Files
Nim/tests/bench/GCBench_OGC.cpp
Andreas Rumpf 405b86068e Initial import
2008-06-22 16:14:11 +02:00

302 lines
10 KiB
C++
Executable File

// This is adapted from a benchmark written by John Ellis and Pete Kovac
// of Post Communications.
// It was modified by Hans Boehm of Silicon Graphics.
// Translated to C++ 30 May 1997 by William D Clinger of Northeastern Univ.
//
// This is no substitute for real applications. No actual application
// is likely to behave in exactly this way. However, this benchmark was
// designed to be more representative of real applications than other
// Java GC benchmarks of which we are aware.
// It attempts to model those properties of allocation requests that
// are important to current GC techniques.
// It is designed to be used either to obtain a single overall performance
// number, or to give a more detailed estimate of how collector
// performance varies with object lifetimes. It prints the time
// required to allocate and collect balanced binary trees of various
// sizes. Smaller trees result in shorter object lifetimes. Each cycle
// allocates roughly the same amount of memory.
// Two data structures are kept around during the entire process, so
// that the measured performance is representative of applications
// that maintain some live in-memory data. One of these is a tree
// containing many pointers. The other is a large array containing
// double precision floating point numbers. Both should be of comparable
// size.
//
// The results are only really meaningful together with a specification
// of how much memory was used. It is possible to trade memory for
// better time performance. This benchmark should be run in a 32 MB
// heap, though we don't currently know how to enforce that uniformly.
//
// Unlike the original Ellis and Kovac benchmark, we do not attempt
// measure pause times. This facility should eventually be added back
// in. There are several reasons for omitting it for now. The original
// implementation depended on assumptions about the thread scheduler
// that don't hold uniformly. The results really measure both the
// scheduler and GC. Pause time measurements tend to not fit well with
// current benchmark suites. As far as we know, none of the current
// commercial Java implementations seriously attempt to minimize GC pause
// times.
#include <new.h>
#include <iostream.h>
#include <sys/time.h>
#ifdef GC
# include "gc.h"
#endif
#ifdef OGC
# include "ogc.h"
#endif
// These macros were a quick hack for the Macintosh.
//
// #define currentTime() clock()
// #define elapsedTime(x) ((1000*(x))/CLOCKS_PER_SEC)
#define currentTime() stats_rtclock()
#define elapsedTime(x) (x)
/* Get the current time in milliseconds */
unsigned
stats_rtclock( void )
{
struct timeval t;
struct timezone tz;
if (gettimeofday( &t, &tz ) == -1)
return 0;
return (t.tv_sec * 1000 + t.tv_usec / 1000);
}
static const int kStretchTreeDepth = 18; // about 16Mb
static const int kLongLivedTreeDepth = 16; // about 4Mb
static const int kArraySize = 500000; // about 4Mb
static const int kMinTreeDepth = 4;
static const int kMaxTreeDepth = 16;
struct Node0 {
# ifdef OGC
gc_ptr<Node0> left;
gc_ptr<Node0> right;
Node0(gc_ptr<Node0> l, gc_ptr<Node0> r) { left = l; right = r; }
# else
Node0 * left;
Node0 * right;
Node0(Node0 *l, Node0 *r) { left = l; right = r; }
# endif
int i, j;
Node0() { left = 0; right = 0; }
# if !defined(GC) && !defined(OGC)
~Node0() { if (left) delete left; if (right) delete right; }
# endif
};
#ifdef OGC
typedef gc_ptr<Node0> Node;
#else
typedef struct Node0 *Node;
#endif
struct GCBench {
// Nodes used by a tree of a given size
static int TreeSize(int i) {
return ((1 << (i + 1)) - 1);
}
// Number of iterations to use for a given tree depth
static int NumIters(int i) {
return 2 * TreeSize(kStretchTreeDepth) / TreeSize(i);
}
// Build tree top down, assigning to older objects.
static void Populate(int iDepth, Node thisNode) {
if (iDepth<=0) {
return;
} else {
iDepth--;
# if defined(GC)
thisNode->left = new (GC_NEW(Node0)) Node0();
thisNode->right = new (GC_NEW(Node0)) Node0();
# elif defined(OGC)
thisNode->left = gc_new Node0();
thisNode->right = gc_new Node0();
# else
thisNode->left = new Node0();
thisNode->right = new Node0();
# endif
Populate (iDepth, thisNode->left);
Populate (iDepth, thisNode->right);
}
}
// Build tree bottom-up
static Node MakeTree(int iDepth) {
if (iDepth<=0) {
# if defined(GC)
return new (GC_NEW(Node0)) Node0();
# elif defined(OGC)
return gc_new Node0();
# else
return new Node0();
# endif
} else {
# if defined(GC)
return new (GC_NEW(Node0)) Node0(MakeTree(iDepth-1),
MakeTree(iDepth-1));
# elif defined(OGC)
# ifdef BROKEN_SMART_PTRS
Node left = MakeTree(iDepth-1);
Node right = MakeTree(iDepth-1);
return gc_new Node0(left, right);
# else
return gc_new Node0(MakeTree(iDepth-1),
MakeTree(iDepth-1));
# endif
# else
return new Node0(MakeTree(iDepth-1),
MakeTree(iDepth-1));
# endif
}
}
static void PrintDiagnostics() {
#if 0
long lFreeMemory = Runtime.getRuntime().freeMemory();
long lTotalMemory = Runtime.getRuntime().totalMemory();
System.out.print(" Total memory available="
+ lTotalMemory + " bytes");
System.out.println(" Free memory=" + lFreeMemory + " bytes");
#endif
}
static void TimeConstruction(int depth) {
long tStart, tFinish;
int iNumIters = NumIters(depth);
Node tempTree;
cout << "Creating " << iNumIters
<< " trees of depth " << depth << endl;
tStart = currentTime();
for (int i = 0; i < iNumIters; ++i) {
# if defined(GC)
tempTree = new (GC_NEW(Node0)) Node0();
# elif defined(OGC)
tempTree = gc_new Node0();
# else
tempTree = new Node0();
# endif
Populate(depth, tempTree);
# if !defined(GC) && !defined(OGC)
delete tempTree;
# endif
tempTree = 0;
}
tFinish = currentTime();
cout << "\tTop down construction took "
<< elapsedTime(tFinish - tStart) << " msec" << endl;
tStart = currentTime();
for (int i = 0; i < iNumIters; ++i) {
tempTree = MakeTree(depth);
# if !defined(GC) && !defined(OGC)
delete tempTree;
# endif
tempTree = 0;
}
tFinish = currentTime();
cout << "\tBottom up construction took "
<< elapsedTime(tFinish - tStart) << " msec" << endl;
}
void main() {
Node root;
Node longLivedTree;
Node tempTree;
long tStart, tFinish;
long tElapsed;
#ifdef GC
// GC_full_freq = 30;
GC_enable_incremental();
#endif
# ifdef OGC
GC::SetPolicy(100);
# endif
cout << "Garbage Collector Test" << endl;
cout << " Live storage will peak at "
<< 2 * sizeof(Node0) * TreeSize(kLongLivedTreeDepth) +
sizeof(double) * kArraySize
<< " bytes." << endl << endl;
cout << " Stretching memory with a binary tree of depth "
<< kStretchTreeDepth << endl;
PrintDiagnostics();
tStart = currentTime();
// Stretch the memory space quickly
tempTree = MakeTree(kStretchTreeDepth);
# if !defined(GC) && !defined(OGC)
delete tempTree;
# endif
tempTree = 0;
// Create a long lived object
cout << " Creating a long-lived binary tree of depth "
<< kLongLivedTreeDepth << endl;
# if defined(GC)
longLivedTree = new (GC_NEW(Node0)) Node0();
# elif defined(OGC)
longLivedTree = gc_new Node0();
# else
longLivedTree = new Node0();
# endif
Populate(kLongLivedTreeDepth, longLivedTree);
// Create long-lived array, filling half of it
cout << " Creating a long-lived array of "
<< kArraySize << " doubles" << endl;
# if defined(GC)
double *array = (double *)
GC_MALLOC(sizeof(double) * kArraySize);
# else
double *array = new double[kArraySize];
# endif
for (int i = 0; i < kArraySize/2; ++i) {
array[i] = 1.0/i;
}
PrintDiagnostics();
for (int d = kMinTreeDepth; d <= kMaxTreeDepth; d += 2)
{
TimeConstruction(d);
}
if (longLivedTree == 0 || array[1000] != 1.0/1000)
cout << "Failed" << endl;
// fake reference to LongLivedTree
// and array
// to keep them from being optimized away
tFinish = currentTime();
tElapsed = elapsedTime(tFinish-tStart);
PrintDiagnostics();
cout << "Completed in " << tElapsed << " msec" << endl;
# ifdef GC
cout << "Completed " << GC_gc_no << " collections" <<endl;
cout << "Heap size is " << GC_get_heap_size() << endl;
# endif
}
};
main () {
GCBench x;
x.main();
}