mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 17:34:43 +00:00
1235 lines
43 KiB
Nim
1235 lines
43 KiB
Nim
#
|
|
#
|
|
# Nim's Runtime Library
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
## *Constructive mathematics is naturally typed.* -- Simon Thompson
|
|
##
|
|
## Basic math routines for Nim.
|
|
##
|
|
## Note that the trigonometric functions naturally operate on radians.
|
|
## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_
|
|
## provide conversion between radians and degrees.
|
|
##
|
|
## .. code-block::
|
|
##
|
|
## import math
|
|
## from sequtils import map
|
|
##
|
|
## let a = [0.0, PI/6, PI/4, PI/3, PI/2]
|
|
##
|
|
## echo a.map(sin)
|
|
## # @[0.0, 0.499…, 0.707…, 0.866…, 1.0]
|
|
##
|
|
## echo a.map(tan)
|
|
## # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16]
|
|
##
|
|
## echo cos(degToRad(180.0))
|
|
## # -1.0
|
|
##
|
|
## echo sqrt(-1.0)
|
|
## # nan (use `complex` module)
|
|
##
|
|
## This module is available for the `JavaScript target
|
|
## <backends.html#backends-the-javascript-target>`_.
|
|
##
|
|
## **See also:**
|
|
## * `complex module<complex.html>`_ for complex numbers and their
|
|
## mathematical operations
|
|
## * `rationals module<rationals.html>`_ for rational numbers and their
|
|
## mathematical operations
|
|
## * `fenv module<fenv.html>`_ for handling of floating-point rounding
|
|
## and exceptions (overflow, zero-divide, etc.)
|
|
## * `random module<random.html>`_ for fast and tiny random number generator
|
|
## * `mersenne module<mersenne.html>`_ for Mersenne twister random number generator
|
|
## * `stats module<stats.html>`_ for statistical analysis
|
|
## * `strformat module<strformat.html>`_ for formatting floats for print
|
|
## * `system module<system.html>`_ Some very basic and trivial math operators
|
|
## are on system directly, to name a few ``shr``, ``shl``, ``xor``, ``clamp``, etc.
|
|
|
|
|
|
import std/private/since
|
|
{.push debugger: off.} # the user does not want to trace a part
|
|
# of the standard library!
|
|
|
|
import std/[bitops, fenv]
|
|
|
|
when defined(c) or defined(cpp):
|
|
proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
|
|
# a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
|
|
|
|
proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
|
|
proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
|
|
|
|
proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
|
|
|
|
func binom*(n, k: int): int =
|
|
## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
|
|
runnableExamples:
|
|
doAssert binom(6, 2) == binom(6, 4)
|
|
doAssert binom(6, 2) == 15
|
|
doAssert binom(-6, 2) == 1
|
|
doAssert binom(6, 0) == 1
|
|
if k <= 0: return 1
|
|
if 2*k > n: return binom(n, n-k)
|
|
result = n
|
|
for i in countup(2, k):
|
|
result = (result * (n + 1 - i)) div i
|
|
|
|
func createFactTable[N: static[int]]: array[N, int] =
|
|
result[0] = 1
|
|
for i in 1 ..< N:
|
|
result[i] = result[i - 1] * i
|
|
|
|
func fac*(n: int): int =
|
|
## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of
|
|
## a non-negative integer ``n``.
|
|
##
|
|
## See also:
|
|
## * `prod func <#prod,openArray[T]>`_
|
|
runnableExamples:
|
|
doAssert fac(3) == 6
|
|
doAssert fac(4) == 24
|
|
doAssert fac(10) == 3628800
|
|
const factTable =
|
|
when sizeof(int) == 2:
|
|
createFactTable[5]()
|
|
elif sizeof(int) == 4:
|
|
createFactTable[13]()
|
|
else:
|
|
createFactTable[21]()
|
|
assert(n >= 0, $n & " must not be negative.")
|
|
assert(n < factTable.len, $n & " is too large to look up in the table")
|
|
factTable[n]
|
|
|
|
{.push checks: off, line_dir: off, stack_trace: off.}
|
|
|
|
when defined(Posix) and not defined(genode):
|
|
{.passl: "-lm".}
|
|
|
|
const
|
|
PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number)
|
|
TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI)
|
|
E* = 2.71828182845904523536028747 ## Euler's number
|
|
|
|
MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## ``float64`` type.
|
|
MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
|
|
## after the decimal point for Nim's
|
|
## ``float32`` type.
|
|
MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
|
|
## meaningful digits
|
|
## after the decimal point
|
|
## for Nim's ``float`` type.
|
|
MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
|
|
## ``float`` type. (= 2^-1022).
|
|
RadPerDeg = PI / 180.0 ## Number of radians per degree
|
|
|
|
type
|
|
FloatClass* = enum ## Describes the class a floating point value belongs to.
|
|
## This is the type that is returned by
|
|
## `classify func <#classify,float>`_.
|
|
fcNormal, ## value is an ordinary nonzero floating point value
|
|
fcSubnormal, ## value is a subnormal (a very small) floating point value
|
|
fcZero, ## value is zero
|
|
fcNegZero, ## value is the negative zero
|
|
fcNan, ## value is Not-A-Number (NAN)
|
|
fcInf, ## value is positive infinity
|
|
fcNegInf ## value is negative infinity
|
|
|
|
func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
|
|
## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
|
|
## Works even with: `--passc:-ffast-math`.
|
|
runnableExamples:
|
|
doAssert NaN.isNaN
|
|
doAssert not Inf.isNaN
|
|
doAssert isNaN(Inf - Inf)
|
|
doAssert not isNaN(3.1415926)
|
|
doAssert not isNaN(0'f32)
|
|
|
|
template fn: untyped = result = x != x
|
|
when nimvm: fn()
|
|
else:
|
|
when defined(js): fn()
|
|
else: result = c_isnan(x)
|
|
|
|
when defined(js):
|
|
proc toBitsImpl(x: float): array[2, uint32] =
|
|
asm """
|
|
const buffer = new ArrayBuffer(8);
|
|
const floatBuffer = new Float64Array(buffer);
|
|
const uintBuffer = new Uint32Array(buffer);
|
|
floatBuffer[0] = `x`;
|
|
`result` = uintBuffer
|
|
"""
|
|
|
|
proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
|
|
## Returns true if `x` is negative, false otherwise.
|
|
runnableExamples:
|
|
doAssert not signbit(0.0)
|
|
doAssert signbit(-0.0)
|
|
doAssert signbit(-0.1)
|
|
doAssert not signbit(0.1)
|
|
when defined(js):
|
|
let uintBuffer = toBitsImpl(x)
|
|
result = (uintBuffer[1] shr 31) != 0
|
|
else:
|
|
result = c_signbit(x) != 0
|
|
|
|
func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
|
|
## Returns a value with the magnitude of `x` and the sign of `y`;
|
|
## this works even if x or y are NaN or zero, both of which can carry a sign.
|
|
runnableExamples:
|
|
doAssert copySign(1.0, -0.0) == -1.0
|
|
doAssert copySign(0.0, -0.0) == -0.0
|
|
doAssert copySign(-1.0, 0.0) == 1.0
|
|
doAssert copySign(10.0, 0.0) == 10.0
|
|
|
|
doAssert copySign(Inf, -1.0) == -Inf
|
|
doAssert copySign(-Inf, 1.0) == Inf
|
|
doAssert copySign(-1.0, NaN) == 1.0
|
|
doAssert copySign(10.0, NaN) == 10.0
|
|
|
|
doAssert copySign(NaN, 0.0).isNaN
|
|
doAssert copySign(NaN, -0.0).isNaN
|
|
|
|
# fails in VM and JS backend
|
|
doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
|
|
|
|
# TODO use signbit for examples
|
|
template impl() =
|
|
if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
|
|
result = abs(x)
|
|
elif y <= 0.0:
|
|
result = -abs(x)
|
|
else: # must be NaN
|
|
result = abs(x)
|
|
|
|
when defined(js): impl()
|
|
else:
|
|
when nimvm: impl()
|
|
else: result = c_copysign(x, y)
|
|
|
|
func classify*(x: float): FloatClass =
|
|
## Classifies a floating point value.
|
|
##
|
|
## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_.
|
|
## Doesn't work with: `--passc:-ffast-math`.
|
|
runnableExamples:
|
|
doAssert classify(0.3) == fcNormal
|
|
doAssert classify(0.0) == fcZero
|
|
doAssert classify(0.3/0.0) == fcInf
|
|
doAssert classify(-0.3/0.0) == fcNegInf
|
|
doAssert classify(5.0e-324) == fcSubnormal
|
|
|
|
# JavaScript and most C compilers have no classify:
|
|
if x == 0.0:
|
|
if 1.0/x == Inf:
|
|
return fcZero
|
|
else:
|
|
return fcNegZero
|
|
if x*0.5 == x:
|
|
if x > 0.0: return fcInf
|
|
else: return fcNegInf
|
|
if x != x: return fcNan
|
|
if abs(x) < MinFloatNormal:
|
|
return fcSubnormal
|
|
return fcNormal
|
|
|
|
func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
|
|
since: (1, 5), inline.} =
|
|
## Checks if two float values are almost equal, using
|
|
## `machine epsilon <https://en.wikipedia.org/wiki/Machine_epsilon>`_.
|
|
##
|
|
## `unitsInLastPlace` is the max number of
|
|
## `units in last place <https://en.wikipedia.org/wiki/Unit_in_the_last_place>`_
|
|
## difference tolerated when comparing two numbers. The larger the value, the
|
|
## more error is allowed. A ``0`` value means that two numbers must be exactly the
|
|
## same to be considered equal.
|
|
##
|
|
## The machine epsilon has to be scaled to the magnitude of the values used
|
|
## and multiplied by the desired precision in ULPs unless the difference is
|
|
## subnormal.
|
|
##
|
|
# taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
|
|
runnableExamples:
|
|
doAssert almostEqual(3.141592653589793, 3.1415926535897936)
|
|
doAssert almostEqual(1.6777215e7'f32, 1.6777216e7'f32)
|
|
doAssert almostEqual(Inf, Inf)
|
|
doAssert almostEqual(-Inf, -Inf)
|
|
doAssert almostEqual(Inf, -Inf) == false
|
|
doAssert almostEqual(-Inf, Inf) == false
|
|
doAssert almostEqual(Inf, NaN) == false
|
|
doAssert almostEqual(NaN, NaN) == false
|
|
|
|
if x == y:
|
|
# short circuit exact equality -- needed to catch two infinities of
|
|
# the same sign. And perhaps speeds things up a bit sometimes.
|
|
return true
|
|
let diff = abs(x - y)
|
|
result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
|
|
diff < minimumPositiveValue(T)
|
|
|
|
func isPowerOfTwo*(x: int): bool =
|
|
## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
|
|
##
|
|
## Zero and negative numbers are not a power of two.
|
|
##
|
|
## See also:
|
|
## * `nextPowerOfTwo func<#nextPowerOfTwo,int>`_
|
|
runnableExamples:
|
|
doAssert isPowerOfTwo(16) == true
|
|
doAssert isPowerOfTwo(5) == false
|
|
doAssert isPowerOfTwo(0) == false
|
|
doAssert isPowerOfTwo(-16) == false
|
|
return (x > 0) and ((x and (x - 1)) == 0)
|
|
|
|
func nextPowerOfTwo*(x: int): int =
|
|
## Returns ``x`` rounded up to the nearest power of two.
|
|
##
|
|
## Zero and negative numbers get rounded up to 1.
|
|
##
|
|
## See also:
|
|
## * `isPowerOfTwo func<#isPowerOfTwo,int>`_
|
|
runnableExamples:
|
|
doAssert nextPowerOfTwo(16) == 16
|
|
doAssert nextPowerOfTwo(5) == 8
|
|
doAssert nextPowerOfTwo(0) == 1
|
|
doAssert nextPowerOfTwo(-16) == 1
|
|
result = x - 1
|
|
when defined(cpu64):
|
|
result = result or (result shr 32)
|
|
when sizeof(int) > 2:
|
|
result = result or (result shr 16)
|
|
when sizeof(int) > 1:
|
|
result = result or (result shr 8)
|
|
result = result or (result shr 4)
|
|
result = result or (result shr 2)
|
|
result = result or (result shr 1)
|
|
result += 1 + ord(x <= 0)
|
|
|
|
func sum*[T](x: openArray[T]): T =
|
|
## Computes the sum of the elements in ``x``.
|
|
##
|
|
## If ``x`` is empty, 0 is returned.
|
|
##
|
|
## See also:
|
|
## * `prod func <#prod,openArray[T]>`_
|
|
## * `cumsum func <#cumsum,openArray[T]>`_
|
|
## * `cumsummed func <#cumsummed,openArray[T]>`_
|
|
runnableExamples:
|
|
doAssert sum([1, 2, 3, 4]) == 10
|
|
doAssert sum([-1.5, 2.7, -0.1]) == 1.1
|
|
for i in items(x): result = result + i
|
|
|
|
func prod*[T](x: openArray[T]): T =
|
|
## Computes the product of the elements in ``x``.
|
|
##
|
|
## If ``x`` is empty, 1 is returned.
|
|
##
|
|
## See also:
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `fac func <#fac,int>`_
|
|
runnableExamples:
|
|
doAssert prod([1, 2, 3, 4]) == 24
|
|
doAssert prod([-4, 3, 5]) == -60
|
|
result = 1.T
|
|
for i in items(x): result = result * i
|
|
|
|
func cumsummed*[T](x: openArray[T]): seq[T] =
|
|
## Return cumulative (aka prefix) summation of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
|
|
runnableExamples:
|
|
let a = [1, 2, 3, 4]
|
|
doAssert cumsummed(a) == @[1, 3, 6, 10]
|
|
result.setLen(x.len)
|
|
result[0] = x[0]
|
|
for i in 1 ..< x.len: result[i] = result[i-1] + x[i]
|
|
|
|
func cumsum*[T](x: var openArray[T]) =
|
|
## Transforms ``x`` in-place (must be declared as `var`) into its
|
|
## cumulative (aka prefix) summation.
|
|
##
|
|
## See also:
|
|
## * `sum func <#sum,openArray[T]>`_
|
|
## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
|
|
## returns cumsummed sequence
|
|
runnableExamples:
|
|
var a = [1, 2, 3, 4]
|
|
cumsum(a)
|
|
doAssert a == @[1, 3, 6, 10]
|
|
for i in 1 ..< x.len: x[i] = x[i-1] + x[i]
|
|
|
|
when not defined(js): # C
|
|
func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
|
|
func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
|
|
## Computes the square root of ``x``.
|
|
##
|
|
## See also:
|
|
## * `cbrt func <#cbrt,float64>`_ for cubic root
|
|
##
|
|
## .. code-block:: nim
|
|
## echo sqrt(4.0) ## 2.0
|
|
## echo sqrt(1.44) ## 1.2
|
|
## echo sqrt(-4.0) ## nan
|
|
func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
|
|
func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
|
|
## Computes the cubic root of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sqrt func <#sqrt,float64>`_ for square root
|
|
##
|
|
## .. code-block:: nim
|
|
## echo cbrt(8.0) ## 2.0
|
|
## echo cbrt(2.197) ## 1.3
|
|
## echo cbrt(-27.0) ## -3.0
|
|
func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
|
|
func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
|
|
## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_
|
|
## of ``x``.
|
|
##
|
|
## See also:
|
|
## * `log func <#log,T,T>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
## * `exp func <#exp,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo ln(exp(4.0)) ## 4.0
|
|
## echo ln(1.0)) ## 0.0
|
|
## echo ln(0.0) ## -inf
|
|
## echo ln(-7.0) ## nan
|
|
else: # JS
|
|
func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
|
|
func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
|
|
|
|
func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
|
|
func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
|
|
|
|
func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
|
|
func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
|
|
|
|
func log*[T: SomeFloat](x, base: T): T =
|
|
## Computes the logarithm of ``x`` to base ``base``.
|
|
##
|
|
## See also:
|
|
## * `ln func <#ln,float64>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
## * `exp func <#exp,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo log(9.0, 3.0) ## 2.0
|
|
## echo log(32.0, 2.0) ## 5.0
|
|
## echo log(0.0, 2.0) ## -inf
|
|
## echo log(-7.0, 4.0) ## nan
|
|
## echo log(8.0, -2.0) ## nan
|
|
ln(x) / ln(base)
|
|
|
|
when not defined(js): # C
|
|
func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
|
|
func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
|
|
## Computes the common logarithm (base 10) of ``x``.
|
|
##
|
|
## See also:
|
|
## * `ln func <#ln,float64>`_
|
|
## * `log func <#log,T,T>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
## * `exp func <#exp,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo log10(100.0) ## 2.0
|
|
## echo log10(0.0) ## nan
|
|
## echo log10(-100.0) ## -inf
|
|
func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
|
|
func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
|
|
## Computes the exponential function of ``x`` (e^x).
|
|
##
|
|
## See also:
|
|
## * `ln func <#ln,float64>`_
|
|
## * `log func <#log,T,T>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `log2 func <#log2,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo exp(1.0) ## 2.718281828459045
|
|
## echo ln(exp(4.0)) ## 4.0
|
|
## echo exp(0.0) ## 1.0
|
|
## echo exp(-1.0) ## 0.3678794411714423
|
|
func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
|
|
func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
|
|
## Computes the sine of ``x``.
|
|
##
|
|
## See also:
|
|
## * `cos func <#cos,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
## * `arcsin func <#arcsin,float64>`_
|
|
## * `sinh func <#sinh,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo sin(PI / 6) ## 0.4999999999999999
|
|
## echo sin(degToRad(90.0)) ## 1.0
|
|
func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
|
|
func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
|
|
## Computes the cosine of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sin func <#sin,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
## * `arccos func <#arccos,float64>`_
|
|
## * `cosh func <#cosh,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo cos(2 * PI) ## 1.0
|
|
## echo cos(degToRad(60.0)) ## 0.5000000000000001
|
|
func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
|
|
func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
|
|
## Computes the tangent of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sin func <#sin,float64>`_
|
|
## * `cos func <#cos,float64>`_
|
|
## * `arctan func <#arctan,float64>`_
|
|
## * `tanh func <#tanh,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo tan(degToRad(45.0)) ## 0.9999999999999999
|
|
## echo tan(PI / 4) ## 0.9999999999999999
|
|
func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
|
|
func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
|
|
## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
|
##
|
|
## See also:
|
|
## * `cosh func <#cosh,float64>`_
|
|
## * `tanh func <#tanh,float64>`_
|
|
## * `arcsinh func <#arcsinh,float64>`_
|
|
## * `sin func <#sin,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo sinh(0.0) ## 0.0
|
|
## echo sinh(1.0) ## 1.175201193643801
|
|
## echo sinh(degToRad(90.0)) ## 2.301298902307295
|
|
func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
|
|
func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
|
|
## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sinh func <#sinh,float64>`_
|
|
## * `tanh func <#tanh,float64>`_
|
|
## * `arccosh func <#arccosh,float64>`_
|
|
## * `cos func <#cos,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo cosh(0.0) ## 1.0
|
|
## echo cosh(1.0) ## 1.543080634815244
|
|
## echo cosh(degToRad(90.0)) ## 2.509178478658057
|
|
func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
|
|
func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
|
|
## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
|
##
|
|
## See also:
|
|
## * `sinh func <#sinh,float64>`_
|
|
## * `cosh func <#cosh,float64>`_
|
|
## * `arctanh func <#arctanh,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo tanh(0.0) ## 0.0
|
|
## echo tanh(1.0) ## 0.7615941559557649
|
|
## echo tanh(degToRad(90.0)) ## 0.9171523356672744
|
|
|
|
func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
|
|
func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
|
|
## Computes the arc cosine of ``x``.
|
|
##
|
|
## See also:
|
|
## * `arcsin func <#arcsin,float64>`_
|
|
## * `arctan func <#arctan,float64>`_
|
|
## * `arctan2 func <#arctan2,float64,float64>`_
|
|
## * `cos func <#cos,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo radToDeg(arccos(0.0)) ## 90.0
|
|
## echo radToDeg(arccos(1.0)) ## 0.0
|
|
func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
|
|
func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
|
|
## Computes the arc sine of ``x``.
|
|
##
|
|
## See also:
|
|
## * `arccos func <#arccos,float64>`_
|
|
## * `arctan func <#arctan,float64>`_
|
|
## * `arctan2 func <#arctan2,float64,float64>`_
|
|
## * `sin func <#sin,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo radToDeg(arcsin(0.0)) ## 0.0
|
|
## echo radToDeg(arcsin(1.0)) ## 90.0
|
|
func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
|
|
func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
|
|
## Calculate the arc tangent of ``x``.
|
|
##
|
|
## See also:
|
|
## * `arcsin func <#arcsin,float64>`_
|
|
## * `arccos func <#arccos,float64>`_
|
|
## * `arctan2 func <#arctan2,float64,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo arctan(1.0) ## 0.7853981633974483
|
|
## echo radToDeg(arctan(1.0)) ## 45.0
|
|
func arctan2*(y, x: float32): float32 {.importc: "atan2f",
|
|
header: "<math.h>".}
|
|
func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
|
|
## Calculate the arc tangent of ``y`` / ``x``.
|
|
##
|
|
## It produces correct results even when the resulting angle is near
|
|
## pi/2 or -pi/2 (``x`` near 0).
|
|
##
|
|
## See also:
|
|
## * `arcsin func <#arcsin,float64>`_
|
|
## * `arccos func <#arccos,float64>`_
|
|
## * `arctan func <#arctan,float64>`_
|
|
## * `tan func <#tan,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo arctan2(1.0, 0.0) ## 1.570796326794897
|
|
## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
|
|
func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
|
|
func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic sine of ``x``.
|
|
func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
|
|
func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic cosine of ``x``.
|
|
func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
|
|
func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
|
|
## Computes the inverse hyperbolic tangent of ``x``.
|
|
|
|
else: # JS
|
|
func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
|
|
func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
|
|
func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
|
|
func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
|
|
func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
|
|
func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
|
|
|
|
func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
|
|
func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
|
|
func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
|
|
|
|
func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
|
|
func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
|
|
func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
|
|
|
|
func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
|
|
# keep this as generic or update test in `tvmops.nim` to make sure we
|
|
# keep testing that generic importc procs work
|
|
func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
|
|
func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
|
|
func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
|
|
|
|
func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
|
|
func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
|
|
func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
|
|
|
|
func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
|
|
## Computes the cotangent of ``x`` (1 / tan(x)).
|
|
func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
|
|
## Computes the secant of ``x`` (1 / cos(x)).
|
|
func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
|
|
## Computes the cosecant of ``x`` (1 / sin(x)).
|
|
|
|
func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
|
|
## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)).
|
|
func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
|
|
## Computes the hyperbolic secant of ``x`` (1 / cosh(x)).
|
|
func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
|
|
## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)).
|
|
|
|
func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
|
|
## Computes the inverse cotangent of ``x``.
|
|
func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
|
|
## Computes the inverse secant of ``x``.
|
|
func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
|
|
## Computes the inverse cosecant of ``x``.
|
|
|
|
func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
|
|
## Computes the inverse hyperbolic cotangent of ``x``.
|
|
func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
|
|
## Computes the inverse hyperbolic secant of ``x``.
|
|
func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
|
|
## Computes the inverse hyperbolic cosecant of ``x``.
|
|
|
|
const windowsCC89 = defined(windows) and defined(bcc)
|
|
|
|
when not defined(js): # C
|
|
func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
|
|
func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
|
|
## Computes the hypotenuse of a right-angle triangle with ``x`` and
|
|
## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
|
|
##
|
|
## .. code-block:: nim
|
|
## echo hypot(4.0, 3.0) ## 5.0
|
|
func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
|
|
func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
|
|
## Computes x to power raised of y.
|
|
##
|
|
## To compute power between integers (e.g. 2^6), use `^ func<#^,T,Natural>`_.
|
|
##
|
|
## See also:
|
|
## * `^ func<#^,T,Natural>`_
|
|
## * `sqrt func <#sqrt,float64>`_
|
|
## * `cbrt func <#cbrt,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo pow(100, 1.5) ## 1000.0
|
|
## echo pow(16.0, 0.5) ## 4.0
|
|
|
|
# TODO: add C89 version on windows
|
|
when not windowsCC89:
|
|
func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
|
|
func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
|
|
## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
|
|
##
|
|
## Note: Not available for JS backend.
|
|
func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
|
|
func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
|
|
## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
|
|
##
|
|
## Note: Not available for JS backend.
|
|
func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
|
|
func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
|
|
## Computes the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
|
|
##
|
|
## Note: Not available for JS backend.
|
|
##
|
|
## See also:
|
|
## * `lgamma func <#lgamma,float64>`_ for a natural log of gamma function
|
|
##
|
|
## .. code-block:: Nim
|
|
## echo gamma(1.0) # 1.0
|
|
## echo gamma(4.0) # 6.0
|
|
## echo gamma(11.0) # 3628800.0
|
|
## echo gamma(-1.0) # nan
|
|
func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
|
|
func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
|
|
## Computes the natural log of the gamma function for ``x``.
|
|
##
|
|
## Note: Not available for JS backend.
|
|
##
|
|
## See also:
|
|
## * `gamma func <#gamma,float64>`_ for gamma function
|
|
##
|
|
## .. code-block:: Nim
|
|
## echo lgamma(1.0) # 1.0
|
|
## echo lgamma(4.0) # 1.791759469228055
|
|
## echo lgamma(11.0) # 15.10441257307552
|
|
## echo lgamma(-1.0) # inf
|
|
|
|
func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
|
|
func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
|
|
## Computes the floor function (i.e., the largest integer not greater than ``x``).
|
|
##
|
|
## See also:
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo floor(2.1) ## 2.0
|
|
## echo floor(2.9) ## 2.0
|
|
## echo floor(-3.5) ## -4.0
|
|
|
|
func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
|
|
func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
|
|
## Computes the ceiling function (i.e., the smallest integer not smaller
|
|
## than ``x``).
|
|
##
|
|
## See also:
|
|
## * `floor func <#floor,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo ceil(2.1) ## 3.0
|
|
## echo ceil(2.9) ## 3.0
|
|
## echo ceil(-2.1) ## -2.0
|
|
|
|
when windowsCC89:
|
|
# MSVC 2010 don't have trunc/truncf
|
|
# this implementation was inspired by Go-lang Math.Trunc
|
|
func truncImpl(f: float64): float64 =
|
|
const
|
|
mask: uint64 = 0x7FF
|
|
shift: uint64 = 64 - 12
|
|
bias: uint64 = 0x3FF
|
|
|
|
if f < 1:
|
|
if f < 0: return -truncImpl(-f)
|
|
elif f == 0: return f # Return -0 when f == -0
|
|
else: return 0
|
|
|
|
var x = cast[uint64](f)
|
|
let e = (x shr shift) and mask - bias
|
|
|
|
# Keep the top 12+e bits, the integer part; clear the rest.
|
|
if e < 64-12:
|
|
x = x and (not (1'u64 shl (64'u64-12'u64-e) - 1'u64))
|
|
|
|
result = cast[float64](x)
|
|
|
|
func truncImpl(f: float32): float32 =
|
|
const
|
|
mask: uint32 = 0xFF
|
|
shift: uint32 = 32 - 9
|
|
bias: uint32 = 0x7F
|
|
|
|
if f < 1:
|
|
if f < 0: return -truncImpl(-f)
|
|
elif f == 0: return f # Return -0 when f == -0
|
|
else: return 0
|
|
|
|
var x = cast[uint32](f)
|
|
let e = (x shr shift) and mask - bias
|
|
|
|
# Keep the top 9+e bits, the integer part; clear the rest.
|
|
if e < 32-9:
|
|
x = x and (not (1'u32 shl (32'u32-9'u32-e) - 1'u32))
|
|
|
|
result = cast[float32](x)
|
|
|
|
func trunc*(x: float64): float64 =
|
|
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
|
|
result = truncImpl(x)
|
|
|
|
func trunc*(x: float32): float32 =
|
|
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
|
|
result = truncImpl(x)
|
|
|
|
func round*[T: float32|float64](x: T): T =
|
|
## Windows compilers prior to MSVC 2012 do not implement 'round',
|
|
## 'roundl' or 'roundf'.
|
|
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
|
|
else:
|
|
func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
|
|
func round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
|
|
## Rounds a float to zero decimal places.
|
|
##
|
|
## Used internally by the `round func <#round,T,int>`_
|
|
## when the specified number of places is 0.
|
|
##
|
|
## See also:
|
|
## * `round func <#round,T,int>`_ for rounding to the specific
|
|
## number of decimal places
|
|
## * `floor func <#floor,float64>`_
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `trunc func <#trunc,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo round(3.4) ## 3.0
|
|
## echo round(3.5) ## 4.0
|
|
## echo round(4.5) ## 5.0
|
|
|
|
func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
|
|
func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
|
|
## Truncates ``x`` to the decimal point.
|
|
##
|
|
## See also:
|
|
## * `floor func <#floor,float64>`_
|
|
## * `ceil func <#ceil,float64>`_
|
|
## * `round func <#round,float64>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo trunc(PI) # 3.0
|
|
## echo trunc(-1.85) # -1.0
|
|
|
|
func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
|
|
func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
|
|
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
|
|
##
|
|
## See also:
|
|
## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior
|
|
##
|
|
## .. code-block:: nim
|
|
## ( 6.5 mod 2.5) == 1.5
|
|
## (-6.5 mod 2.5) == -1.5
|
|
## ( 6.5 mod -2.5) == 1.5
|
|
## (-6.5 mod -2.5) == -1.5
|
|
|
|
else: # JS
|
|
func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
|
|
func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
|
|
func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
|
|
func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
|
|
func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
|
|
func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
|
|
func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
|
|
func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
|
|
|
|
when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
|
|
func round*(x: float): float {.importc: "Math.round", nodecl.}
|
|
else:
|
|
func jsRound(x: float): float {.importc: "Math.round", nodecl.}
|
|
func round*[T: float64 | float32](x: T): T =
|
|
if x >= 0: result = jsRound(x)
|
|
else:
|
|
result = ceil(x)
|
|
if result - x >= T(0.5):
|
|
result -= T(1.0)
|
|
func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
|
|
func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
|
|
|
|
func `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
|
|
func `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
|
|
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
|
|
##
|
|
## .. code-block:: nim
|
|
## ( 6.5 mod 2.5) == 1.5
|
|
## (-6.5 mod 2.5) == -1.5
|
|
## ( 6.5 mod -2.5) == 1.5
|
|
## (-6.5 mod -2.5) == -1.5
|
|
|
|
func round*[T: float32|float64](x: T, places: int): T =
|
|
## Decimal rounding on a binary floating point number.
|
|
##
|
|
## This function is NOT reliable. Floating point numbers cannot hold
|
|
## non integer decimals precisely. If ``places`` is 0 (or omitted),
|
|
## round to the nearest integral value following normal mathematical
|
|
## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
|
|
## greater than 0, round to the given number of decimal places,
|
|
## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round
|
|
## to the left of the decimal place, e.g. ``round(537.345, -1) ->
|
|
## 540.0``
|
|
##
|
|
## .. code-block:: Nim
|
|
## echo round(PI, 2) ## 3.14
|
|
## echo round(PI, 4) ## 3.1416
|
|
if places == 0:
|
|
result = round(x)
|
|
else:
|
|
var mult = pow(10.0, places.T)
|
|
result = round(x*mult)/mult
|
|
|
|
func floorDiv*[T: SomeInteger](x, y: T): T =
|
|
## Floor division is conceptually defined as ``floor(x / y)``.
|
|
##
|
|
## This is different from the `system.div <system.html#div,int,int>`_
|
|
## operator, which is defined as ``trunc(x / y)``.
|
|
## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down.
|
|
##
|
|
## See also:
|
|
## * `system.div proc <system.html#div,int,int>`_ for integer division
|
|
## * `floorMod func <#floorMod,T,T>`_ for Python-like (% operator) behavior
|
|
##
|
|
## .. code-block:: nim
|
|
## echo floorDiv( 13, 3) # 4
|
|
## echo floorDiv(-13, 3) # -5
|
|
## echo floorDiv( 13, -3) # -5
|
|
## echo floorDiv(-13, -3) # 4
|
|
result = x div y
|
|
let r = x mod y
|
|
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
|
|
|
|
func floorMod*[T: SomeNumber](x, y: T): T =
|
|
## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
|
|
##
|
|
## This func behaves the same as the ``%`` operator in Python.
|
|
##
|
|
## See also:
|
|
## * `mod func <#mod,float64,float64>`_
|
|
## * `floorDiv func <#floorDiv,T,T>`_
|
|
##
|
|
## .. code-block:: nim
|
|
## echo floorMod( 13, 3) # 1
|
|
## echo floorMod(-13, 3) # 2
|
|
## echo floorMod( 13, -3) # -2
|
|
## echo floorMod(-13, -3) # -1
|
|
result = x mod y
|
|
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
|
|
|
|
func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
|
|
## Returns euclidean division of `x` by `y`.
|
|
runnableExamples:
|
|
assert euclDiv(13, 3) == 4
|
|
assert euclDiv(-13, 3) == -5
|
|
assert euclDiv(13, -3) == -4
|
|
assert euclDiv(-13, -3) == 5
|
|
result = x div y
|
|
if x mod y < 0:
|
|
if y > 0:
|
|
dec result
|
|
else:
|
|
inc result
|
|
|
|
func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
|
|
## Returns euclidean modulo of `x` by `y`.
|
|
## `euclMod(x, y)` is non-negative.
|
|
runnableExamples:
|
|
assert euclMod(13, 3) == 1
|
|
assert euclMod(-13, 3) == 2
|
|
assert euclMod(13, -3) == 1
|
|
assert euclMod(-13, -3) == 2
|
|
result = x mod y
|
|
if result < 0:
|
|
result += abs(y)
|
|
|
|
when not defined(js):
|
|
func c_frexp*(x: float32, exponent: var int32): float32 {.
|
|
importc: "frexp", header: "<math.h>".}
|
|
func c_frexp*(x: float64, exponent: var int32): float64 {.
|
|
importc: "frexp", header: "<math.h>".}
|
|
func frexp*[T, U](x: T, exponent: var U): T =
|
|
## Split a number into mantissa and exponent.
|
|
##
|
|
## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
|
|
## and less than 1) and the integer value n such that ``x`` (the original
|
|
## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
|
|
## m.
|
|
##
|
|
runnableExamples:
|
|
var x: int
|
|
doAssert frexp(5.0, x) == 0.625
|
|
doAssert x == 3
|
|
var exp: int32
|
|
result = c_frexp(x, exp)
|
|
exponent = exp
|
|
|
|
when windowsCC89:
|
|
# taken from Go-lang Math.Log2
|
|
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
|
template log2Impl[T](x: T): T =
|
|
var exp: int32
|
|
var frac = frexp(x, exp)
|
|
# Make sure exact powers of two give an exact answer.
|
|
# Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
|
|
if frac == 0.5: return T(exp - 1)
|
|
log10(frac)*(1/ln2) + T(exp)
|
|
|
|
func log2*(x: float32): float32 = log2Impl(x)
|
|
func log2*(x: float64): float64 = log2Impl(x)
|
|
## Log2 returns the binary logarithm of x.
|
|
## The special cases are the same as for Log.
|
|
|
|
else:
|
|
func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
|
|
func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
|
|
## Computes the binary logarithm (base 2) of ``x``.
|
|
##
|
|
## See also:
|
|
## * `log func <#log,T,T>`_
|
|
## * `log10 func <#log10,float64>`_
|
|
## * `ln func <#ln,float64>`_
|
|
## * `exp func <#exp,float64>`_
|
|
##
|
|
## .. code-block:: Nim
|
|
## echo log2(8.0) # 3.0
|
|
## echo log2(1.0) # 0.0
|
|
## echo log2(0.0) # -inf
|
|
## echo log2(-2.0) # nan
|
|
|
|
else:
|
|
func frexp*[T: float32|float64](x: T, exponent: var int): T =
|
|
if x == 0.0:
|
|
exponent = 0
|
|
result = 0.0
|
|
elif x < 0.0:
|
|
result = -frexp(-x, exponent)
|
|
else:
|
|
var ex = trunc(log2(x))
|
|
exponent = int(ex)
|
|
result = x / pow(2.0, ex)
|
|
if abs(result) >= 1:
|
|
inc(exponent)
|
|
result = result / 2
|
|
if exponent == 1024 and result == 0.0:
|
|
result = 0.99999999999999988898
|
|
|
|
func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
|
|
## Breaks ``x`` into an integer and a fractional part.
|
|
##
|
|
## Returns a tuple containing ``intpart`` and ``floatpart`` representing
|
|
## the integer part and the fractional part respectively.
|
|
##
|
|
## Both parts have the same sign as ``x``. Analogous to the ``modf``
|
|
## function in C.
|
|
##
|
|
runnableExamples:
|
|
doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
|
|
doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
|
|
var
|
|
absolute: T
|
|
absolute = abs(x)
|
|
result.intpart = floor(absolute)
|
|
result.floatpart = absolute - result.intpart
|
|
if x < 0:
|
|
result.intpart = -result.intpart
|
|
result.floatpart = -result.floatpart
|
|
|
|
|
|
func degToRad*[T: float32|float64](d: T): T {.inline.} =
|
|
## Convert from degrees to radians.
|
|
##
|
|
## See also:
|
|
## * `radToDeg func <#radToDeg,T>`_
|
|
##
|
|
runnableExamples:
|
|
doAssert degToRad(180.0) == 3.141592653589793
|
|
result = T(d) * RadPerDeg
|
|
|
|
func radToDeg*[T: float32|float64](d: T): T {.inline.} =
|
|
## Convert from radians to degrees.
|
|
##
|
|
## See also:
|
|
## * `degToRad func <#degToRad,T>`_
|
|
##
|
|
runnableExamples:
|
|
doAssert radToDeg(2 * PI) == 360.0
|
|
result = T(d) / RadPerDeg
|
|
|
|
func sgn*[T: SomeNumber](x: T): int {.inline.} =
|
|
## Sign function.
|
|
##
|
|
## Returns:
|
|
## * `-1` for negative numbers and ``NegInf``,
|
|
## * `1` for positive numbers and ``Inf``,
|
|
## * `0` for positive zero, negative zero and ``NaN``
|
|
##
|
|
runnableExamples:
|
|
doAssert sgn(5) == 1
|
|
doAssert sgn(0) == 0
|
|
doAssert sgn(-4.1) == -1
|
|
ord(T(0) < x) - ord(x < T(0))
|
|
|
|
{.pop.}
|
|
{.pop.}
|
|
|
|
func `^`*[T: SomeNumber](x: T, y: Natural): T =
|
|
## Computes ``x`` to the power ``y``.
|
|
##
|
|
## Exponent ``y`` must be non-negative, use
|
|
## `pow func <#pow,float64,float64>`_ for negative exponents.
|
|
##
|
|
## See also:
|
|
## * `pow func <#pow,float64,float64>`_ for negative exponent or
|
|
## floats
|
|
## * `sqrt func <#sqrt,float64>`_
|
|
## * `cbrt func <#cbrt,float64>`_
|
|
##
|
|
runnableExamples:
|
|
assert -3.0^0 == 1.0
|
|
assert -3^1 == -3
|
|
assert -3^2 == 9
|
|
assert -3.0^3 == -27.0
|
|
assert -3.0^4 == 81.0
|
|
|
|
case y
|
|
of 0: result = 1
|
|
of 1: result = x
|
|
of 2: result = x * x
|
|
of 3: result = x * x * x
|
|
else:
|
|
var (x, y) = (x, y)
|
|
result = 1
|
|
while true:
|
|
if (y and 1) != 0:
|
|
result *= x
|
|
y = y shr 1
|
|
if y == 0:
|
|
break
|
|
x *= x
|
|
|
|
func gcd*[T](x, y: T): T =
|
|
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
|
|
##
|
|
## Note that for floats, the result cannot always be interpreted as
|
|
## "greatest decimal `z` such that ``z*N == x and z*M == y``
|
|
## where N and M are positive integers."
|
|
##
|
|
## See also:
|
|
## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for integer version
|
|
## * `lcm func <#lcm,T,T>`_
|
|
runnableExamples:
|
|
doAssert gcd(13.5, 9.0) == 4.5
|
|
var (x, y) = (x, y)
|
|
while y != 0:
|
|
x = x mod y
|
|
swap x, y
|
|
abs x
|
|
|
|
func gcd*(x, y: SomeInteger): SomeInteger =
|
|
## Computes the greatest common (positive) divisor of ``x`` and ``y``,
|
|
## using binary GCD (aka Stein's) algorithm.
|
|
##
|
|
## See also:
|
|
## * `gcd func <#gcd,T,T>`_ for floats version
|
|
## * `lcm func <#lcm,T,T>`_
|
|
runnableExamples:
|
|
doAssert gcd(12, 8) == 4
|
|
doAssert gcd(17, 63) == 1
|
|
when x is SomeSignedInt:
|
|
var x = abs(x)
|
|
else:
|
|
var x = x
|
|
when y is SomeSignedInt:
|
|
var y = abs(y)
|
|
else:
|
|
var y = y
|
|
|
|
if x == 0:
|
|
return y
|
|
if y == 0:
|
|
return x
|
|
|
|
let shift = countTrailingZeroBits(x or y)
|
|
y = y shr countTrailingZeroBits(y)
|
|
while x != 0:
|
|
x = x shr countTrailingZeroBits(x)
|
|
if y > x:
|
|
swap y, x
|
|
x -= y
|
|
y shl shift
|
|
|
|
func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
|
|
## Computes the greatest common (positive) divisor of the elements of ``x``.
|
|
##
|
|
## See also:
|
|
## * `gcd func <#gcd,T,T>`_ for integer version
|
|
runnableExamples:
|
|
doAssert gcd(@[13.5, 9.0]) == 4.5
|
|
result = x[0]
|
|
var i = 1
|
|
while i < x.len:
|
|
result = gcd(result, x[i])
|
|
inc(i)
|
|
|
|
func lcm*[T](x, y: T): T =
|
|
## Computes the least common multiple of ``x`` and ``y``.
|
|
##
|
|
## See also:
|
|
## * `gcd func <#gcd,T,T>`_
|
|
runnableExamples:
|
|
doAssert lcm(24, 30) == 120
|
|
doAssert lcm(13, 39) == 39
|
|
x div gcd(x, y) * y
|
|
|
|
func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
|
|
## Computes the least common multiple of the elements of ``x``.
|
|
##
|
|
## See also:
|
|
## * `gcd func <#gcd,T,T>`_ for integer version
|
|
runnableExamples:
|
|
doAssert lcm(@[24, 30]) == 120
|
|
result = x[0]
|
|
var i = 1
|
|
while i < x.len:
|
|
result = lcm(result, x[i])
|
|
inc(i)
|
|
|