Files
Nim/compiler/semdata.nim
metagn 71de7fca9e handle explicit generic routine instantiations in sigmatch (#24010)
fixes #16376

The way the compiler handled generic proc instantiations in calls (like
`foo[int](...)`) up to this point was to instantiate `foo[int]`, create
a symbol for the instantiated proc (or a symchoice for multiple procs
excluding ones with mismatching generic param counts), then perform
overload resolution on this symbol/symchoice. The exception to this was
when the called symbol was already a symchoice node, in which case it
wasn't instantiated and overloading was called directly ([these
lines](b7b1313d21/compiler/semexprs.nim (L3366-L3371))).

This has several problems:

* Templates and macros can't create instantiated symbols, so they
couldn't participate in overloaded explicit generic instantiations,
causing the issue #16376.
* Every single proc that can be instantiated with the given generic
params is fully instantiated including the body. #9997 is about this but
isn't fixed here since the instantiation isn't in a call.

The way overload resolution handles explicit instantiations by itself is
also buggy:

* It doesn't check constraints.
* It allows only partially providing the generic parameters, which makes
sense for implicit generics, but can cause ambiguity in overloading.

Here is how this PR deals with these problems:

* Overload resolution now always handles explicit generic instantiations
in calls, in `initCandidate`, as long as the symbol resolves to a
routine symbol.
* Overload resolution now checks the generic params for constraints and
correct parameter count (ignoring implicit params). If these don't
match, the entire overload is considered as not matching and not
instantiated.
* Special error messages are added for mismatching/missing/extra generic
params. This is almost all of the diff in `semcall`.
* Procs with matching generic parameters now instantiate only the type
of the signature in overload resolution, not the proc itself, which also
works for templates and macros.

Unfortunately we can't entirely remove instantiations because overload
resolution can't handle some cases with uninstantiated types even though
it's resolved in the binding (see the last 2 blocks in
`texplicitgenerics`). There are also some instantiation issues with
default params that #24005 didn't fix but I didn't want this to become
the 3rd huge generics PR in a row so I didn't dive too deep into trying
to fix them. There is still a minor instantiation fix in `semtypinst`
though for subscripts in calls.

Additional changes:

* Overloading of `[]` wasn't documented properly, it somewhat is now
because we need to mention the limitation that it can't be done for
generic procs/types.
* Tests can now enable the new type mismatch errors with just
`-d:testsConciseTypeMismatch` in the command.

Package PRs:

- using fork for now:
[combparser](https://github.com/PMunch/combparser/pull/7) (partial
generic instantiation)
- merged: [cligen](https://github.com/c-blake/cligen/pull/233) (partial
generic instantiation but non-overloaded + template)
- merged: [neo](https://github.com/andreaferretti/neo/pull/56) (trying
to instantiate template with no generic param)
2024-09-02 18:22:20 +02:00

636 lines
24 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module contains the data structures for the semantic checking phase.
import std/[tables, intsets, sets]
when defined(nimPreviewSlimSystem):
import std/assertions
import
options, ast, astalgo, msgs, idents, renderer,
magicsys, vmdef, modulegraphs, lineinfos, pathutils
import ic / ic
type
TOptionEntry* = object # entries to put on a stack for pragma parsing
options*: TOptions
defaultCC*: TCallingConvention
dynlib*: PLib
notes*: TNoteKinds
features*: set[Feature]
otherPragmas*: PNode # every pragma can be pushed
warningAsErrors*: TNoteKinds
POptionEntry* = ref TOptionEntry
PProcCon* = ref TProcCon
TProcCon* {.acyclic.} = object # procedure context; also used for top-level
# statements
owner*: PSym # the symbol this context belongs to
resultSym*: PSym # the result symbol (if we are in a proc)
nestedLoopCounter*: int # whether we are in a loop or not
nestedBlockCounter*: int # whether we are in a block or not
breakInLoop*: bool # whether we are in a loop without block
next*: PProcCon # used for stacking procedure contexts
mappingExists*: bool
mapping*: Table[ItemId, PSym]
caseContext*: seq[tuple[n: PNode, idx: int]]
localBindStmts*: seq[PNode]
TMatchedConcept* = object
candidateType*: PType
prev*: ptr TMatchedConcept
depth*: int
TInstantiationPair* = object
genericSym*: PSym
inst*: PInstantiation
TExprFlag* = enum
efLValue, efWantIterator, efWantIterable, efInTypeof,
efNeedStatic,
# Use this in contexts where a static value is mandatory
efPreferStatic,
# Use this in contexts where a static value could bring more
# information, but it's not strictly mandatory. This may become
# the default with implicit statics in the future.
efPreferNilResult,
# Use this if you want a certain result (e.g. static value),
# but you don't want to trigger a hard error. For example,
# you may be in position to supply a better error message
# to the user.
efWantStmt, efAllowStmt, efDetermineType, efExplain,
efWantValue, efOperand, efNoSemCheck,
efNoEvaluateGeneric, efInCall, efFromHlo, efNoSem2Check,
efNoUndeclared, efIsDotCall, efCannotBeDotCall,
# Use this if undeclared identifiers should not raise an error during
# overload resolution.
efNoDiagnostics,
efTypeAllowed # typeAllowed will be called after
efWantNoDefaults
efAllowSymChoice # symchoice node should not be resolved
TExprFlags* = set[TExprFlag]
ImportMode* = enum
importAll, importSet, importExcept
ImportedModule* = object
m*: PSym
case mode*: ImportMode
of importAll: discard
of importSet:
imported*: IntSet # of PIdent.id
of importExcept:
exceptSet*: IntSet # of PIdent.id
PContext* = ref TContext
TContext* = object of TPassContext # a context represents the module
# that is currently being compiled
enforceVoidContext*: PType
# for `if cond: stmt else: foo`, `foo` will be evaluated under
# enforceVoidContext != nil
voidType*: PType # for typeof(stmt)
module*: PSym # the module sym belonging to the context
currentScope*: PScope # current scope
moduleScope*: PScope # scope for modules
imports*: seq[ImportedModule] # scope for all imported symbols
topLevelScope*: PScope # scope for all top-level symbols
p*: PProcCon # procedure context
intTypeCache*: array[-5..32, PType] # cache some common integer types
# to avoid type allocations
nilTypeCache*: PType
matchedConcept*: ptr TMatchedConcept # the current concept being matched
friendModules*: seq[PSym] # friend modules; may access private data;
# this is used so that generic instantiations
# can access private object fields
instCounter*: int # to prevent endless instantiations
templInstCounter*: ref int # gives every template instantiation a unique id
inGenericContext*: int # > 0 if we are in a generic type
inStaticContext*: int # > 0 if we are inside a static: block
inUnrolledContext*: int # > 0 if we are unrolling a loop
compilesContextId*: int # > 0 if we are in a ``compiles`` magic
compilesContextIdGenerator*: int
inGenericInst*: int # > 0 if we are instantiating a generic
converters*: seq[PSym]
patterns*: seq[PSym] # sequence of pattern matchers
optionStack*: seq[POptionEntry]
libs*: seq[PLib] # all libs used by this module
semConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.} # for the pragmas
semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semExprWithType*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semTryConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.}
computeRequiresInit*: proc (c: PContext, t: PType): bool {.nimcall.}
hasUnresolvedArgs*: proc (c: PContext, n: PNode): bool
semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
filter: TSymKinds, flags: TExprFlags, expectedType: PType = nil): PNode {.nimcall.}
semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
semInferredLambda*: proc(c: PContext, pt: Table[ItemId, PType], n: PNode): PNode
semGenerateInstance*: proc (c: PContext, fn: PSym, pt: Table[ItemId, PType],
info: TLineInfo): PSym
instantiateOnlyProcType*: proc (c: PContext, pt: TypeMapping,
prc: PSym, info: TLineInfo): PType
# used by sigmatch for explicit generic instantiations
includedFiles*: IntSet # used to detect recursive include files
pureEnumFields*: TStrTable # pure enum fields that can be used unambiguously
userPragmas*: TStrTable
evalContext*: PEvalContext
unknownIdents*: IntSet # ids of all unknown identifiers to prevent
# naming it multiple times
generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
topStmts*: int # counts the number of encountered top level statements
lastGenericIdx*: int # used for the generics stack
hloLoopDetector*: int # used to prevent endless loops in the HLO
inParallelStmt*: int
instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym {.nimcall.}
cache*: IdentCache
graph*: ModuleGraph
signatures*: TStrTable
recursiveDep*: string
suggestionsMade*: bool
isAmbiguous*: bool # little hack
features*: set[Feature]
inTypeContext*, inConceptDecl*: int
unusedImports*: seq[(PSym, TLineInfo)]
exportIndirections*: HashSet[(int, int)] # (module.id, symbol.id)
importModuleMap*: Table[int, int] # (module.id, module.id)
lastTLineInfo*: TLineInfo
sideEffects*: Table[int, seq[(TLineInfo, PSym)]] # symbol.id index
inUncheckedAssignSection*: int
importModuleLookup*: Table[int, seq[int]] # (module.ident.id, [module.id])
skipTypes*: seq[PNode] # used to skip types between passes in type section. So far only used for inheritance, sets and generic bodies.
inTypeofContext*: int
TBorrowState* = enum
bsNone, bsReturnNotMatch, bsNoDistinct, bsGeneric, bsNotSupported, bsMatch
template config*(c: PContext): ConfigRef = c.graph.config
proc getIntLitType*(c: PContext; literal: PNode): PType =
# we cache some common integer literal types for performance:
let value = literal.intVal
if value >= low(c.intTypeCache) and value <= high(c.intTypeCache):
result = c.intTypeCache[value.int]
if result == nil:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, c.idgen, ti.owner)
result.n = literal
c.intTypeCache[value.int] = result
else:
let ti = getSysType(c.graph, literal.info, tyInt)
result = copyType(ti, c.idgen, ti.owner)
result.n = literal
proc setIntLitType*(c: PContext; result: PNode) =
let i = result.intVal
case c.config.target.intSize
of 8: result.typ = getIntLitType(c, result)
of 4:
if i >= low(int32) and i <= high(int32):
result.typ = getIntLitType(c, result)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
of 2:
if i >= low(int16) and i <= high(int16):
result.typ = getIntLitType(c, result)
elif i >= low(int32) and i <= high(int32):
result.typ = getSysType(c.graph, result.info, tyInt32)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
of 1:
# 8 bit CPUs are insane ...
if i >= low(int8) and i <= high(int8):
result.typ = getIntLitType(c, result)
elif i >= low(int16) and i <= high(int16):
result.typ = getSysType(c.graph, result.info, tyInt16)
elif i >= low(int32) and i <= high(int32):
result.typ = getSysType(c.graph, result.info, tyInt32)
else:
result.typ = getSysType(c.graph, result.info, tyInt64)
else:
internalError(c.config, result.info, "invalid int size")
proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
result = TInstantiationPair(genericSym: s, inst: inst)
proc filename*(c: PContext): string =
# the module's filename
result = toFilename(c.config, FileIndex c.module.position)
proc scopeDepth*(c: PContext): int {.inline.} =
result = if c.currentScope != nil: c.currentScope.depthLevel
else: 0
proc getCurrOwner*(c: PContext): PSym =
# owner stack (used for initializing the
# owner field of syms)
# the documentation comment always gets
# assigned to the current owner
result = c.graph.owners[^1]
proc pushOwner*(c: PContext; owner: PSym) =
c.graph.owners.add(owner)
proc popOwner*(c: PContext) =
if c.graph.owners.len > 0: setLen(c.graph.owners, c.graph.owners.len - 1)
else: internalError(c.config, "popOwner")
proc lastOptionEntry*(c: PContext): POptionEntry =
result = c.optionStack[^1]
proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next
proc put*(p: PProcCon; key, val: PSym) =
if not p.mappingExists:
p.mapping = initTable[ItemId, PSym]()
p.mappingExists = true
#echo "put into table ", key.info
p.mapping[key.itemId] = val
proc get*(p: PProcCon; key: PSym): PSym =
if not p.mappingExists: return nil
result = p.mapping.getOrDefault(key.itemId)
proc getGenSym*(c: PContext; s: PSym): PSym =
if sfGenSym notin s.flags: return s
var it = c.p
while it != nil:
result = get(it, s)
if result != nil:
#echo "got from table ", result.name.s, " ", result.info
return result
it = it.next
result = s
proc considerGenSyms*(c: PContext; n: PNode) =
if n == nil:
discard "can happen for nkFormalParams/nkArgList"
elif n.kind == nkSym:
let s = getGenSym(c, n.sym)
if n.sym != s:
n.sym = s
else:
for i in 0..<n.safeLen:
considerGenSyms(c, n[i])
proc newOptionEntry*(conf: ConfigRef): POptionEntry =
new(result)
result.options = conf.options
result.defaultCC = ccNimCall
result.dynlib = nil
result.notes = conf.notes
result.warningAsErrors = conf.warningAsErrors
proc pushOptionEntry*(c: PContext): POptionEntry =
new(result)
var prev = c.optionStack[^1]
result.options = c.config.options
result.defaultCC = prev.defaultCC
result.dynlib = prev.dynlib
result.notes = c.config.notes
result.warningAsErrors = c.config.warningAsErrors
result.features = c.features
c.optionStack.add(result)
proc popOptionEntry*(c: PContext) =
c.config.options = c.optionStack[^1].options
c.config.notes = c.optionStack[^1].notes
c.config.warningAsErrors = c.optionStack[^1].warningAsErrors
c.features = c.optionStack[^1].features
c.optionStack.setLen(c.optionStack.len - 1)
proc newContext*(graph: ModuleGraph; module: PSym): PContext =
new(result)
result.optionStack = @[newOptionEntry(graph.config)]
result.libs = @[]
result.module = module
result.friendModules = @[module]
result.converters = @[]
result.patterns = @[]
result.includedFiles = initIntSet()
result.pureEnumFields = initStrTable()
result.userPragmas = initStrTable()
result.generics = @[]
result.unknownIdents = initIntSet()
result.cache = graph.cache
result.graph = graph
result.signatures = initStrTable()
result.features = graph.config.features
if graph.config.symbolFiles != disabledSf:
let id = module.position
if graph.config.cmd != cmdM:
assert graph.packed[id].status in {undefined, outdated}
graph.packed[id].status = storing
graph.packed[id].module = module
initEncoder graph, module
template packedRepr*(c): untyped = c.graph.packed[c.module.position].fromDisk
template encoder*(c): untyped = c.graph.encoders[c.module.position]
proc addIncludeFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addIncludeFileDep(c.encoder, c.packedRepr, f)
proc addImportFileDep*(c: PContext; f: FileIndex) =
if c.config.symbolFiles != disabledSf:
addImportFileDep(c.encoder, c.packedRepr, f)
proc addPragmaComputation*(c: PContext; n: PNode) =
if c.config.symbolFiles != disabledSf:
addPragmaComputation(c.encoder, c.packedRepr, n)
proc inclSym(sq: var seq[PSym], s: PSym): bool =
for i in 0..<sq.len:
if sq[i].id == s.id: return false
sq.add s
result = true
proc addConverter*(c: PContext, conv: LazySym) =
assert conv.sym != nil
if inclSym(c.converters, conv.sym):
add(c.graph.ifaces[c.module.position].converters, conv)
proc addConverterDef*(c: PContext, conv: LazySym) =
addConverter(c, conv)
if c.config.symbolFiles != disabledSf:
addConverter(c.encoder, c.packedRepr, conv.sym)
proc addPureEnum*(c: PContext, e: LazySym) =
assert e.sym != nil
add(c.graph.ifaces[c.module.position].pureEnums, e)
if c.config.symbolFiles != disabledSf:
addPureEnum(c.encoder, c.packedRepr, e.sym)
proc addPattern*(c: PContext, p: LazySym) =
assert p.sym != nil
if inclSym(c.patterns, p.sym):
add(c.graph.ifaces[c.module.position].patterns, p)
if c.config.symbolFiles != disabledSf:
addTrmacro(c.encoder, c.packedRepr, p.sym)
proc exportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addExported(c.encoder, c.packedRepr, s)
proc reexportSym*(c: PContext; s: PSym) =
strTableAdds(c.graph, c.module, s)
if c.config.symbolFiles != disabledSf:
addReexport(c.encoder, c.packedRepr, s)
proc newLib*(kind: TLibKind): PLib =
new(result)
result.kind = kind #result.syms = initObjectSet()
proc addToLib*(lib: PLib, sym: PSym) =
#if sym.annex != nil and not isGenericRoutine(sym):
# LocalError(sym.info, errInvalidPragma)
sym.annex = lib
proc newTypeS*(kind: TTypeKind; c: PContext; son: sink PType = nil): PType =
result = newType(kind, c.idgen, getCurrOwner(c), son = son)
proc makePtrType*(owner: PSym, baseType: PType; idgen: IdGenerator): PType =
result = newType(tyPtr, idgen, owner, skipIntLit(baseType, idgen))
proc makePtrType*(c: PContext, baseType: PType): PType =
makePtrType(getCurrOwner(c), baseType, c.idgen)
proc makeTypeWithModifier*(c: PContext,
modifier: TTypeKind,
baseType: PType): PType =
assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}
if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
result = baseType
else:
result = newTypeS(modifier, c, skipIntLit(baseType, c.idgen))
proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
if baseType.kind == kind:
result = baseType
else:
result = newTypeS(kind, c, skipIntLit(baseType, c.idgen))
proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
let typedesc = newTypeS(tyTypeDesc, c)
incl typedesc.flags, tfCheckedForDestructor
internalAssert(c.config, typ != nil)
typedesc.addSonSkipIntLit(typ, c.idgen)
let sym = newSym(skType, c.cache.idAnon, c.idgen, getCurrOwner(c), info,
c.config.options).linkTo(typedesc)
result = newSymNode(sym, info)
proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
result = newTypeS(tyFromExpr, c)
assert n != nil
result.n = n
when false:
proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType];
idgen: IdGenerator): PType =
result = newType(kind, idgen, owner, sons = sons)
proc newTypeWithSons*(c: PContext, kind: TTypeKind,
sons: seq[PType]): PType =
result = newType(kind, c.idgen, getCurrOwner(c), sons = sons)
proc makeStaticExpr*(c: PContext, n: PNode): PNode =
result = newNodeI(nkStaticExpr, n.info)
result.sons = @[n]
result.typ = if n.typ != nil and n.typ.kind == tyStatic: n.typ
else: newTypeS(tyStatic, c, n.typ)
proc makeAndType*(c: PContext, t1, t2: PType): PType =
result = newTypeS(tyAnd, c)
result.rawAddSon t1
result.rawAddSon t2
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeOrType*(c: PContext, t1, t2: PType): PType =
if t1.kind != tyOr and t2.kind != tyOr:
result = newTypeS(tyOr, c)
result.rawAddSon t1
result.rawAddSon t2
else:
result = newTypeS(tyOr, c)
template addOr(t1) =
if t1.kind == tyOr:
for x in t1.kids: result.rawAddSon x
else:
result.rawAddSon t1
addOr(t1)
addOr(t2)
propagateToOwner(result, t1)
propagateToOwner(result, t2)
result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
result.flags.incl tfHasMeta
proc makeNotType*(c: PContext, t1: PType): PType =
result = newTypeS(tyNot, c, son = t1)
propagateToOwner(result, t1)
result.flags.incl(t1.flags * {tfHasStatic})
result.flags.incl tfHasMeta
proc nMinusOne(c: PContext; n: PNode): PNode =
result = newTreeI(nkCall, n.info, newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n)
# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
let intType = getSysType(c.graph, n.info, tyInt)
result = newTypeS(tyRange, c, son = intType)
if n.typ != nil and n.typ.n == nil:
result.flags.incl tfUnresolved
result.n = newTreeI(nkRange, n.info, newIntTypeNode(0, intType),
makeStaticExpr(c, nMinusOne(c, n)))
template rangeHasUnresolvedStatic*(t: PType): bool =
tfUnresolved in t.flags
proc errorType*(c: PContext): PType =
## creates a type representing an error state
result = newTypeS(tyError, c)
result.flags.incl tfCheckedForDestructor
proc errorNode*(c: PContext, n: PNode): PNode =
result = newNodeI(nkEmpty, n.info)
result.typ = errorType(c)
# These mimic localError
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, msg: TMsgKind, arg: string): PNode =
liMessage(c.config, info, msg, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, arg: string): PNode =
liMessage(c.config, info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n)
template localErrorNode*(c: PContext, n: PNode, msg: TMsgKind, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, msg, arg, doNothing, instLoc())
errorNode(c, n2)
template localErrorNode*(c: PContext, n: PNode, arg: string): PNode =
let n2 = n
liMessage(c.config, n2.info, errGenerated, arg, doNothing, instLoc())
errorNode(c, n2)
proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
dest.kind = kind
dest.owner = getCurrOwner(c)
dest.size = - 1
proc makeRangeType*(c: PContext; first, last: BiggestInt;
info: TLineInfo; intType: PType = nil): PType =
let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
var n = newNodeI(nkRange, info)
n.add newIntTypeNode(first, intType)
n.add newIntTypeNode(last, intType)
result = newTypeS(tyRange, c)
result.n = n
addSonSkipIntLit(result, intType, c.idgen) # basetype of range
proc isSelf*(t: PType): bool {.inline.} =
## Is this the magical 'Self' type from concepts?
t.kind == tyTypeDesc and tfPacked in t.flags
proc makeTypeDesc*(c: PContext, typ: PType): PType =
if typ.kind == tyTypeDesc and not isSelf(typ):
result = typ
else:
result = newTypeS(tyTypeDesc, c, skipIntLit(typ, c.idgen))
incl result.flags, tfCheckedForDestructor
proc symFromType*(c: PContext; t: PType, info: TLineInfo): PSym =
if t.sym != nil: return t.sym
result = newSym(skType, getIdent(c.cache, "AnonType"), c.idgen, t.owner, info)
result.flags.incl sfAnon
result.typ = t
proc symNodeFromType*(c: PContext, t: PType, info: TLineInfo): PNode =
result = newSymNode(symFromType(c, t, info), info)
result.typ = makeTypeDesc(c, t)
proc markIndirect*(c: PContext, s: PSym) {.inline.} =
if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
incl(s.flags, sfAddrTaken)
# XXX add to 'c' for global analysis
proc illFormedAst*(n: PNode; conf: ConfigRef) =
globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))
proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len != length: illFormedAst(n, conf)
proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
if n.len < length: illFormedAst(n, conf)
proc isTopLevel*(c: PContext): bool {.inline.} =
result = c.currentScope.depthLevel <= 2
proc isTopLevelInsideDeclaration*(c: PContext, sym: PSym): bool {.inline.} =
# for routeKinds the scope isn't closed yet:
c.currentScope.depthLevel <= 2 + ord(sym.kind in routineKinds)
proc pushCaseContext*(c: PContext, caseNode: PNode) =
c.p.caseContext.add((caseNode, 0))
proc popCaseContext*(c: PContext) =
discard pop(c.p.caseContext)
proc setCaseContextIdx*(c: PContext, idx: int) =
c.p.caseContext[^1].idx = idx
template addExport*(c: PContext; s: PSym) =
## convenience to export a symbol from the current module
addExport(c.graph, c.module, s)
proc storeRodNode*(c: PContext, n: PNode) =
if c.config.symbolFiles != disabledSf:
toPackedNodeTopLevel(n, c.encoder, c.packedRepr)
proc addToGenericProcCache*(c: PContext; s: PSym; inst: PInstantiation) =
c.graph.procInstCache.mgetOrPut(s.itemId, @[]).add LazyInstantiation(module: c.module.position, inst: inst)
if c.config.symbolFiles != disabledSf:
storeInstantiation(c.encoder, c.packedRepr, s, inst)
proc addToGenericCache*(c: PContext; s: PSym; inst: PType) =
c.graph.typeInstCache.mgetOrPut(s.itemId, @[]).add LazyType(typ: inst)
if c.config.symbolFiles != disabledSf:
storeTypeInst(c.encoder, c.packedRepr, s, inst)
proc sealRodFile*(c: PContext) =
if c.config.symbolFiles != disabledSf:
if c.graph.vm != nil:
for (m, n) in PCtx(c.graph.vm).vmstateDiff:
if m == c.module:
addPragmaComputation(c, n)
c.idgen.sealed = true # no further additions are allowed
proc rememberExpansion*(c: PContext; info: TLineInfo; expandedSym: PSym) =
## Templates and macros are very special in Nim; these have
## inlining semantics so after semantic checking they leave no trace
## in the sem'checked AST. This is very bad for IDE-like tooling
## ("find all usages of this template" would not work). We need special
## logic to remember macro/template expansions. This is done here and
## delegated to the "rod" file mechanism.
if c.config.symbolFiles != disabledSf:
storeExpansion(c.encoder, c.packedRepr, info, expandedSym)