Files
Nim/compiler/ccgtypes.nim
Andreas Rumpf 8241e55023 IC: next steps (#16729)
* IC: dead code elimination pass
* preparations for a different codegen strategy
* added documentation to the newly written code
* IC: backend code
* IC: backend adjustments
* optimized the compiler a bit
* IC: yet another massive refactoring
* fixes regressions
* cleanups
2021-01-23 08:06:15 +01:00

1494 lines
59 KiB
Nim

#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
# ------------------------- Name Mangling --------------------------------
import sighashes, modulegraphs
from lowerings import createObj
proc genProcHeader(m: BModule, prc: PSym, asPtr: bool = false): Rope
proc isKeyword(w: PIdent): bool =
# Nim and C++ share some keywords
# it's more efficient to test the whole Nim keywords range
case w.id
of ccgKeywordsLow..ccgKeywordsHigh,
nimKeywordsLow..nimKeywordsHigh,
ord(wInline): return true
else: return false
proc mangleField(m: BModule; name: PIdent): string =
result = mangle(name.s)
# fields are tricky to get right and thanks to generic types producing
# duplicates we can end up mangling the same field multiple times. However
# if we do so, the 'cppDefines' table might be modified in the meantime
# meaning we produce inconsistent field names (see bug #5404).
# Hence we do not check for ``m.g.config.cppDefines.contains(result)`` here
# anymore:
if isKeyword(name):
result.add "_0"
proc mangleName(m: BModule; s: PSym): Rope =
result = s.loc.r
if result == nil:
result = s.name.s.mangle.rope
result.add(idOrSig(s, m.module.name.s.mangle, m.sigConflicts))
s.loc.r = result
writeMangledName(m.ndi, s, m.config)
proc mangleParamName(m: BModule; s: PSym): Rope =
## we cannot use 'sigConflicts' here since we have a BModule, not a BProc.
## Fortunately C's scoping rules are sane enough so that that doesn't
## cause any trouble.
result = s.loc.r
if result == nil:
var res = s.name.s.mangle
# Take into account if HCR is on because of the following scenario:
# if a module gets imported and it has some more importc symbols in it,
# some param names might receive the "_0" suffix to distinguish from what
# is newly available. That might lead to changes in the C code in nimcache
# that contain only a parameter name change, but that is enough to mandate
# recompilation of that source file and thus a new shared object will be
# relinked. That may lead to a module getting reloaded which wasn't intended
# and that may be fatal when parts of the current active callstack when
# performCodeReload() was called are from the module being reloaded
# unintentionally - example (3 modules which import one another):
# main => proxy => reloadable
# we call performCodeReload() in proxy to reload only changes in reloadable
# but there is a new import which introduces an importc symbol `socket`
# and a function called in main or proxy uses `socket` as a parameter name.
# That would lead to either needing to reload `proxy` or to overwrite the
# executable file for the main module, which is running (or both!) -> error.
if m.hcrOn or isKeyword(s.name) or m.g.config.cppDefines.contains(res):
res.add "_0"
result = res.rope
s.loc.r = result
writeMangledName(m.ndi, s, m.config)
proc mangleLocalName(p: BProc; s: PSym): Rope =
assert s.kind in skLocalVars+{skTemp}
#assert sfGlobal notin s.flags
result = s.loc.r
if result == nil:
var key = s.name.s.mangle
shallow(key)
let counter = p.sigConflicts.getOrDefault(key)
result = key.rope
if s.kind == skTemp:
# speed up conflict search for temps (these are quite common):
if counter != 0: result.add "_" & rope(counter+1)
elif counter != 0 or isKeyword(s.name) or p.module.g.config.cppDefines.contains(key):
result.add "_" & rope(counter+1)
p.sigConflicts.inc(key)
s.loc.r = result
if s.kind != skTemp: writeMangledName(p.module.ndi, s, p.config)
proc scopeMangledParam(p: BProc; param: PSym) =
## parameter generation only takes BModule, not a BProc, so we have to
## remember these parameter names are already in scope to be able to
## generate unique identifiers reliably (consider that ``var a = a`` is
## even an idiom in Nim).
var key = param.name.s.mangle
shallow(key)
p.sigConflicts.inc(key)
const
irrelevantForBackend = {tyGenericBody, tyGenericInst, tyGenericInvocation,
tyDistinct, tyRange, tyStatic, tyAlias, tySink,
tyInferred, tyOwned}
proc typeName(typ: PType): Rope =
let typ = typ.skipTypes(irrelevantForBackend)
result =
if typ.sym != nil and typ.kind in {tyObject, tyEnum}:
rope($typ.kind & '_' & typ.sym.name.s.mangle)
else:
rope($typ.kind)
proc getTypeName(m: BModule; typ: PType; sig: SigHash): Rope =
var t = typ
while true:
if t.sym != nil and {sfImportc, sfExportc} * t.sym.flags != {}:
return t.sym.loc.r
if t.kind in irrelevantForBackend:
t = t.lastSon
else:
break
let typ = if typ.kind in {tyAlias, tySink, tyOwned}: typ.lastSon else: typ
if typ.loc.r == nil:
typ.loc.r = typ.typeName & $sig
else:
when defined(debugSigHashes):
# check consistency:
assert($typ.loc.r == $(typ.typeName & $sig))
result = typ.loc.r
if result == nil: internalError(m.config, "getTypeName: " & $typ.kind)
proc mapSetType(conf: ConfigRef; typ: PType): TCTypeKind =
case int(getSize(conf, typ))
of 1: result = ctInt8
of 2: result = ctInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: result = ctArray
proc mapType(conf: ConfigRef; typ: PType; kind: TSymKind): TCTypeKind =
## Maps a Nim type to a C type
case typ.kind
of tyNone, tyTyped: result = ctVoid
of tyBool: result = ctBool
of tyChar: result = ctChar
of tyNil: result = ctPtr
of tySet: result = mapSetType(conf, typ)
of tyOpenArray, tyVarargs:
if kind == skParam: result = ctArray
else: result = ctStruct
of tyArray, tyUncheckedArray: result = ctArray
of tyObject, tyTuple: result = ctStruct
of tyUserTypeClasses:
doAssert typ.isResolvedUserTypeClass
return mapType(conf, typ.lastSon, kind)
of tyGenericBody, tyGenericInst, tyGenericParam, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias, tySink, tyInferred, tyOwned:
result = mapType(conf, lastSon(typ), kind)
of tyEnum:
if firstOrd(conf, typ) < 0:
result = ctInt32
else:
case int(getSize(conf, typ))
of 1: result = ctUInt8
of 2: result = ctUInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: result = ctInt32
of tyRange: result = mapType(conf, typ[0], kind)
of tyPtr, tyVar, tyLent, tyRef:
var base = skipTypes(typ.lastSon, typedescInst)
case base.kind
of tyOpenArray, tyArray, tyVarargs, tyUncheckedArray: result = ctPtrToArray
of tySet:
if mapSetType(conf, base) == ctArray: result = ctPtrToArray
else: result = ctPtr
else: result = ctPtr
of tyPointer: result = ctPtr
of tySequence: result = ctNimSeq
of tyProc: result = if typ.callConv != ccClosure: ctProc else: ctStruct
of tyString: result = ctNimStr
of tyCString: result = ctCString
of tyInt..tyUInt64:
result = TCTypeKind(ord(typ.kind) - ord(tyInt) + ord(ctInt))
of tyStatic:
if typ.n != nil: result = mapType(conf, lastSon typ, kind)
else: doAssert(false, "mapType")
else: doAssert(false, "mapType")
proc mapReturnType(conf: ConfigRef; typ: PType): TCTypeKind =
#if skipTypes(typ, typedescInst).kind == tyArray: result = ctPtr
#else:
result = mapType(conf, typ, skResult)
proc isImportedType(t: PType): bool =
result = t.sym != nil and sfImportc in t.sym.flags
proc isImportedCppType(t: PType): bool =
let x = t.skipTypes(irrelevantForBackend)
result = (t.sym != nil and sfInfixCall in t.sym.flags) or
(x.sym != nil and sfInfixCall in x.sym.flags)
proc getTypeDescAux(m: BModule, origTyp: PType, check: var IntSet; kind: TSymKind): Rope
proc isObjLackingTypeField(typ: PType): bool {.inline.} =
result = (typ.kind == tyObject) and ((tfFinal in typ.flags) and
(typ[0] == nil) or isPureObject(typ))
proc isInvalidReturnType(conf: ConfigRef; rettype: PType): bool =
# Arrays and sets cannot be returned by a C procedure, because C is
# such a poor programming language.
# We exclude records with refs too. This enhances efficiency and
# is necessary for proper code generation of assignments.
if rettype == nil: result = true
else:
case mapType(conf, rettype, skResult)
of ctArray:
result = not (skipTypes(rettype, typedescInst).kind in
{tyVar, tyLent, tyRef, tyPtr})
of ctStruct:
let t = skipTypes(rettype, typedescInst)
if rettype.isImportedCppType or t.isImportedCppType: return false
result = containsGarbageCollectedRef(t) or
(t.kind == tyObject and not isObjLackingTypeField(t))
else: result = false
const
CallingConvToStr: array[TCallingConvention, string] = ["N_NIMCALL",
"N_STDCALL", "N_CDECL", "N_SAFECALL",
"N_SYSCALL", # this is probably not correct for all platforms,
# but one can #define it to what one wants
"N_INLINE", "N_NOINLINE", "N_FASTCALL", "N_THISCALL", "N_CLOSURE", "N_NOCONV"]
proc cacheGetType(tab: TypeCache; sig: SigHash): Rope =
# returns nil if we need to declare this type
# since types are now unique via the ``getUniqueType`` mechanism, this slow
# linear search is not necessary anymore:
result = tab.getOrDefault(sig)
proc addAbiCheck(m: BModule, t: PType, name: Rope) =
if isDefined(m.config, "checkAbi") and (let size = getSize(m.config, t); size != szUnknownSize):
var msg = "backend & Nim disagree on size for: "
msg.addTypeHeader(m.config, t)
var msg2 = ""
msg2.addQuoted msg # not a hostspot so extra allocation doesn't matter
m.s[cfsTypeInfo].addf("NIM_STATIC_ASSERT(sizeof($1) == $2, $3);$n", [name, rope(size), msg2.rope])
# see `testCodegenABICheck` for example error message it generates
proc ccgIntroducedPtr(conf: ConfigRef; s: PSym, retType: PType): bool =
var pt = skipTypes(s.typ, typedescInst)
assert skResult != s.kind
if tfByRef in pt.flags: return true
elif tfByCopy in pt.flags: return false
case pt.kind
of tyObject:
if s.typ.sym != nil and sfForward in s.typ.sym.flags:
# forwarded objects are *always* passed by pointers for consistency!
result = true
elif (optByRef in s.options) or (getSize(conf, pt) > conf.target.floatSize * 3):
result = true # requested anyway
elif (tfFinal in pt.flags) and (pt[0] == nil):
result = false # no need, because no subtyping possible
else:
result = true # ordinary objects are always passed by reference,
# otherwise casting doesn't work
of tyTuple:
result = (getSize(conf, pt) > conf.target.floatSize*3) or (optByRef in s.options)
else:
result = false
# first parameter and return type is 'lent T'? --> use pass by pointer
if s.position == 0 and retType != nil and retType.kind == tyLent:
result = not (pt.kind in {tyVar, tyArray, tyOpenArray, tyVarargs, tyRef, tyPtr, tyPointer} or
pt.kind == tySet and mapSetType(conf, pt) == ctArray)
proc fillResult(conf: ConfigRef; param: PNode) =
fillLoc(param.sym.loc, locParam, param, ~"Result",
OnStack)
let t = param.sym.typ
if mapReturnType(conf, t) != ctArray and isInvalidReturnType(conf, t):
incl(param.sym.loc.flags, lfIndirect)
param.sym.loc.storage = OnUnknown
proc typeNameOrLiteral(m: BModule; t: PType, literal: string): Rope =
if t.sym != nil and sfImportc in t.sym.flags and t.sym.magic == mNone:
useHeader(m, t.sym)
result = t.sym.loc.r
else:
result = rope(literal)
proc getSimpleTypeDesc(m: BModule, typ: PType): Rope =
const
NumericalTypeToStr: array[tyInt..tyUInt64, string] = [
"NI", "NI8", "NI16", "NI32", "NI64",
"NF", "NF32", "NF64", "NF128",
"NU", "NU8", "NU16", "NU32", "NU64"]
case typ.kind
of tyPointer:
result = typeNameOrLiteral(m, typ, "void*")
of tyString:
case detectStrVersion(m)
of 2:
discard cgsym(m, "NimStrPayload")
discard cgsym(m, "NimStringV2")
result = typeNameOrLiteral(m, typ, "NimStringV2")
else:
discard cgsym(m, "NimStringDesc")
result = typeNameOrLiteral(m, typ, "NimStringDesc*")
of tyCString: result = typeNameOrLiteral(m, typ, "NCSTRING")
of tyBool: result = typeNameOrLiteral(m, typ, "NIM_BOOL")
of tyChar: result = typeNameOrLiteral(m, typ, "NIM_CHAR")
of tyNil: result = typeNameOrLiteral(m, typ, "void*")
of tyInt..tyUInt64:
result = typeNameOrLiteral(m, typ, NumericalTypeToStr[typ.kind])
of tyDistinct, tyRange, tyOrdinal: result = getSimpleTypeDesc(m, typ[0])
of tyStatic:
if typ.n != nil: result = getSimpleTypeDesc(m, lastSon typ)
else: internalError(m.config, "tyStatic for getSimpleTypeDesc")
of tyGenericInst, tyAlias, tySink, tyOwned:
result = getSimpleTypeDesc(m, lastSon typ)
else: result = nil
if result != nil and typ.isImportedType():
let sig = hashType typ
if cacheGetType(m.typeCache, sig) == nil:
m.typeCache[sig] = result
proc pushType(m: BModule, typ: PType) =
for i in 0..high(m.typeStack):
# pointer equality is good enough here:
if m.typeStack[i] == typ: return
m.typeStack.add(typ)
proc getTypePre(m: BModule, typ: PType; sig: SigHash): Rope =
if typ == nil: result = rope("void")
else:
result = getSimpleTypeDesc(m, typ)
if result == nil: result = cacheGetType(m.typeCache, sig)
proc structOrUnion(t: PType): Rope =
let cachedUnion = rope("union")
let cachedStruct = rope("struct")
let t = t.skipTypes({tyAlias, tySink})
if tfUnion in t.flags: cachedUnion
else: cachedStruct
proc addForwardStructFormat(m: BModule, structOrUnion: Rope, typename: Rope) =
if m.compileToCpp:
m.s[cfsForwardTypes].addf "$1 $2;$n", [structOrUnion, typename]
else:
m.s[cfsForwardTypes].addf "typedef $1 $2 $2;$n", [structOrUnion, typename]
proc seqStar(m: BModule): string =
if optSeqDestructors in m.config.globalOptions: result = ""
else: result = "*"
proc getTypeForward(m: BModule, typ: PType; sig: SigHash): Rope =
result = cacheGetType(m.forwTypeCache, sig)
if result != nil: return
result = getTypePre(m, typ, sig)
if result != nil: return
let concrete = typ.skipTypes(abstractInst)
case concrete.kind
of tySequence, tyTuple, tyObject:
result = getTypeName(m, typ, sig)
m.forwTypeCache[sig] = result
if not isImportedType(concrete):
addForwardStructFormat(m, structOrUnion(typ), result)
else:
pushType(m, concrete)
doAssert m.forwTypeCache[sig] == result
else: internalError(m.config, "getTypeForward(" & $typ.kind & ')')
proc getTypeDescWeak(m: BModule; t: PType; check: var IntSet; kind: TSymKind): Rope =
## like getTypeDescAux but creates only a *weak* dependency. In other words
## we know we only need a pointer to it so we only generate a struct forward
## declaration:
let etB = t.skipTypes(abstractInst)
case etB.kind
of tyObject, tyTuple:
if isImportedCppType(etB) and t.kind == tyGenericInst:
result = getTypeDescAux(m, t, check, kind)
else:
result = getTypeForward(m, t, hashType(t))
pushType(m, t)
of tySequence:
let sig = hashType(t)
if optSeqDestructors in m.config.globalOptions:
if skipTypes(etB[0], typedescInst).kind == tyEmpty:
internalError(m.config, "cannot map the empty seq type to a C type")
result = cacheGetType(m.forwTypeCache, sig)
if result == nil:
result = getTypeName(m, t, sig)
if not isImportedType(t):
m.forwTypeCache[sig] = result
addForwardStructFormat(m, rope"struct", result)
let payload = result & "_Content"
addForwardStructFormat(m, rope"struct", payload)
if cacheGetType(m.typeCache, sig) == nil:
m.typeCache[sig] = result
#echo "adding ", sig, " ", typeToString(t), " ", m.module.name.s
appcg(m, m.s[cfsTypes],
"struct $1 {$N" &
" NI len; $1_Content* p;$N" &
"};$N", [result])
else:
result = getTypeForward(m, t, sig) & seqStar(m)
pushType(m, t)
else:
result = getTypeDescAux(m, t, check, kind)
proc getSeqPayloadType(m: BModule; t: PType): Rope =
var check = initIntSet()
result = getTypeDescWeak(m, t, check, skParam) & "_Content"
#result = getTypeForward(m, t, hashType(t)) & "_Content"
proc seqV2ContentType(m: BModule; t: PType; check: var IntSet) =
let sig = hashType(t)
let result = cacheGetType(m.typeCache, sig)
if result == nil:
discard getTypeDescAux(m, t, check, skVar)
else:
# little hack for now to prevent multiple definitions of the same
# Seq_Content:
appcg(m, m.s[cfsTypes], """$N
$3ifndef $2_Content_PP
$3define $2_Content_PP
struct $2_Content { NI cap; $1 data[SEQ_DECL_SIZE];};
$3endif$N
""", [getTypeDescAux(m, t.skipTypes(abstractInst)[0], check, skVar), result, rope"#"])
proc paramStorageLoc(param: PSym): TStorageLoc =
if param.typ.skipTypes({tyVar, tyLent, tyTypeDesc}).kind notin {
tyArray, tyOpenArray, tyVarargs}:
result = OnStack
else:
result = OnUnknown
proc genProcParams(m: BModule, t: PType, rettype, params: var Rope,
check: var IntSet, declareEnvironment=true;
weakDep=false) =
params = nil
if t[0] == nil or isInvalidReturnType(m.config, t[0]):
rettype = ~"void"
else:
rettype = getTypeDescAux(m, t[0], check, skResult)
for i in 1..<t.n.len:
if t.n[i].kind != nkSym: internalError(m.config, t.n.info, "genProcParams")
var param = t.n[i].sym
if isCompileTimeOnly(param.typ): continue
if params != nil: params.add(~", ")
fillLoc(param.loc, locParam, t.n[i], mangleParamName(m, param),
param.paramStorageLoc)
if ccgIntroducedPtr(m.config, param, t[0]):
params.add(getTypeDescWeak(m, param.typ, check, skParam))
params.add(~"*")
incl(param.loc.flags, lfIndirect)
param.loc.storage = OnUnknown
elif weakDep:
params.add(getTypeDescWeak(m, param.typ, check, skParam))
else:
params.add(getTypeDescAux(m, param.typ, check, skParam))
params.add(~" ")
if sfNoalias in param.flags:
params.add(~"NIM_NOALIAS ")
params.add(param.loc.r)
# declare the len field for open arrays:
var arr = param.typ
if arr.kind in {tyVar, tyLent, tySink}: arr = arr.lastSon
var j = 0
while arr.kind in {tyOpenArray, tyVarargs}:
# this fixes the 'sort' bug:
if param.typ.kind in {tyVar, tyLent}: param.loc.storage = OnUnknown
# need to pass hidden parameter:
params.addf(", NI $1Len_$2", [param.loc.r, j.rope])
inc(j)
arr = arr[0].skipTypes({tySink})
if t[0] != nil and isInvalidReturnType(m.config, t[0]):
var arr = t[0]
if params != nil: params.add(", ")
if mapReturnType(m.config, t[0]) != ctArray:
params.add(getTypeDescWeak(m, arr, check, skResult))
params.add("*")
else:
params.add(getTypeDescAux(m, arr, check, skResult))
params.addf(" Result", [])
if t.callConv == ccClosure and declareEnvironment:
if params != nil: params.add(", ")
params.add("void* ClE_0")
if tfVarargs in t.flags:
if params != nil: params.add(", ")
params.add("...")
if params == nil: params.add("void)")
else: params.add(")")
params = "(" & params
proc mangleRecFieldName(m: BModule; field: PSym): Rope =
if {sfImportc, sfExportc} * field.flags != {}:
result = field.loc.r
else:
result = rope(mangleField(m, field.name))
if result == nil: internalError(m.config, field.info, "mangleRecFieldName")
proc genRecordFieldsAux(m: BModule, n: PNode,
rectype: PType,
check: var IntSet, unionPrefix = ""): Rope =
result = nil
case n.kind
of nkRecList:
for i in 0..<n.len:
result.add(genRecordFieldsAux(m, n[i], rectype, check, unionPrefix))
of nkRecCase:
if n[0].kind != nkSym: internalError(m.config, n.info, "genRecordFieldsAux")
result.add(genRecordFieldsAux(m, n[0], rectype, check, unionPrefix))
# prefix mangled name with "_U" to avoid clashes with other field names,
# since identifiers are not allowed to start with '_'
var unionBody: Rope = nil
for i in 1..<n.len:
case n[i].kind
of nkOfBranch, nkElse:
let k = lastSon(n[i])
if k.kind != nkSym:
let structName = "_" & mangleRecFieldName(m, n[0].sym) & "_" & $i
let a = genRecordFieldsAux(m, k, rectype, check, unionPrefix & $structName & ".")
if a != nil:
if tfPacked notin rectype.flags:
unionBody.add("struct {")
else:
if hasAttribute in CC[m.config.cCompiler].props:
unionBody.add("struct __attribute__((__packed__)){")
else:
unionBody.addf("#pragma pack(push, 1)$nstruct{", [])
unionBody.add(a)
unionBody.addf("} $1;$n", [structName])
if tfPacked in rectype.flags and hasAttribute notin CC[m.config.cCompiler].props:
unionBody.addf("#pragma pack(pop)$n", [])
else:
unionBody.add(genRecordFieldsAux(m, k, rectype, check, unionPrefix))
else: internalError(m.config, "genRecordFieldsAux(record case branch)")
if unionBody != nil:
result.addf("union{$n$1};$n", [unionBody])
of nkSym:
let field = n.sym
if field.typ.kind == tyVoid: return
#assert(field.ast == nil)
let sname = mangleRecFieldName(m, field)
fillLoc(field.loc, locField, n, unionPrefix & sname, OnUnknown)
if field.alignment > 0:
result.addf "NIM_ALIGN($1) ", [rope(field.alignment)]
# for importcpp'ed objects, we only need to set field.loc, but don't
# have to recurse via 'getTypeDescAux'. And not doing so prevents problems
# with heavily templatized C++ code:
if not isImportedCppType(rectype):
let noAlias = if sfNoalias in field.flags: ~" NIM_NOALIAS" else: nil
let fieldType = field.loc.lode.typ.skipTypes(abstractInst)
if fieldType.kind == tyUncheckedArray:
result.addf("$1 $2[SEQ_DECL_SIZE];$n",
[getTypeDescAux(m, fieldType.elemType, check, skField), sname])
elif fieldType.kind == tySequence:
# we need to use a weak dependency here for trecursive_table.
result.addf("$1$3 $2;$n", [getTypeDescWeak(m, field.loc.t, check, skField), sname, noAlias])
elif field.bitsize != 0:
result.addf("$1$4 $2:$3;$n", [getTypeDescAux(m, field.loc.t, check, skField), sname, rope($field.bitsize), noAlias])
else:
# don't use fieldType here because we need the
# tyGenericInst for C++ template support
result.addf("$1$3 $2;$n", [getTypeDescAux(m, field.loc.t, check, skField), sname, noAlias])
else: internalError(m.config, n.info, "genRecordFieldsAux()")
proc getRecordFields(m: BModule, typ: PType, check: var IntSet): Rope =
result = genRecordFieldsAux(m, typ.n, typ, check)
proc fillObjectFields*(m: BModule; typ: PType) =
# sometimes generic objects are not consistently merged. We patch over
# this fact here.
var check = initIntSet()
discard getRecordFields(m, typ, check)
proc mangleDynLibProc(sym: PSym): Rope
proc getRecordDesc(m: BModule, typ: PType, name: Rope,
check: var IntSet): Rope =
# declare the record:
var hasField = false
if tfPacked in typ.flags:
if hasAttribute in CC[m.config.cCompiler].props:
result = structOrUnion(typ) & " __attribute__((__packed__))"
else:
result = "#pragma pack(push, 1)\L" & structOrUnion(typ)
else:
result = structOrUnion(typ)
result.add " "
result.add name
if typ.kind == tyObject:
if typ[0] == nil:
if (typ.sym != nil and sfPure in typ.sym.flags) or tfFinal in typ.flags:
appcg(m, result, " {$n", [])
else:
if optTinyRtti in m.config.globalOptions:
appcg(m, result, " {$n#TNimTypeV2* m_type;$n", [])
else:
appcg(m, result, " {$n#TNimType* m_type;$n", [])
hasField = true
elif m.compileToCpp:
appcg(m, result, " : public $1 {$n",
[getTypeDescAux(m, typ[0].skipTypes(skipPtrs), check, skField)])
if typ.isException and m.config.exc == excCpp:
when false:
appcg(m, result, "virtual void raise() { throw *this; }$n", []) # required for polymorphic exceptions
if typ.sym.magic == mException:
# Add cleanup destructor to Exception base class
appcg(m, result, "~$1();$n", [name])
# define it out of the class body and into the procs section so we don't have to
# artificially forward-declare popCurrentExceptionEx (very VERY troublesome for HCR)
appcg(m, cfsProcs, "inline $1::~$1() {if(this->raiseId) #popCurrentExceptionEx(this->raiseId);}$n", [name])
hasField = true
else:
appcg(m, result, " {$n $1 Sup;$n",
[getTypeDescAux(m, typ[0].skipTypes(skipPtrs), check, skField)])
hasField = true
else:
result.addf(" {$n", [name])
let desc = getRecordFields(m, typ, check)
if desc == nil and not hasField:
result.addf("char dummy;$n", [])
else:
result.add(desc)
result.add("};\L")
if tfPacked in typ.flags and hasAttribute notin CC[m.config.cCompiler].props:
result.add "#pragma pack(pop)\L"
proc getTupleDesc(m: BModule, typ: PType, name: Rope,
check: var IntSet): Rope =
result = "$1 $2 {$n" % [structOrUnion(typ), name]
var desc: Rope = nil
for i in 0..<typ.len:
desc.addf("$1 Field$2;$n",
[getTypeDescAux(m, typ[i], check, skField), rope(i)])
if desc == nil: result.add("char dummy;\L")
else: result.add(desc)
result.add("};\L")
proc scanCppGenericSlot(pat: string, cursor, outIdx, outStars: var int): bool =
# A helper proc for handling cppimport patterns, involving numeric
# placeholders for generic types (e.g. '0, '**2, etc).
# pre: the cursor must be placed at the ' symbol
# post: the cursor will be placed after the final digit
# false will returned if the input is not recognized as a placeholder
inc cursor
let begin = cursor
while pat[cursor] == '*': inc cursor
if pat[cursor] in Digits:
outIdx = pat[cursor].ord - '0'.ord
outStars = cursor - begin
inc cursor
return true
else:
return false
proc resolveStarsInCppType(typ: PType, idx, stars: int): PType =
# Make sure the index refers to one of the generic params of the type.
# XXX: we should catch this earlier and report it as a semantic error.
if idx >= typ.len:
doAssert false, "invalid apostrophe type parameter index"
result = typ[idx]
for i in 1..stars:
if result != nil and result.len > 0:
result = if result.kind == tyGenericInst: result[1]
else: result.elemType
proc getOpenArrayDesc(m: BModule, t: PType, check: var IntSet; kind: TSymKind): Rope =
let sig = hashType(t)
if kind == skParam:
result = getTypeDescWeak(m, t[0], check, kind) & "*"
else:
result = cacheGetType(m.typeCache, sig)
if result == nil:
result = getTypeName(m, t, sig)
m.typeCache[sig] = result
let elemType = getTypeDescWeak(m, t[0], check, kind)
m.s[cfsTypes].addf("typedef struct {$n$2* Field0;$nNI Field1;$n} $1;$n",
[result, elemType])
proc getTypeDescAux(m: BModule, origTyp: PType, check: var IntSet; kind: TSymKind): Rope =
# returns only the type's name
var t = origTyp.skipTypes(irrelevantForBackend-{tyOwned})
if containsOrIncl(check, t.id):
if not (isImportedCppType(origTyp) or isImportedCppType(t)):
internalError(m.config, "cannot generate C type for: " & typeToString(origTyp))
# XXX: this BUG is hard to fix -> we need to introduce helper structs,
# but determining when this needs to be done is hard. We should split
# C type generation into an analysis and a code generation phase somehow.
if t.sym != nil: useHeader(m, t.sym)
if t != origTyp and origTyp.sym != nil: useHeader(m, origTyp.sym)
let sig = hashType(origTyp)
defer: # defer is the simplest in this case
if isImportedType(t) and not m.typeABICache.containsOrIncl(sig):
addAbiCheck(m, t, result)
result = getTypePre(m, t, sig)
if result != nil and t.kind != tyOpenArray:
excl(check, t.id)
return
case t.kind
of tyRef, tyPtr, tyVar, tyLent:
var star = if t.kind in {tyVar} and tfVarIsPtr notin origTyp.flags and
compileToCpp(m): "&" else: "*"
var et = origTyp.skipTypes(abstractInst).lastSon
var etB = et.skipTypes(abstractInst)
if mapType(m.config, t, kind) == ctPtrToArray and (etB.kind != tyOpenArray or kind == skParam):
if etB.kind == tySet:
et = getSysType(m.g.graph, unknownLineInfo, tyUInt8)
else:
et = elemType(etB)
etB = et.skipTypes(abstractInst)
star[0] = '*'
case etB.kind
of tyObject, tyTuple:
if isImportedCppType(etB) and et.kind == tyGenericInst:
result = getTypeDescAux(m, et, check, kind) & star
else:
# no restriction! We have a forward declaration for structs
let name = getTypeForward(m, et, hashType et)
result = name & star
m.typeCache[sig] = result
of tySequence:
if optSeqDestructors in m.config.globalOptions:
result = getTypeDescWeak(m, et, check, kind) & star
m.typeCache[sig] = result
else:
# no restriction! We have a forward declaration for structs
let name = getTypeForward(m, et, hashType et)
result = name & seqStar(m) & star
m.typeCache[sig] = result
pushType(m, et)
else:
# else we have a strong dependency :-(
result = getTypeDescAux(m, et, check, kind) & star
m.typeCache[sig] = result
of tyOpenArray, tyVarargs:
result = getOpenArrayDesc(m, t, check, kind)
of tyEnum:
result = cacheGetType(m.typeCache, sig)
if result == nil:
result = getTypeName(m, origTyp, sig)
if not (isImportedCppType(t) or
(sfImportc in t.sym.flags and t.sym.magic == mNone)):
m.typeCache[sig] = result
var size: int
if firstOrd(m.config, t) < 0:
m.s[cfsTypes].addf("typedef NI32 $1;$n", [result])
size = 4
else:
size = int(getSize(m.config, t))
case size
of 1: m.s[cfsTypes].addf("typedef NU8 $1;$n", [result])
of 2: m.s[cfsTypes].addf("typedef NU16 $1;$n", [result])
of 4: m.s[cfsTypes].addf("typedef NI32 $1;$n", [result])
of 8: m.s[cfsTypes].addf("typedef NI64 $1;$n", [result])
else: internalError(m.config, t.sym.info, "getTypeDescAux: enum")
when false:
let owner = hashOwner(t.sym)
if not gDebugInfo.hasEnum(t.sym.name.s, t.sym.info.line, owner):
var vals: seq[(string, int)] = @[]
for i in 0..<t.n.len:
assert(t.n[i].kind == nkSym)
let field = t.n[i].sym
vals.add((field.name.s, field.position.int))
gDebugInfo.registerEnum(EnumDesc(size: size, owner: owner, id: t.sym.id,
name: t.sym.name.s, values: vals))
of tyProc:
result = getTypeName(m, origTyp, sig)
m.typeCache[sig] = result
var rettype, desc: Rope
genProcParams(m, t, rettype, desc, check, true, true)
if not isImportedType(t):
if t.callConv != ccClosure: # procedure vars may need a closure!
m.s[cfsTypes].addf("typedef $1_PTR($2, $3) $4;$n",
[rope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
m.s[cfsTypes].addf("typedef struct {$n" &
"N_NIMCALL_PTR($2, ClP_0) $3;$n" &
"void* ClE_0;$n} $1;$n",
[result, rettype, desc])
of tySequence:
if optSeqDestructors in m.config.globalOptions:
result = getTypeDescWeak(m, t, check, kind)
else:
# we cannot use getTypeForward here because then t would be associated
# with the name of the struct, not with the pointer to the struct:
result = cacheGetType(m.forwTypeCache, sig)
if result == nil:
result = getTypeName(m, origTyp, sig)
if not isImportedType(t):
addForwardStructFormat(m, structOrUnion(t), result)
m.forwTypeCache[sig] = result
assert(cacheGetType(m.typeCache, sig) == nil)
m.typeCache[sig] = result & seqStar(m)
if not isImportedType(t):
if skipTypes(t[0], typedescInst).kind != tyEmpty:
const
cppSeq = "struct $2 : #TGenericSeq {$n"
cSeq = "struct $2 {$n" &
" #TGenericSeq Sup;$n"
if m.compileToCpp:
appcg(m, m.s[cfsSeqTypes],
cppSeq & " $1 data[SEQ_DECL_SIZE];$n" &
"};$n", [getTypeDescAux(m, t[0], check, kind), result])
else:
appcg(m, m.s[cfsSeqTypes],
cSeq & " $1 data[SEQ_DECL_SIZE];$n" &
"};$n", [getTypeDescAux(m, t[0], check, kind), result])
else:
result = rope("TGenericSeq")
result.add(seqStar(m))
of tyUncheckedArray:
result = getTypeName(m, origTyp, sig)
m.typeCache[sig] = result
if not isImportedType(t):
let foo = getTypeDescAux(m, t[0], check, kind)
m.s[cfsTypes].addf("typedef $1 $2[1];$n", [foo, result])
of tyArray:
var n: BiggestInt = toInt64(lengthOrd(m.config, t))
if n <= 0: n = 1 # make an array of at least one element
result = getTypeName(m, origTyp, sig)
m.typeCache[sig] = result
if not isImportedType(t):
let foo = getTypeDescAux(m, t[1], check, kind)
m.s[cfsTypes].addf("typedef $1 $2[$3];$n",
[foo, result, rope(n)])
of tyObject, tyTuple:
if isImportedCppType(t) and origTyp.kind == tyGenericInst:
let cppName = getTypeName(m, t, sig)
var i = 0
var chunkStart = 0
template addResultType(ty: untyped) =
if ty == nil or ty.kind == tyVoid:
result.add(~"void")
elif ty.kind == tyStatic:
internalAssert m.config, ty.n != nil
result.add ty.n.renderTree
else:
result.add getTypeDescAux(m, ty, check, kind)
while i < cppName.data.len:
if cppName.data[i] == '\'':
var chunkEnd = i-1
var idx, stars: int
if scanCppGenericSlot(cppName.data, i, idx, stars):
result.add cppName.data.substr(chunkStart, chunkEnd)
chunkStart = i
let typeInSlot = resolveStarsInCppType(origTyp, idx + 1, stars)
addResultType(typeInSlot)
else:
inc i
if chunkStart != 0:
result.add cppName.data.substr(chunkStart)
else:
result = cppName & "<"
for i in 1..<origTyp.len-1:
if i > 1: result.add(" COMMA ")
addResultType(origTyp[i])
result.add("> ")
# always call for sideeffects:
assert t.kind != tyTuple
discard getRecordDesc(m, t, result, check)
# The resulting type will include commas and these won't play well
# with the C macros for defining procs such as N_NIMCALL. We must
# create a typedef for the type and use it in the proc signature:
let typedefName = ~"TY" & $sig
m.s[cfsTypes].addf("typedef $1 $2;$n", [result, typedefName])
m.typeCache[sig] = typedefName
result = typedefName
else:
result = cacheGetType(m.forwTypeCache, sig)
if result == nil:
result = getTypeName(m, origTyp, sig)
m.forwTypeCache[sig] = result
if not isImportedType(t):
addForwardStructFormat(m, structOrUnion(t), result)
assert m.forwTypeCache[sig] == result
m.typeCache[sig] = result # always call for sideeffects:
if not incompleteType(t):
let recdesc = if t.kind != tyTuple: getRecordDesc(m, t, result, check)
else: getTupleDesc(m, t, result, check)
if not isImportedType(t):
m.s[cfsTypes].add(recdesc)
elif tfIncompleteStruct notin t.flags:
discard # addAbiCheck(m, t, result) # already handled elsewhere
of tySet:
# Don't use the imported name as it may be scoped: 'Foo::SomeKind'
result = $t.kind & '_' & t.lastSon.typeName & $t.lastSon.hashType
m.typeCache[sig] = result
if not isImportedType(t):
let s = int(getSize(m.config, t))
case s
of 1, 2, 4, 8: m.s[cfsTypes].addf("typedef NU$2 $1;$n", [result, rope(s*8)])
else: m.s[cfsTypes].addf("typedef NU8 $1[$2];$n",
[result, rope(getSize(m.config, t))])
of tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias, tySink, tyOwned,
tyUserTypeClass, tyUserTypeClassInst, tyInferred:
result = getTypeDescAux(m, lastSon(t), check, kind)
else:
internalError(m.config, "getTypeDescAux(" & $t.kind & ')')
result = nil
# fixes bug #145:
excl(check, t.id)
proc getTypeDesc(m: BModule, typ: PType; kind = skParam): Rope =
var check = initIntSet()
result = getTypeDescAux(m, typ, check, kind)
type
TClosureTypeKind = enum ## In C closures are mapped to 3 different things.
clHalf, ## fn(args) type without the trailing 'void* env' parameter
clHalfWithEnv, ## fn(args, void* env) type with trailing 'void* env' parameter
clFull ## struct {fn(args, void* env), env}
proc getClosureType(m: BModule, t: PType, kind: TClosureTypeKind): Rope =
assert t.kind == tyProc
var check = initIntSet()
result = getTempName(m)
var rettype, desc: Rope
genProcParams(m, t, rettype, desc, check, declareEnvironment=kind != clHalf)
if not isImportedType(t):
if t.callConv != ccClosure or kind != clFull:
m.s[cfsTypes].addf("typedef $1_PTR($2, $3) $4;$n",
[rope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
m.s[cfsTypes].addf("typedef struct {$n" &
"N_NIMCALL_PTR($2, ClP_0) $3;$n" &
"void* ClE_0;$n} $1;$n",
[result, rettype, desc])
proc finishTypeDescriptions(m: BModule) =
var i = 0
var check = initIntSet()
while i < m.typeStack.len:
let t = m.typeStack[i]
if optSeqDestructors in m.config.globalOptions and t.skipTypes(abstractInst).kind == tySequence:
seqV2ContentType(m, t, check)
else:
discard getTypeDescAux(m, t, check, skParam)
inc(i)
m.typeStack.setLen 0
template cgDeclFrmt*(s: PSym): string =
s.constraint.strVal
proc isReloadable(m: BModule, prc: PSym): bool =
return m.hcrOn and sfNonReloadable notin prc.flags
proc isNonReloadable(m: BModule, prc: PSym): bool =
return m.hcrOn and sfNonReloadable in prc.flags
proc genProcHeader(m: BModule, prc: PSym, asPtr: bool = false): Rope =
var
rettype, params: Rope
# using static is needed for inline procs
if lfExportLib in prc.loc.flags:
if isHeaderFile in m.flags:
result.add "N_LIB_IMPORT "
else:
result.add "N_LIB_EXPORT "
elif prc.typ.callConv == ccInline or asPtr or isNonReloadable(m, prc):
result.add "static "
elif sfImportc notin prc.flags:
result.add "N_LIB_PRIVATE "
var check = initIntSet()
fillLoc(prc.loc, locProc, prc.ast[namePos], mangleName(m, prc), OnUnknown)
genProcParams(m, prc.typ, rettype, params, check)
# handle the 2 options for hotcodereloading codegen - function pointer
# (instead of forward declaration) or header for function body with "_actual" postfix
let asPtrStr = rope(if asPtr: "_PTR" else: "")
var name = prc.loc.r
if isReloadable(m, prc) and not asPtr:
name.add("_actual")
# careful here! don't access ``prc.ast`` as that could reload large parts of
# the object graph!
if prc.constraint.isNil:
result.addf("$1$2($3, $4)$5",
[rope(CallingConvToStr[prc.typ.callConv]), asPtrStr, rettype, name,
params])
else:
let asPtrStr = if asPtr: (rope("(*") & name & ")") else: name
result = runtimeFormat(prc.cgDeclFrmt, [rettype, asPtrStr, params])
# ------------------ type info generation -------------------------------------
proc genTypeInfoV1(m: BModule, t: PType; info: TLineInfo): Rope
proc getNimNode(m: BModule): Rope =
result = "$1[$2]" % [m.typeNodesName, rope(m.typeNodes)]
inc(m.typeNodes)
proc tiNameForHcr(m: BModule, name: Rope): Rope =
return if m.hcrOn: "(*".rope & name & ")" else: name
proc genTypeInfoAuxBase(m: BModule; typ, origType: PType;
name, base: Rope; info: TLineInfo) =
var nimtypeKind: int
#allocMemTI(m, typ, name)
if isObjLackingTypeField(typ):
nimtypeKind = ord(tyPureObject)
else:
nimtypeKind = ord(typ.kind)
let nameHcr = tiNameForHcr(m, name)
var size: Rope
if tfIncompleteStruct in typ.flags:
size = rope"void*"
else:
size = getTypeDesc(m, origType, skVar)
m.s[cfsTypeInit3].addf(
"$1.size = sizeof($2);$n$1.align = NIM_ALIGNOF($2);$n$1.kind = $3;$n$1.base = $4;$n",
[nameHcr, size, rope(nimtypeKind), base]
)
# compute type flags for GC optimization
var flags = 0
if not containsGarbageCollectedRef(typ): flags = flags or 1
if not canFormAcycle(typ): flags = flags or 2
#else MessageOut("can contain a cycle: " & typeToString(typ))
if flags != 0:
m.s[cfsTypeInit3].addf("$1.flags = $2;$n", [nameHcr, rope(flags)])
discard cgsym(m, "TNimType")
if isDefined(m.config, "nimTypeNames"):
var typename = typeToString(if origType.typeInst != nil: origType.typeInst
else: origType, preferName)
if typename == "ref object" and origType.skipTypes(skipPtrs).sym != nil:
typename = "anon ref object from " & m.config$origType.skipTypes(skipPtrs).sym.info
m.s[cfsTypeInit3].addf("$1.name = $2;$n",
[nameHcr, makeCString typename])
discard cgsym(m, "nimTypeRoot")
m.s[cfsTypeInit3].addf("$1.nextType = nimTypeRoot; nimTypeRoot=&$1;$n",
[nameHcr])
if m.hcrOn:
m.s[cfsData].addf("static TNimType* $1;$n", [name])
m.hcrCreateTypeInfosProc.addf("\thcrRegisterGlobal($2, \"$1\", sizeof(TNimType), NULL, (void**)&$1);$n",
[name, getModuleDllPath(m, m.module)])
else:
m.s[cfsData].addf("N_LIB_PRIVATE TNimType $1;$n", [name])
proc genTypeInfoAux(m: BModule, typ, origType: PType, name: Rope;
info: TLineInfo) =
var base: Rope
if typ.len > 0 and typ.lastSon != nil:
var x = typ.lastSon
if typ.kind == tyObject: x = x.skipTypes(skipPtrs)
if typ.kind == tyPtr and x.kind == tyObject and incompleteType(x):
base = rope("0")
else:
base = genTypeInfoV1(m, x, info)
else:
base = rope("0")
genTypeInfoAuxBase(m, typ, origType, name, base, info)
proc discriminatorTableName(m: BModule, objtype: PType, d: PSym): Rope =
# bugfix: we need to search the type that contains the discriminator:
var objtype = objtype.skipTypes(abstractPtrs)
while lookupInRecord(objtype.n, d.name) == nil:
objtype = objtype[0].skipTypes(abstractPtrs)
if objtype.sym == nil:
internalError(m.config, d.info, "anonymous obj with discriminator")
result = "NimDT_$1_$2" % [rope($hashType(objtype)), rope(d.name.s.mangle)]
proc rope(arg: Int128): Rope = rope($arg)
proc discriminatorTableDecl(m: BModule, objtype: PType, d: PSym): Rope =
discard cgsym(m, "TNimNode")
var tmp = discriminatorTableName(m, objtype, d)
result = "TNimNode* $1[$2];$n" % [tmp, rope(lengthOrd(m.config, d.typ)+1)]
proc genTNimNodeArray(m: BModule, name: Rope, size: Rope) =
if m.hcrOn:
m.s[cfsData].addf("static TNimNode** $1;$n", [name])
m.hcrCreateTypeInfosProc.addf("\thcrRegisterGlobal($3, \"$1\", sizeof(TNimNode*) * $2, NULL, (void**)&$1);$n",
[name, size, getModuleDllPath(m, m.module)])
else:
m.s[cfsTypeInit1].addf("static TNimNode* $1[$2];$n", [name, size])
proc genObjectFields(m: BModule, typ, origType: PType, n: PNode, expr: Rope;
info: TLineInfo) =
case n.kind
of nkRecList:
if n.len == 1:
genObjectFields(m, typ, origType, n[0], expr, info)
elif n.len > 0:
var tmp = getTempName(m) & "_" & $n.len
genTNimNodeArray(m, tmp, rope(n.len))
for i in 0..<n.len:
var tmp2 = getNimNode(m)
m.s[cfsTypeInit3].addf("$1[$2] = &$3;$n", [tmp, rope(i), tmp2])
genObjectFields(m, typ, origType, n[i], tmp2, info)
m.s[cfsTypeInit3].addf("$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, rope(n.len), tmp])
else:
m.s[cfsTypeInit3].addf("$1.len = $2; $1.kind = 2;$n", [expr, rope(n.len)])
of nkRecCase:
assert(n[0].kind == nkSym)
var field = n[0].sym
var tmp = discriminatorTableName(m, typ, field)
var L = lengthOrd(m.config, field.typ)
assert L > 0
if field.loc.r == nil: fillObjectFields(m, typ)
if field.loc.t == nil:
internalError(m.config, n.info, "genObjectFields")
m.s[cfsTypeInit3].addf("$1.kind = 3;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n" & "$1.sons = &$6[0];$n" &
"$1.len = $7;$n", [expr, getTypeDesc(m, origType, skVar), field.loc.r,
genTypeInfoV1(m, field.typ, info),
makeCString(field.name.s),
tmp, rope(L)])
m.s[cfsData].addf("TNimNode* $1[$2];$n", [tmp, rope(L+1)])
for i in 1..<n.len:
var b = n[i] # branch
var tmp2 = getNimNode(m)
genObjectFields(m, typ, origType, lastSon(b), tmp2, info)
case b.kind
of nkOfBranch:
if b.len < 2:
internalError(m.config, b.info, "genObjectFields; nkOfBranch broken")
for j in 0..<b.len - 1:
if b[j].kind == nkRange:
var x = toInt(getOrdValue(b[j][0]))
var y = toInt(getOrdValue(b[j][1]))
while x <= y:
m.s[cfsTypeInit3].addf("$1[$2] = &$3;$n", [tmp, rope(x), tmp2])
inc(x)
else:
m.s[cfsTypeInit3].addf("$1[$2] = &$3;$n",
[tmp, rope(getOrdValue(b[j])), tmp2])
of nkElse:
m.s[cfsTypeInit3].addf("$1[$2] = &$3;$n",
[tmp, rope(L), tmp2])
else: internalError(m.config, n.info, "genObjectFields(nkRecCase)")
of nkSym:
var field = n.sym
# Do not produce code for void types
if isEmptyType(field.typ): return
if field.bitsize == 0:
if field.loc.r == nil: fillObjectFields(m, typ)
if field.loc.t == nil:
internalError(m.config, n.info, "genObjectFields")
m.s[cfsTypeInit3].addf("$1.kind = 1;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n", [expr, getTypeDesc(m, origType, skVar),
field.loc.r, genTypeInfoV1(m, field.typ, info), makeCString(field.name.s)])
else: internalError(m.config, n.info, "genObjectFields")
proc genObjectInfo(m: BModule, typ, origType: PType, name: Rope; info: TLineInfo) =
if typ.kind == tyObject:
if incompleteType(typ):
localError(m.config, info, "request for RTTI generation for incomplete object: " &
typeToString(typ))
genTypeInfoAux(m, typ, origType, name, info)
else:
genTypeInfoAuxBase(m, typ, origType, name, rope("0"), info)
var tmp = getNimNode(m)
if not isImportedType(typ):
genObjectFields(m, typ, origType, typ.n, tmp, info)
m.s[cfsTypeInit3].addf("$1.node = &$2;$n", [tiNameForHcr(m, name), tmp])
var t = typ[0]
while t != nil:
t = t.skipTypes(skipPtrs)
t.flags.incl tfObjHasKids
t = t[0]
proc genTupleInfo(m: BModule, typ, origType: PType, name: Rope; info: TLineInfo) =
genTypeInfoAuxBase(m, typ, typ, name, rope("0"), info)
var expr = getNimNode(m)
if typ.len > 0:
var tmp = getTempName(m) & "_" & $typ.len
genTNimNodeArray(m, tmp, rope(typ.len))
for i in 0..<typ.len:
var a = typ[i]
var tmp2 = getNimNode(m)
m.s[cfsTypeInit3].addf("$1[$2] = &$3;$n", [tmp, rope(i), tmp2])
m.s[cfsTypeInit3].addf("$1.kind = 1;$n" &
"$1.offset = offsetof($2, Field$3);$n" &
"$1.typ = $4;$n" &
"$1.name = \"Field$3\";$n",
[tmp2, getTypeDesc(m, origType, skVar), rope(i), genTypeInfoV1(m, a, info)])
m.s[cfsTypeInit3].addf("$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, rope(typ.len), tmp])
else:
m.s[cfsTypeInit3].addf("$1.len = $2; $1.kind = 2;$n",
[expr, rope(typ.len)])
m.s[cfsTypeInit3].addf("$1.node = &$2;$n", [tiNameForHcr(m, name), expr])
proc genEnumInfo(m: BModule, typ: PType, name: Rope; info: TLineInfo) =
# Type information for enumerations is quite heavy, so we do some
# optimizations here: The ``typ`` field is never set, as it is redundant
# anyway. We generate a cstring array and a loop over it. Exceptional
# positions will be reset after the loop.
genTypeInfoAux(m, typ, typ, name, info)
var nodePtrs = getTempName(m) & "_" & $typ.n.len
genTNimNodeArray(m, nodePtrs, rope(typ.n.len))
var enumNames, specialCases: Rope
var firstNimNode = m.typeNodes
var hasHoles = false
for i in 0..<typ.n.len:
assert(typ.n[i].kind == nkSym)
var field = typ.n[i].sym
var elemNode = getNimNode(m)
if field.ast == nil:
# no explicit string literal for the enum field, so use field.name:
enumNames.add(makeCString(field.name.s))
else:
enumNames.add(makeCString(field.ast.strVal))
if i < typ.n.len - 1: enumNames.add(", \L")
if field.position != i or tfEnumHasHoles in typ.flags:
specialCases.addf("$1.offset = $2;$n", [elemNode, rope(field.position)])
hasHoles = true
var enumArray = getTempName(m)
var counter = getTempName(m)
m.s[cfsTypeInit1].addf("NI $1;$n", [counter])
m.s[cfsTypeInit1].addf("static char* NIM_CONST $1[$2] = {$n$3};$n",
[enumArray, rope(typ.n.len), enumNames])
m.s[cfsTypeInit3].addf("for ($1 = 0; $1 < $2; $1++) {$n" &
"$3[$1+$4].kind = 1;$n" & "$3[$1+$4].offset = $1;$n" &
"$3[$1+$4].name = $5[$1];$n" & "$6[$1] = &$3[$1+$4];$n" & "}$n", [counter,
rope(typ.n.len), m.typeNodesName, rope(firstNimNode), enumArray, nodePtrs])
m.s[cfsTypeInit3].add(specialCases)
m.s[cfsTypeInit3].addf(
"$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n$4.node = &$1;$n",
[getNimNode(m), rope(typ.n.len), nodePtrs, tiNameForHcr(m, name)])
if hasHoles:
# 1 << 2 is {ntfEnumHole}
m.s[cfsTypeInit3].addf("$1.flags = 1<<2;$n", [tiNameForHcr(m, name)])
proc genSetInfo(m: BModule, typ: PType, name: Rope; info: TLineInfo) =
assert(typ[0] != nil)
genTypeInfoAux(m, typ, typ, name, info)
var tmp = getNimNode(m)
m.s[cfsTypeInit3].addf("$1.len = $2; $1.kind = 0;$n" & "$3.node = &$1;$n",
[tmp, rope(firstOrd(m.config, typ)), tiNameForHcr(m, name)])
proc genArrayInfo(m: BModule, typ: PType, name: Rope; info: TLineInfo) =
genTypeInfoAuxBase(m, typ, typ, name, genTypeInfoV1(m, typ[1], info), info)
proc fakeClosureType(m: BModule; owner: PSym): PType =
# we generate the same RTTI as for a tuple[pointer, ref tuple[]]
result = newType(tyTuple, nextTypeId m.idgen, owner)
result.rawAddSon(newType(tyPointer, nextTypeId m.idgen, owner))
var r = newType(tyRef, nextTypeId m.idgen, owner)
let obj = createObj(m.g.graph, m.idgen, owner, owner.info, final=false)
r.rawAddSon(obj)
result.rawAddSon(r)
include ccgtrav
proc genDeepCopyProc(m: BModule; s: PSym; result: Rope) =
genProc(m, s)
m.s[cfsTypeInit3].addf("$1.deepcopy =(void* (N_RAW_NIMCALL*)(void*))$2;$n",
[result, s.loc.r])
proc declareNimType(m: BModule, name: string; str: Rope, ownerModule: PSym) =
let nr = rope(name)
if m.hcrOn:
m.s[cfsData].addf("static $2* $1;$n", [str, nr])
m.s[cfsTypeInit1].addf("\t$1 = ($3*)hcrGetGlobal($2, \"$1\");$n",
[str, getModuleDllPath(m, ownerModule), nr])
else:
m.s[cfsData].addf("extern $2 $1;$n", [str, nr])
proc genTypeInfo2Name(m: BModule; t: PType): Rope =
var res = "|"
var it = t
while it != nil:
it = it.skipTypes(skipPtrs)
if it.sym != nil:
var m = it.sym.owner
while m != nil and m.kind != skModule: m = m.owner
if m == nil or sfSystemModule in m.flags:
# produce short names for system types:
res.add it.sym.name.s
else:
var p = m.owner
if p != nil and p.kind == skPackage:
res.add p.name.s & "."
res.add m.name.s & "."
res.add it.sym.name.s
else:
res.add $hashType(it)
res.add "|"
it = it[0]
result = makeCString(res)
proc isTrivialProc(g: ModuleGraph; s: PSym): bool {.inline.} = getBody(g, s).len == 0
proc genHook(m: BModule; t: PType; info: TLineInfo; op: TTypeAttachedOp): Rope =
let theProc = getAttachedOp(m.g.graph, t, op)
if theProc != nil and not isTrivialProc(m.g.graph, theProc):
# the prototype of a destructor is ``=destroy(x: var T)`` and that of a
# finalizer is: ``proc (x: ref T) {.nimcall.}``. We need to check the calling
# convention at least:
if theProc.typ == nil or theProc.typ.callConv != ccNimCall:
localError(m.config, info,
theProc.name.s & " needs to have the 'nimcall' calling convention")
genProc(m, theProc)
result = theProc.loc.r
else:
when false:
if op == attachedTrace and m.config.selectedGC == gcOrc and
containsGarbageCollectedRef(t):
# unfortunately this check is wrong for an object type that only contains
# .cursor fields like 'Node' inside 'cycleleak'.
internalError(m.config, info, "no attached trace proc found")
result = rope("NIM_NIL")
proc genTypeInfoV2Impl(m: BModule, t, origType: PType, name: Rope; info: TLineInfo) =
var typeName: Rope
if t.kind in {tyObject, tyDistinct}:
if incompleteType(t):
localError(m.config, info, "request for RTTI generation for incomplete object: " &
typeToString(t))
typeName = genTypeInfo2Name(m, t)
else:
typeName = rope("NIM_NIL")
discard cgsym(m, "TNimTypeV2")
m.s[cfsData].addf("N_LIB_PRIVATE TNimTypeV2 $1;$n", [name])
let destroyImpl = genHook(m, t, info, attachedDestructor)
let traceImpl = genHook(m, t, info, attachedTrace)
let disposeImpl = genHook(m, t, info, attachedDispose)
addf(m.s[cfsTypeInit3], "$1.destructor = (void*)$2; $1.size = sizeof($3); $1.align = NIM_ALIGNOF($3); $1.name = $4;$n; $1.traceImpl = (void*)$5; $1.disposeImpl = (void*)$6;", [
name, destroyImpl, getTypeDesc(m, t), typeName,
traceImpl, disposeImpl])
if t.kind == tyObject and t.len > 0 and t[0] != nil and optEnableDeepCopy in m.config.globalOptions:
discard genTypeInfoV1(m, t, info)
proc genTypeInfoV2(m: BModule, t: PType; info: TLineInfo): Rope =
let origType = t
# distinct types can have their own destructors
var t = skipTypes(origType, irrelevantForBackend + tyUserTypeClasses - {tyDistinct})
let prefixTI = if m.hcrOn: "(" else: "(&"
let sig = hashType(origType)
result = m.typeInfoMarkerV2.getOrDefault(sig)
if result != nil:
return prefixTI.rope & result & ")".rope
let marker = m.g.typeInfoMarkerV2.getOrDefault(sig)
if marker.str != nil:
discard cgsym(m, "TNimTypeV2")
declareNimType(m, "TNimTypeV2", marker.str, marker.owner)
# also store in local type section:
m.typeInfoMarkerV2[sig] = marker.str
return prefixTI.rope & marker.str & ")".rope
result = "NTIv2$1_" % [rope($sig)]
m.typeInfoMarkerV2[sig] = result
let owner = t.skipTypes(typedescPtrs).owner.getModule
if owner != m.module:
# make sure the type info is created in the owner module
assert m.g.modules[owner.position] != nil
discard genTypeInfoV2(m.g.modules[owner.position], origType, info)
# reference the type info as extern here
discard cgsym(m, "TNimTypeV2")
declareNimType(m, "TNimTypeV2", result, owner)
return prefixTI.rope & result & ")".rope
m.g.typeInfoMarkerV2[sig] = (str: result, owner: owner)
genTypeInfoV2Impl(m, t, origType, result, info)
result = prefixTI.rope & result & ")".rope
proc openArrayToTuple(m: BModule; t: PType): PType =
result = newType(tyTuple, nextTypeId m.idgen, t.owner)
let p = newType(tyPtr, nextTypeId m.idgen, t.owner)
let a = newType(tyUncheckedArray, nextTypeId m.idgen, t.owner)
a.add t.lastSon
p.add a
result.add p
result.add getSysType(m.g.graph, t.owner.info, tyInt)
proc genTypeInfoV1(m: BModule, t: PType; info: TLineInfo): Rope =
let origType = t
var t = skipTypes(origType, irrelevantForBackend + tyUserTypeClasses)
let prefixTI = if m.hcrOn: "(" else: "(&"
let sig = hashType(origType)
result = m.typeInfoMarker.getOrDefault(sig)
if result != nil:
return prefixTI.rope & result & ")".rope
let marker = m.g.typeInfoMarker.getOrDefault(sig)
if marker.str != nil:
discard cgsym(m, "TNimType")
discard cgsym(m, "TNimNode")
declareNimType(m, "TNimType", marker.str, marker.owner)
# also store in local type section:
m.typeInfoMarker[sig] = marker.str
return prefixTI.rope & marker.str & ")".rope
result = "NTI$1_" % [rope($sig)]
m.typeInfoMarker[sig] = result
let owner = t.skipTypes(typedescPtrs).owner.getModule
if owner != m.module:
# make sure the type info is created in the owner module
assert m.g.modules[owner.position] != nil
discard genTypeInfoV1(m.g.modules[owner.position], origType, info)
# reference the type info as extern here
discard cgsym(m, "TNimType")
discard cgsym(m, "TNimNode")
declareNimType(m, "TNimType", result, owner)
return prefixTI.rope & result & ")".rope
m.g.typeInfoMarker[sig] = (str: result, owner: owner)
case t.kind
of tyEmpty, tyVoid: result = rope"0"
of tyPointer, tyBool, tyChar, tyCString, tyString, tyInt..tyUInt64, tyVar, tyLent:
genTypeInfoAuxBase(m, t, t, result, rope"0", info)
of tyStatic:
if t.n != nil: result = genTypeInfoV1(m, lastSon t, info)
else: internalError(m.config, "genTypeInfoV1(" & $t.kind & ')')
of tyUserTypeClasses:
internalAssert m.config, t.isResolvedUserTypeClass
return genTypeInfoV1(m, t.lastSon, info)
of tyProc:
if t.callConv != ccClosure:
genTypeInfoAuxBase(m, t, t, result, rope"0", info)
else:
let x = fakeClosureType(m, t.owner)
genTupleInfo(m, x, x, result, info)
of tySequence:
genTypeInfoAux(m, t, t, result, info)
if m.config.selectedGC in {gcMarkAndSweep, gcRefc, gcV2, gcGo}:
let markerProc = genTraverseProc(m, origType, sig)
m.s[cfsTypeInit3].addf("$1.marker = $2;$n", [tiNameForHcr(m, result), markerProc])
of tyRef:
genTypeInfoAux(m, t, t, result, info)
if m.config.selectedGC in {gcMarkAndSweep, gcRefc, gcV2, gcGo}:
let markerProc = genTraverseProc(m, origType, sig)
m.s[cfsTypeInit3].addf("$1.marker = $2;$n", [tiNameForHcr(m, result), markerProc])
of tyPtr, tyRange, tyUncheckedArray: genTypeInfoAux(m, t, t, result, info)
of tyArray: genArrayInfo(m, t, result, info)
of tySet: genSetInfo(m, t, result, info)
of tyEnum: genEnumInfo(m, t, result, info)
of tyObject:
genObjectInfo(m, t, origType, result, info)
of tyTuple:
# if t.n != nil: genObjectInfo(m, t, result)
# else:
# BUGFIX: use consistently RTTI without proper field names; otherwise
# results are not deterministic!
genTupleInfo(m, t, origType, result, info)
of tyOpenArray:
let x = openArrayToTuple(m, t)
genTupleInfo(m, x, origType, result, info)
else: internalError(m.config, "genTypeInfoV1(" & $t.kind & ')')
var op = getAttachedOp(m.g.graph, t, attachedDeepCopy)
if op == nil:
op = getAttachedOp(m.g.graph, origType, attachedDeepCopy)
if op != nil:
genDeepCopyProc(m, op, result)
if optTinyRtti in m.config.globalOptions and t.kind == tyObject and sfImportc notin t.sym.flags:
let v2info = genTypeInfoV2(m, origType, info)
addf(m.s[cfsTypeInit3], "$1->typeInfoV1 = (void*)&$2; $2.typeInfoV2 = (void*)$1;$n", [
v2info, result])
result = prefixTI.rope & result & ")".rope
proc genTypeSection(m: BModule, n: PNode) =
discard