t.base.kind
of tyVar: "var"
of tyRef: "ref"
of tyPtr: "ptr"
of tySequence: "seq"
of tyArray: "array"
of tySet: "set"
of tyRange: "range"
of tyDistinct: "distinct"
of tyProc: "proc"
of tyObject: "object"
of tyTuple: "tuple"
of tyOpenArray: "openArray"
else: typeToStr[t.base.kind]
of tyInferred:
let concrete = t.previouslyInferred
if concrete != nil: result = typeToString(concrete)
else: result = "inferred[" & typeToString(t.base) & "]"
of tyUserTypeClassInst:
let body = t.base
result = body.sym.name.s & "["
for i in 1..<t.len - 1:
if i > 1: result.add(", ")
result.add(typeToString(t[i]))
result.add "]"
of tyAnd:
for i, son in t.sons:
result.add(typeToString(son))
if i < t.sons.high:
result.add(" and ")
of tyOr:
for i, son in t.sons:
result.add(typeToString(son))
if i < t.sons.high:
result.add(" or ")
of tyNot:
result = "not " & typeToString(t[0])
of tyUntyped:
#internalAssert t.len == 0
result = "untyped"
of tyFromExpr:
if t.n == nil:
result = "unknown"
else:
result = "typeof(" & renderTree(t.n) & ")"
of tyArray:
result = "array"
if t.len > 0:
if t[0].kind == tyRange:
result &= "[" & rangeToStr(t[0].n) & ", " &
typeToString(t[1]) & ']'
else:
result &= "[" & typeToString(t[0]) & ", " &
typeToString(t[1]) & ']'
of tyUncheckedArray:
result = "UncheckedArray"
if t.len > 0:
result &= "[" & typeToString(t[0]) & ']'
of tySequence:
if t.sym != nil and prefer != preferResolved:
result = t.sym.name.s
else:
result = "seq"
if t.len > 0:
result &= "[" & typeToString(t[0]) & ']'
of tyOrdinal:
result = "ordinal"
if t.len > 0:
result &= "[" & typeToString(t[0]) & ']'
of tySet:
result = "set"
if t.len > 0:
result &= "[" & typeToString(t[0]) & ']'
of tyOpenArray:
result = "openArray"
if t.len > 0:
result &= "[" & typeToString(t[0]) & ']'
of tyDistinct:
result = "distinct " & typeToString(t[0],
if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
of tyTuple:
# we iterate over t.sons here, because t.n may be nil
if t.n != nil:
result = "tuple["
assert(t.n.len == t.len)
for i in 0..<t.n.len:
assert(t.n[i].kind == nkSym)
result.add(t.n[i].sym.name.s & ": " & typeToString(t[i]))
if i < t.n.len - 1: result.add(", ")
result.add(']')
elif t.len == 0:
result = "tuple[]"
else:
result = "("
for i in 0..<t.len:
result.add(typeToString(t[i]))
if i < t.len - 1: result.add(", ")
elif t.len == 1: result.add(",")
result.add(')')
of tyPtr, tyRef, tyVar, tyLent:
result = typeToStr[t.kind]
if t.len >= 2:
setLen(result, result.len-1)
result.add '['
for i in 0..<t.len:
result.add(typeToString(t[i]))
if i < t.len - 1: result.add(", ")
result.add ']'
else:
result.add typeToString(t[0])
of tyRange:
result = "range "
if t.n != nil and t.n.kind == nkRange:
result.add rangeToStr(t.n)
if prefer != preferExported:
result.add("(" & typeToString(t[0]) & ")")
of tyProc:
result = if tfIterator in t.flags: "iterator "
elif t.owner != nil:
case t.owner.kind
of skTemplate: "template "
of skMacro: "macro "
of skConverter: "converter "
else: "proc "
else:
"proc "
if tfUnresolved in t.flags: result.add "[*missing parameters*]"
result.add "("
for i in 1..<t.len:
if t.n != nil and i < t.n.len and t.n[i].kind == nkSym:
result.add(t.n[i].sym.name.s)
result.add(": ")
result.add(typeToString(t[i]))
if i < t.len - 1: result.add(", ")
result.add(')')
if t.len > 0 and t[0] != nil: result.add(": " & typeToString(t[0]))
var prag = if t.callConv == ccNimCall and tfExplicitCallConv notin t.flags: "" else: CallingConvToStr[t.callConv]
if tfNoSideEffect in t.flags:
addSep(prag)
prag.add("noSideEffect")
if tfThread in t.flags:
addSep(prag)
prag.add("gcsafe")
if t.lockLevel.ord != UnspecifiedLockLevel.ord:
addSep(prag)
prag.add("locks: " & $t.lockLevel)
if prag.len != 0: result.add("{." & prag & ".}")
of tyVarargs:
result = typeToStr[t.kind] % typeToString(t[0])
of tySink:
result = "sink " & typeToString(t[0])
of tyOwned:
result = "owned " & typeToString(t[0])
else:
result = typeToStr[t.kind]
result.addTypeFlags(t)
result = typeToString(typ, prefer)
proc firstOrd*(conf: ConfigRef; t: PType): Int128 =
case t.kind
of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyProxy:
result = Zero
of tySet, tyVar: result = firstOrd(conf, t[0])
of tyArray: result = firstOrd(conf, t[0])
of tyRange:
assert(t.n != nil) # range directly given:
assert(t.n.kind == nkRange)
result = getOrdValue(t.n[0])
of tyInt:
if conf != nil and conf.target.intSize == 4:
result = toInt128(-2147483648)
else:
result = toInt128(0x8000000000000000'i64)
of tyInt8: result = toInt128(-128)
of tyInt16: result = toInt128(-32768)
of tyInt32: result = toInt128(-2147483648)
of tyInt64: result = toInt128(0x8000000000000000'i64)
of tyUInt..tyUInt64: result = Zero
of tyEnum:
# if basetype <> nil then return firstOrd of basetype
if t.len > 0 and t[0] != nil:
result = firstOrd(conf, t[0])
else:
if t.n.len > 0:
assert(t.n[0].kind == nkSym)
result = toInt128(t.n[0].sym.position)
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
tyStatic, tyInferred, tyUserTypeClasses, tyLent:
result = firstOrd(conf, lastSon(t))
of tyOrdinal:
if t.len > 0: result = firstOrd(conf, lastSon(t))
else: internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
of tyUncheckedArray, tyCString:
result = Zero
else:
internalError(conf, "invalid kind for firstOrd(" & $t.kind & ')')
result = Zero
proc firstFloat*(t: PType): BiggestFloat =
case t.kind
of tyFloat..tyFloat128: -Inf
of tyRange:
assert(t.n != nil) # range directly given:
assert(t.n.kind == nkRange)
getFloatValue(t.n[0])
of tyVar: firstFloat(t[0])
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
tyStatic, tyInferred, tyUserTypeClasses:
firstFloat(lastSon(t))
else:
internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
NaN
proc lastOrd*(conf: ConfigRef; t: PType): Int128 =
case t.kind
of tyBool: result = toInt128(1'u)
of tyChar: result = toInt128(255'u)
of tySet, tyVar: result = lastOrd(conf, t[0])
of tyArray: result = lastOrd(conf, t[0])
of tyRange:
assert(t.n != nil) # range directly given:
assert(t.n.kind == nkRange)
result = getOrdValue(t.n[1])
of tyInt:
if conf != nil and conf.target.intSize == 4: result = toInt128(0x7FFFFFFF)
else: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
of tyInt8: result = toInt128(0x0000007F)
of tyInt16: result = toInt128(0x00007FFF)
of tyInt32: result = toInt128(0x7FFFFFFF)
of tyInt64: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
of tyUInt:
if conf != nil and conf.target.intSize == 4:
result = toInt128(0xFFFFFFFF)
else:
result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
of tyUInt8: result = toInt128(0xFF)
of tyUInt16: result = toInt128(0xFFFF)
of tyUInt32: result = toInt128(0xFFFFFFFF)
of tyUInt64:
result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
of tyEnum:
if t.n.len > 0:
assert(t.n[^1].kind == nkSym)
result = toInt128(t.n[^1].sym.position)
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
tyStatic, tyInferred, tyUserTypeClasses, tyLent:
result = lastOrd(conf, lastSon(t))
of tyProxy: result = Zero
of tyOrdinal:
if t.len > 0: result = lastOrd(conf, lastSon(t))
else: internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
of tyUncheckedArray:
result = Zero
else:
internalError(conf, "invalid kind for lastOrd(" & $t.kind & ')')
result = Zero
proc lastFloat*(t: PType): BiggestFloat =
case t.kind
of tyFloat..tyFloat128: Inf
of tyVar: lastFloat(t[0])
of tyRange:
assert(t.n != nil) # range directly given:
assert(t.n.kind == nkRange)
getFloatValue(t.n[1])
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
tyStatic, tyInferred, tyUserTypeClasses:
lastFloat(lastSon(t))
else:
internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
NaN
proc floatRangeCheck*(x: BiggestFloat, t: PType): bool =
case t.kind
# This needs to be special cased since NaN is never
# part of firstFloat(t)..lastFloat(t)
of tyFloat..tyFloat128:
true
of tyRange:
x in firstFloat(t)..lastFloat(t)
of tyVar:
floatRangeCheck(x, t[0])
of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
tyStatic, tyInferred, tyUserTypeClasses:
floatRangeCheck(x, lastSon(t))
else:
internalError(newPartialConfigRef(), "invalid kind for floatRangeCheck:" & $t.kind)
false
proc lengthOrd*(conf: ConfigRef; t: PType): Int128 =
if t.skipTypes(tyUserTypeClasses).kind == tyDistinct:
result = lengthOrd(conf, t[0])
else:
let last = lastOrd(conf, t)
let first = firstOrd(conf, t)
result = last - first + One
# -------------- type equality -----------------------------------------------
type
TDistinctCompare* = enum ## how distinct types are to be compared
dcEq, ## a and b should be the same type
dcEqIgnoreDistinct, ## compare symmetrically: (distinct a) == b, a == b
## or a == (distinct b)
dcEqOrDistinctOf ## a equals b or a is distinct of b
TTypeCmpFlag* = enum
IgnoreTupleFields ## NOTE: Only set this flag for backends!
IgnoreCC
ExactTypeDescValues
ExactGenericParams
ExactConstraints
ExactGcSafety
AllowCommonBase
TTypeCmpFlags* = set[TTypeCmpFlag]
TSameTypeClosure = object
cmp: TDistinctCompare
recCheck: int
flags: TTypeCmpFlags
s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
# (few elements expected)
proc initSameTypeClosure: TSameTypeClosure =
# we do the initialization lazily for performance (avoids memory allocations)
discard
proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
result = c.s.len > 0 and c.s.contains((a.id, b.id))
if not result:
when not defined(nimNoNilSeqs):
if isNil(c.s): c.s = @[]
c.s.add((a.id, b.id))
proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
if a == b:
result = true
else:
if a == nil or b == nil: result = false
else: result = sameTypeAux(a, b, c)
proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
var c = initSameTypeClosure()
c.flags = flags
result = sameTypeAux(a, b, c)
proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
if a == b:
result = true
else:
if a == nil or b == nil: result = false
else: result = sameType(a, b, flags)
proc equalParam(a, b: PSym): TParamsEquality =
if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
exprStructuralEquivalent(a.constraint, b.constraint):
if a.ast == b.ast:
result = paramsEqual
elif a.ast != nil and b.ast != nil:
if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
else: result = paramsIncompatible
elif a.ast != nil:
result = paramsEqual
elif b.ast != nil:
result = paramsIncompatible
else:
result = paramsNotEqual
proc sameConstraints(a, b: PNode): bool =
if isNil(a) and isNil(b): return true
if a.len != b.len: return false
for i in 1..<a.len:
if not exprStructuralEquivalent(a[i].sym.constraint,
b[i].sym.constraint):
return false
return true
proc equalParams(a, b: PNode): TParamsEquality =
result = paramsEqual
if a.len != b.len:
result = paramsNotEqual
else:
for i in 1..<a.len:
var m = a[i].sym
var n = b[i].sym
assert((m.kind == skParam) and (n.kind == skParam))
case equalParam(m, n)
of paramsNotEqual:
return paramsNotEqual
of paramsEqual:
discard
of paramsIncompatible:
result = paramsIncompatible
if m.name.id != n.name.id:
# BUGFIX
return paramsNotEqual # paramsIncompatible;
# continue traversal! If not equal, we can return immediately; else
# it stays incompatible
if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
if (a.typ == nil) or (b.typ == nil):
result = paramsNotEqual # one proc has a result, the other not is OK
else:
result = paramsIncompatible # overloading by different
# result types does not work
proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
# two tuples are equivalent iff the names, types and positions are the same;
# however, both types may not have any field names (t.n may be nil) which
# complicates the matter a bit.
if a.len == b.len:
result = true
for i in 0..<a.len:
var x = a[i]
var y = b[i]
if IgnoreTupleFields in c.flags:
x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
result = sameTypeAux(x, y, c)
if not result: return
if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
for i in 0..<a.n.len:
# check field names:
if a.n[i].kind == nkSym and b.n[i].kind == nkSym:
var x = a.n[i].sym
var y = b.n[i].sym
result = x.name.id == y.name.id
if not result: break
else:
return false
elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
result = false
template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
if tfFromGeneric notin a.flags + b.flags:
# fast case: id comparison suffices:
result = a.id == b.id
else:
# expensive structural equality test; however due to the way generic and
# objects work, if one of the types does **not** contain tfFromGeneric,
# they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
# for the same origin and is essential because we don't want "pure"
# structural type equivalence:
#
# type
# TA[T] = object
# TB[T] = object
# --> TA[int] != TB[int]
if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
# ok, we need the expensive structural check
body
proc sameObjectTypes*(a, b: PType): bool =
# specialized for efficiency (sigmatch uses it)
ifFastObjectTypeCheckFailed(a, b):
var c = initSameTypeClosure()
result = sameTypeAux(a, b, c)
proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
result = sameObjectTypes(a, b)
proc sameEnumTypes*(a, b: PType): bool {.inline.} =
result = a.id == b.id
proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
if a == b:
result = true
elif a != nil and b != nil and a.kind == b.kind:
var x = a.typ
var y = b.typ
if IgnoreTupleFields in c.flags:
if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
if sameTypeOrNilAux(x, y, c):
case a.kind
of nkSym:
# same symbol as string is enough:
result = a.sym.name.id == b.sym.name.id
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkEmpty, nkNilLit, nkType: result = true
else:
if a.len == b.len:
for i in 0..<a.len:
if not sameObjectTree(a[i], b[i], c): return
result = true
proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
# check base types:
if a.len != b.len: return
for i in 0..<a.len:
if not sameTypeOrNilAux(a[i], b[i], c): return
if not sameObjectTree(a.n, b.n, c): return
result = true
proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
if a.len != b.len: return false
result = true
for i in 0..<a.len:
result = sameTypeOrNilAux(a[i], b[i], c)
if not result: return
proc isGenericAlias*(t: PType): bool =
return t.kind == tyGenericInst and t.lastSon.kind == tyGenericInst
proc skipGenericAlias*(t: PType): PType =
return if t.isGenericAlias: t.lastSon else: t
proc sameFlags*(a, b: PType): bool {.inline.} =
result = eqTypeFlags*a.flags == eqTypeFlags*b.flags
proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
template cycleCheck() =
# believe it or not, the direct check for ``containsOrIncl(c, a, b)``
# increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
# again: Since the recursion check is only to not get caught in an endless
# recursion, we use a counter and only if it's value is over some
# threshold we perform the expensive exact cycle check:
if c.recCheck < 3:
inc c.recCheck
else:
if containsOrIncl(c, a, b): return true
if x == y: return true
var a = skipTypes(x, {tyGenericInst, tyAlias})
while a.kind == tyUserTypeClass and tfResolved in a.flags:
a = skipTypes(a[^1], {tyGenericInst, tyAlias})
var b = skipTypes(y, {tyGenericInst, tyAlias})
while b.kind == tyUserTypeClass and tfResolved in b.flags:
b = skipTypes(b[^1], {tyGenericInst, tyAlias})
assert(a != nil)
assert(b != nil)
if a.kind != b.kind:
case c.cmp
of dcEq: return false
of dcEqIgnoreDistinct:
while a.kind == tyDistinct: a = a[0]
while b.kind == tyDistinct: b = b[0]
if a.kind != b.kind: return false
of dcEqOrDistinctOf:
while a.kind == tyDistinct: a = a[0]
if a.kind != b.kind: return false
# this is required by tunique_type but makes no sense really:
if x.kind == tyGenericInst and IgnoreTupleFields notin c.flags:
let
lhs = x.skipGenericAlias
rhs = y.skipGenericAlias
if rhs.kind != tyGenericInst or lhs.base != rhs.base:
return false
for i in 1..<lhs.len - 1:
let ff = rhs[i]
let aa = lhs[i]
if not sameTypeAux(ff, aa, c): return false
return true
case a.kind
of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCString,
tyInt..tyUInt64, tyTyped, tyUntyped, tyVoid:
result = sameFlags(a, b)
of tyStatic, tyFromExpr:
result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
if result and a.len == b.len and a.len == 1:
cycleCheck()
result = sameTypeAux(a[0], b[0], c)
of tyObject:
ifFastObjectTypeCheckFailed(a, b):
cycleCheck()
result = sameObjectStructures(a, b, c) and sameFlags(a, b)
of tyDistinct:
cycleCheck()
if c.cmp == dcEq:
if sameFlags(a, b):
ifFastObjectTypeCheckFailed(a, b):
result = sameTypeAux(a[0], b[0], c)
else:
result = sameTypeAux(a[0], b[0], c) and sameFlags(a, b)
of tyEnum, tyForward:
# XXX generic enums do not make much sense, but require structural checking
result = a.id == b.id and sameFlags(a, b)
of tyError:
result = b.kind == tyError
of tyTuple:
cycleCheck()
result = sameTuple(a, b, c) and sameFlags(a, b)
of tyTypeDesc:
if c.cmp == dcEqIgnoreDistinct: result = false
elif ExactTypeDescValues in c.flags:
cycleCheck()
result = sameChildrenAux(x, y, c) and sameFlags(a, b)
else:
result = sameFlags(a, b)
of tyGenericParam:
result = sameChildrenAux(a, b, c) and sameFlags(a, b)
if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
result = a.sym.position == b.sym.position
of tyBuiltInTypeClass:
assert a.len == 1
assert a[0].len == 0
assert b.len == 1
assert b[0].len == 0
result = a[0].kind == b[0].kind
of tyGenericInvocation, tyGenericBody, tySequence, tyOpenArray, tySet, tyRef,
tyPtr, tyVar, tyLent, tySink, tyUncheckedArray, tyArray, tyProc, tyVarargs,
tyOrdinal, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst,
tyAnd, tyOr, tyNot, tyAnything, tyOwned:
cycleCheck()
if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
result = sameChildrenAux(a, b, c)
if result:
if IgnoreTupleFields in c.flags:
result = a.flags * {tfVarIsPtr} == b.flags * {tfVarIsPtr}
else:
result = sameFlags(a, b)
if result and ExactGcSafety in c.flags:
result = a.flags * {tfThread} == b.flags * {tfThread}
if result and a.kind == tyProc:
result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
of tyRange:
cycleCheck()
result = sameTypeOrNilAux(a[0], b[0], c) and
sameValue(a.n[0], b.n[0]) and
sameValue(a.n[1], b.n[1])
of tyGenericInst, tyAlias, tyInferred:
cycleCheck()
result = sameTypeAux(a.lastSon, b.lastSon, c)
of tyNone: result = false
of tyOptDeprecated: doAssert false
proc sameBackendType*(x, y: PType): bool =
var c = initSameTypeClosure()
c.flags.incl IgnoreTupleFields
c.cmp = dcEqIgnoreDistinct
result = sameTypeAux(x, y, c)
proc compareTypes*(x, y: PType,
cmp: TDistinctCompare = dcEq,
flags: TTypeCmpFlags = {}): bool =
## compares two type for equality (modulo type distinction)
var c = initSameTypeClosure()
c.cmp = cmp
c.flags = flags
if x == y: result = true
elif x.isNil or y.isNil: result = false
else: result = sameTypeAux(x, y, c)
proc inheritanceDiff*(a, b: PType): int =
# | returns: 0 iff `a` == `b`
# | returns: -x iff `a` is the x'th direct superclass of `b`
# | returns: +x iff `a` is the x'th direct subclass of `b`
# | returns: `maxint` iff `a` and `b` are not compatible at all
if a == b or a.kind == tyError or b.kind == tyError: return 0
assert a.kind in {tyObject} + skipPtrs
assert b.kind in {tyObject} + skipPtrs
var x = a
result = 0
while x != nil:
x = skipTypes(x, skipPtrs)
if sameObjectTypes(x, b): return
x = x[0]
dec(result)
var y = b
result = 0
while y != nil:
y = skipTypes(y, skipPtrs)
if sameObjectTypes(y, a): return
y = y[0]
inc(result)
result = high(int)
proc commonSuperclass*(a, b: PType): PType =
# quick check: are they the same?
if sameObjectTypes(a, b): return a
# simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
# up until the ID is found:
assert a.kind == tyObject
assert b.kind == tyObject
var x = a
var ancestors = initIntSet()
while x != nil:
x = skipTypes(x, skipPtrs)
ancestors.incl(x.id)
x = x[0]
var y = b
while y != nil:
var t = y # bug #7818, save type before skip
y = skipTypes(y, skipPtrs)
if ancestors.contains(y.id):
# bug #7818, defer the previous skipTypes
if t.kind != tyGenericInst: t = y
return t
y = y[0]
proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
last: TTypeKind): bool =
var a = a
for k, i in pattern.items:
if a.kind != k: return false
if i >= a.len or a[i] == nil: return false
a = a[i]
result = a.kind == last
include sizealignoffsetimpl
proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
computeSizeAlign(conf, typ)
result = typ.size
proc getReturnType*(s: PSym): PType =
# Obtains the return type of a iterator/proc/macro/template
assert s.kind in skProcKinds
result = s.typ[0]
proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
computeSizeAlign(conf, typ)
result = typ.align
proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
computeSizeAlign(conf, typ)
result = typ.size
proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
case t.kind
of tyStatic:
return t.n == nil
of tyTypeDesc:
if t.base.kind == tyNone: return true
if containsGenericTypeIter(t.base, closure): return true
return false
of GenericTypes + tyTypeClasses + {tyFromExpr}:
return true
else:
return false
proc containsGenericType*(t: PType): bool =
result = iterOverType(t, containsGenericTypeIter, nil)
proc baseOfDistinct*(t: PType; idgen: IdGenerator): PType =
if t.kind == tyDistinct:
result = t[0]
else:
result = copyType(t, nextId idgen, t.owner)
var parent: PType = nil
var it = result
while it.kind in {tyPtr, tyRef, tyOwned}:
parent = it
it = it.lastSon
if it.kind == tyDistinct and parent != nil:
parent[0] = it[0]
proc safeInheritanceDiff*(a, b: PType): int =
# same as inheritanceDiff but checks for tyError:
if a.kind == tyError or b.kind == tyError:
result = -1
else:
result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))
proc compatibleEffectsAux(se, re: PNode): bool =
if re.isNil: return false
for r in items(re):
block search:
for s in items(se):
if safeInheritanceDiff(r.typ, s.typ) <= 0:
break search
return false
result = true
type
EffectsCompat* = enum
efCompat
efRaisesDiffer
efRaisesUnknown
efTagsDiffer
efTagsUnknown
efLockLevelsDiffer
proc compatibleEffects*(formal, actual: PType): EffectsCompat =
# for proc type compatibility checking:
assert formal.kind == tyProc and actual.kind == tyProc
if formal.n[0].kind != nkEffectList or
actual.n[0].kind != nkEffectList:
return efTagsUnknown
var spec = formal.n[0]
if spec.len != 0:
var real = actual.n[0]
let se = spec[exceptionEffects]
# if 'se.kind == nkArgList' it is no formal type really, but a
# computed effect and as such no spec:
# 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
if not isNil(se) and se.kind != nkArgList:
# spec requires some exception or tag, but we don't know anything:
if real.len == 0: return efRaisesUnknown
let res = compatibleEffectsAux(se, real[exceptionEffects])
if not res: return efRaisesDiffer
let st = spec[tagEffects]
if not isNil(st) and st.kind != nkArgList:
# spec requires some exception or tag, but we don't know anything:
if real.len == 0: return efTagsUnknown
let res = compatibleEffectsAux(st, real[tagEffects])
if not res: return efTagsDiffer
if formal.lockLevel.ord < 0 or
actual.lockLevel.ord <= formal.lockLevel.ord:
result = efCompat
else:
result = efLockLevelsDiffer
proc isCompileTimeOnly*(t: PType): bool {.inline.} =
result = t.kind in {tyTypeDesc, tyStatic}
proc containsCompileTimeOnly*(t: PType): bool =
if isCompileTimeOnly(t): return true
for i in 0..<t.len:
if t[i] != nil and isCompileTimeOnly(t[i]):
return true
return false
proc safeSkipTypes*(t: PType, kinds: TTypeKinds): PType =
## same as 'skipTypes' but with a simple cycle detector.
result = t
var seen = initIntSet()
while result.kind in kinds and not containsOrIncl(seen, result.id):
result = lastSon(result)
type
OrdinalType* = enum
NoneLike, IntLike, FloatLike
proc classify*(t: PType): OrdinalType =
## for convenient type checking:
if t == nil:
result = NoneLike
else:
case skipTypes(t, abstractVarRange).kind
of tyFloat..tyFloat128: result = FloatLike
of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
result = IntLike
else: result = NoneLike
proc skipConv*(n: PNode): PNode =
result = n
case n.kind
of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
# only skip the conversion if it doesn't lose too important information
# (see bug #1334)
if n[0].typ.classify == n.typ.classify:
result = n[0]
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
if n[1].typ.classify == n.typ.classify:
result = n[1]
else: discard
proc skipHidden*(n: PNode): PNode =
result = n
while true:
case result.kind
of nkHiddenStdConv, nkHiddenSubConv:
if result[1].typ.classify == result.typ.classify:
result = result[1]
else: break
of nkHiddenDeref, nkHiddenAddr:
result = result[0]
else: break
proc skipConvTakeType*(n: PNode): PNode =
result = n.skipConv
result.typ = n.typ
proc isEmptyContainer*(t: PType): bool =
case t.kind
of tyUntyped, tyNil: result = true
of tyArray: result = t[1].kind == tyEmpty
of tySet, tySequence, tyOpenArray, tyVarargs:
result = t[0].kind == tyEmpty
of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.lastSon)
else: result = false
proc takeType*(formal, arg: PType; idgen: IdGenerator): PType =
# param: openArray[string] = []
# [] is an array constructor of length 0 of type string!
if arg.kind == tyNil:
# and not (formal.kind == tyProc and formal.callConv == ccClosure):
result = formal
elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
arg.isEmptyContainer:
let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), nextId(idgen), arg.owner)
a[ord(arg.kind == tyArray)] = formal[0]
result = a
elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
result = formal
else:
result = arg
proc skipHiddenSubConv*(n: PNode; idgen: IdGenerator): PNode =
if n.kind == nkHiddenSubConv:
# param: openArray[string] = []
# [] is an array constructor of length 0 of type string!
let formal = n.typ
result = n[1]
let arg = result.typ
let dest = takeType(formal, arg, idgen)
if dest == arg and formal.kind != tyUntyped:
#echo n.info, " came here for ", formal.typeToString
result = n
else:
result = copyTree(result)
result.typ = dest
else:
result = n
proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType) =
if formal.kind != tyError and actual.kind != tyError:
let actualStr = typeToString(actual)
let formalStr = typeToString(formal)
let desc = typeToString(formal, preferDesc)
let x = if formalStr == desc: formalStr else: formalStr & " = " & desc
let verbose = actualStr == formalStr or optDeclaredLocs in conf.globalOptions
var msg = "type mismatch:"
if verbose: msg.add "\n"
msg.add " got <$1>" % actualStr
if verbose:
msg.addDeclaredLoc(conf, actual)
msg.add "\n"
msg.add " but expected '$1'" % x
if verbose: msg.addDeclaredLoc(conf, formal)
if formal.kind == tyProc and actual.kind == tyProc:
case compatibleEffects(formal, actual)
of efCompat: discard
of efRaisesDiffer:
msg.add "\n.raise effects differ"
of efRaisesUnknown:
msg.add "\n.raise effect is 'can raise any'"
of efTagsDiffer:
msg.add "\n.tag effects differ"
of efTagsUnknown:
msg.add "\n.tag effect is 'any tag allowed'"
of efLockLevelsDiffer:
msg.add "\nlock levels differ"
localError(conf, info, msg)
proc isTupleRecursive(t: PType, cycleDetector: var IntSet): bool =
if t == nil:
return false
if cycleDetector.containsOrIncl(t.id):
return true
case t.kind
of tyTuple:
var cycleDetectorCopy: IntSet
for i in 0..<t.len:
assign(cycleDetectorCopy, cycleDetector)
if isTupleRecursive(t[i], cycleDetectorCopy):
return true
of tyAlias, tyRef, tyPtr, tyGenericInst, tyVar, tyLent, tySink,
tyArray, tyUncheckedArray, tySequence, tyDistinct:
return isTupleRecursive(t.lastSon, cycleDetector)
else:
return false
proc isTupleRecursive*(t: PType): bool =
var cycleDetector = initIntSet()
isTupleRecursive(t, cycleDetector)
proc isException*(t: PType): bool =
# check if `y` is object type and it inherits from Exception
assert(t != nil)
var t = t.skipTypes(abstractInst)
while t.kind == tyObject:
if t.sym != nil and t.sym.magic == mException: return true
if t[0] == nil: break
t = skipTypes(t[0], abstractPtrs)
return false
proc isDefectException*(t: PType): bool =
var t = t.skipTypes(abstractPtrs)
while t.kind == tyObject:
if t.sym != nil and t.sym.owner != nil and
sfSystemModule in t.sym.owner.flags and
t.sym.name.s == "Defect":
return true
if t[0] == nil: break
t = skipTypes(t[0], abstractPtrs)
return false
proc isSinkTypeForParam*(t: PType): bool =
# a parameter like 'seq[owned T]' must not be used only once, but its
# elements must, so we detect this case here:
result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
when false:
if isSinkType(t):
if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
result = false
else:
result = true