Files
Nim/lib/system/threads.nim
Emery Hemingway 9258672cee balance Genode CPU pinning, deadlock at Genode exit (#6317)
* Genode: balance thread CPU affinities
Genode threads are pinned by defaut to the same CPU as the initial
component entrypoint thread. Thread affinities are also permanent. This
patch pins new threads to CPUs in a round-robin manner. Arbitrary CPU
pinning is not exposed and the 'nimPinToCpu' has no effect.

* Genode: guarantee that 'quit' will not return
On Genode exits are handled by whatever component is acting as parent.
The caller has no guarentee that the parent implementation will halt the
caller's threads, so explicitly deadlock the 'quit' procedure.
2017-09-16 08:02:59 +02:00

711 lines
24 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Thread support for Nim. **Note**: This is part of the system module.
## Do not import it directly. To activate thread support you need to compile
## with the ``--threads:on`` command line switch.
##
## Nim's memory model for threads is quite different from other common
## programming languages (C, Pascal): Each thread has its own
## (garbage collected) heap and sharing of memory is restricted. This helps
## to prevent race conditions and improves efficiency. See `the manual for
## details of this memory model <manual.html#threads>`_.
##
## Example:
##
## .. code-block:: Nim
##
## import locks
##
## var
## thr: array[0..4, Thread[tuple[a,b: int]]]
## L: Lock
##
## proc threadFunc(interval: tuple[a,b: int]) {.thread.} =
## for i in interval.a..interval.b:
## acquire(L) # lock stdout
## echo i
## release(L)
##
## initLock(L)
##
## for i in 0..high(thr):
## createThread(thr[i], threadFunc, (i*10, i*10+5))
## joinThreads(thr)
when not declared(NimString):
{.error: "You must not import this module explicitly".}
const
maxRegisters = 256 # don't think there is an arch with more registers
useStackMaskHack = false ## use the stack mask hack for better performance
StackGuardSize = 4096
ThreadStackMask =
when defined(genode):
1024*64*sizeof(int)-1
else:
1024*256*sizeof(int)-1
ThreadStackSize = ThreadStackMask+1 - StackGuardSize
when defined(windows):
type
SysThread* = Handle
WinThreadProc = proc (x: pointer): int32 {.stdcall.}
{.deprecated: [TSysThread: SysThread].}
proc createThread(lpThreadAttributes: pointer, dwStackSize: int32,
lpStartAddress: WinThreadProc,
lpParameter: pointer,
dwCreationFlags: int32,
lpThreadId: var int32): SysThread {.
stdcall, dynlib: "kernel32", importc: "CreateThread".}
proc winSuspendThread(hThread: SysThread): int32 {.
stdcall, dynlib: "kernel32", importc: "SuspendThread".}
proc winResumeThread(hThread: SysThread): int32 {.
stdcall, dynlib: "kernel32", importc: "ResumeThread".}
proc waitForMultipleObjects(nCount: int32,
lpHandles: ptr SysThread,
bWaitAll: int32,
dwMilliseconds: int32): int32 {.
stdcall, dynlib: "kernel32", importc: "WaitForMultipleObjects".}
proc terminateThread(hThread: SysThread, dwExitCode: int32): int32 {.
stdcall, dynlib: "kernel32", importc: "TerminateThread".}
proc getCurrentThreadId(): int32 {.
stdcall, dynlib: "kernel32", importc: "GetCurrentThreadId".}
type
ThreadVarSlot = distinct int32
when true:
proc threadVarAlloc(): ThreadVarSlot {.
importc: "TlsAlloc", stdcall, header: "<windows.h>".}
proc threadVarSetValue(dwTlsIndex: ThreadVarSlot, lpTlsValue: pointer) {.
importc: "TlsSetValue", stdcall, header: "<windows.h>".}
proc tlsGetValue(dwTlsIndex: ThreadVarSlot): pointer {.
importc: "TlsGetValue", stdcall, header: "<windows.h>".}
proc getLastError(): uint32 {.
importc: "GetLastError", stdcall, header: "<windows.h>".}
proc setLastError(x: uint32) {.
importc: "SetLastError", stdcall, header: "<windows.h>".}
proc threadVarGetValue(dwTlsIndex: ThreadVarSlot): pointer =
let realLastError = getLastError()
result = tlsGetValue(dwTlsIndex)
setLastError(realLastError)
else:
proc threadVarAlloc(): ThreadVarSlot {.
importc: "TlsAlloc", stdcall, dynlib: "kernel32".}
proc threadVarSetValue(dwTlsIndex: ThreadVarSlot, lpTlsValue: pointer) {.
importc: "TlsSetValue", stdcall, dynlib: "kernel32".}
proc threadVarGetValue(dwTlsIndex: ThreadVarSlot): pointer {.
importc: "TlsGetValue", stdcall, dynlib: "kernel32".}
proc setThreadAffinityMask(hThread: SysThread, dwThreadAffinityMask: uint) {.
importc: "SetThreadAffinityMask", stdcall, header: "<windows.h>".}
elif defined(genode):
const
GenodeHeader = "genode_cpp/threads.h"
type
SysThread* {.importcpp: "Nim::SysThread",
header: GenodeHeader, final, pure.} = object
GenodeThreadProc = proc (x: pointer) {.noconv.}
ThreadVarSlot = int
proc initThread(s: var SysThread,
stackSize: culonglong,
entry: GenodeThreadProc,
arg: pointer,
affinity: cuint) {.
importcpp: "#.initThread(genodeEnv, @)".}
proc threadVarAlloc(): ThreadVarSlot = 0
proc offMainThread(): bool {.
importcpp: "Nim::SysThread::offMainThread",
header: GenodeHeader.}
proc threadVarSetValue(value: pointer) {.
importcpp: "Nim::SysThread::threadVarSetValue(@)",
header: GenodeHeader.}
proc threadVarGetValue(): pointer {.
importcpp: "Nim::SysThread::threadVarGetValue()",
header: GenodeHeader.}
var mainTls: pointer
proc threadVarSetValue(s: ThreadVarSlot, value: pointer) {.inline.} =
if offMainThread():
threadVarSetValue(value);
else:
mainTls = value
proc threadVarGetValue(s: ThreadVarSlot): pointer {.inline.} =
if offMainThread():
threadVarGetValue();
else:
mainTls
else:
when not defined(macosx):
{.passL: "-pthread".}
{.passC: "-pthread".}
const
schedh = "#define _GNU_SOURCE\n#include <sched.h>"
pthreadh = "#define _GNU_SOURCE\n#include <pthread.h>"
when not declared(Time):
when defined(linux):
type Time = clong
else:
type Time = int
when defined(linux) and defined(amd64):
type
SysThread* {.importc: "pthread_t",
header: "<sys/types.h>" .} = distinct culong
Pthread_attr {.importc: "pthread_attr_t",
header: "<sys/types.h>".} = object
abi: array[56 div sizeof(clong), clong]
ThreadVarSlot {.importc: "pthread_key_t",
header: "<sys/types.h>".} = distinct cuint
else:
type
SysThread* {.importc: "pthread_t", header: "<sys/types.h>".} = object
Pthread_attr {.importc: "pthread_attr_t",
header: "<sys/types.h>".} = object
ThreadVarSlot {.importc: "pthread_key_t",
header: "<sys/types.h>".} = object
type
Timespec {.importc: "struct timespec", header: "<time.h>".} = object
tv_sec: Time
tv_nsec: clong
{.deprecated: [TSysThread: SysThread, Tpthread_attr: PThreadAttr,
Ttimespec: Timespec, TThreadVarSlot: ThreadVarSlot].}
proc pthread_attr_init(a1: var PthreadAttr) {.
importc, header: pthreadh.}
proc pthread_attr_setstacksize(a1: var PthreadAttr, a2: int) {.
importc, header: pthreadh.}
proc pthread_create(a1: var SysThread, a2: var PthreadAttr,
a3: proc (x: pointer): pointer {.noconv.},
a4: pointer): cint {.importc: "pthread_create",
header: pthreadh.}
proc pthread_join(a1: SysThread, a2: ptr pointer): cint {.
importc, header: pthreadh.}
proc pthread_cancel(a1: SysThread): cint {.
importc: "pthread_cancel", header: pthreadh.}
proc pthread_getspecific(a1: ThreadVarSlot): pointer {.
importc: "pthread_getspecific", header: pthreadh.}
proc pthread_key_create(a1: ptr ThreadVarSlot,
destruct: proc (x: pointer) {.noconv.}): int32 {.
importc: "pthread_key_create", header: pthreadh.}
proc pthread_key_delete(a1: ThreadVarSlot): int32 {.
importc: "pthread_key_delete", header: pthreadh.}
proc pthread_setspecific(a1: ThreadVarSlot, a2: pointer): int32 {.
importc: "pthread_setspecific", header: pthreadh.}
proc threadVarAlloc(): ThreadVarSlot {.inline.} =
discard pthread_key_create(addr(result), nil)
proc threadVarSetValue(s: ThreadVarSlot, value: pointer) {.inline.} =
discard pthread_setspecific(s, value)
proc threadVarGetValue(s: ThreadVarSlot): pointer {.inline.} =
result = pthread_getspecific(s)
when useStackMaskHack:
proc pthread_attr_setstack(attr: var PthreadAttr, stackaddr: pointer,
size: int): cint {.
importc: "pthread_attr_setstack", header: pthreadh.}
type CpuSet {.importc: "cpu_set_t", header: schedh.} = object
when defined(linux) and defined(amd64):
abi: array[1024 div (8 * sizeof(culong)), culong]
proc cpusetZero(s: var CpuSet) {.importc: "CPU_ZERO", header: schedh.}
proc cpusetIncl(cpu: cint; s: var CpuSet) {.
importc: "CPU_SET", header: schedh.}
proc setAffinity(thread: SysThread; setsize: csize; s: var CpuSet) {.
importc: "pthread_setaffinity_np", header: pthreadh.}
const
emulatedThreadVars = compileOption("tlsEmulation")
when emulatedThreadVars:
# the compiler generates this proc for us, so that we can get the size of
# the thread local var block; we use this only for sanity checking though
proc nimThreadVarsSize(): int {.noconv, importc: "NimThreadVarsSize".}
# we preallocate a fixed size for thread local storage, so that no heap
# allocations are needed. Currently less than 7K are used on a 64bit machine.
# We use ``float`` for proper alignment:
const nimTlsSize {.intdefine.} = 8000
type
ThreadLocalStorage = array[0..(nimTlsSize div sizeof(float)), float]
PGcThread = ptr GcThread
GcThread {.pure, inheritable.} = object
when emulatedThreadVars and not useStackMaskHack:
tls: ThreadLocalStorage
else:
nil
when hasSharedHeap:
next, prev: PGcThread
stackBottom, stackTop: pointer
stackSize: int
else:
nil
{.deprecated: [TThreadLocalStorage: ThreadLocalStorage, TGcThread: GcThread].}
when not defined(useNimRtl):
when not useStackMaskHack:
var mainThread: GcThread
#const globalsSlot = ThreadVarSlot(0)
#sysAssert checkSlot.int == globalsSlot.int
when emulatedThreadVars:
# XXX it'd be more efficient to not use a global variable for the
# thread storage slot, but to rely on the implementation to assign slot X
# for us... ;-)
var globalsSlot: ThreadVarSlot
proc GetThreadLocalVars(): pointer {.compilerRtl, inl.} =
result = addr(cast[PGcThread](threadVarGetValue(globalsSlot)).tls)
proc initThreadVarsEmulation() {.compilerProc, inline.} =
when not defined(useNimRtl):
globalsSlot = threadVarAlloc()
when declared(mainThread):
threadVarSetValue(globalsSlot, addr(mainThread))
when useStackMaskHack:
proc maskStackPointer(offset: int): pointer {.compilerRtl, inl.} =
var x {.volatile.}: pointer
x = addr(x)
result = cast[pointer]((cast[int](x) and not ThreadStackMask) +%
(0) +% offset)
# create for the main thread. Note: do not insert this data into the list
# of all threads; it's not to be stopped etc.
when not defined(useNimRtl):
when not useStackMaskHack:
#when not defined(createNimRtl): initStackBottom()
when declared(initGC):
initGC()
when not emulatedThreadVars:
type ThreadType {.pure.} = enum
None = 0,
NimThread = 1,
ForeignThread = 2
var
threadType {.rtlThreadVar.}: ThreadType
threadType = ThreadType.NimThread
when emulatedThreadVars:
if nimThreadVarsSize() > sizeof(ThreadLocalStorage):
echo "too large thread local storage size requested ",
"(", nimThreadVarsSize(), "/", sizeof(ThreadLocalStorage), "). ",
"Use -d:\"nimTlsSize=", nimThreadVarsSize(),
"\" to preallocate sufficient storage."
quit 1
when hasSharedHeap and not defined(boehmgc) and not defined(gogc) and not defined(nogc):
var
threadList: PGcThread
proc registerThread(t: PGcThread) =
# we need to use the GC global lock here!
acquireSys(HeapLock)
t.prev = nil
t.next = threadList
if threadList != nil:
sysAssert(threadList.prev == nil, "threadList.prev == nil")
threadList.prev = t
threadList = t
releaseSys(HeapLock)
proc unregisterThread(t: PGcThread) =
# we need to use the GC global lock here!
acquireSys(HeapLock)
if t == threadList: threadList = t.next
if t.next != nil: t.next.prev = t.prev
if t.prev != nil: t.prev.next = t.next
# so that a thread can be unregistered twice which might happen if the
# code executes `destroyThread`:
t.next = nil
t.prev = nil
releaseSys(HeapLock)
# on UNIX, the GC uses ``SIGFREEZE`` to tell every thread to stop so that
# the GC can examine the stacks?
proc stopTheWord() = discard
# We jump through some hops here to ensure that Nim thread procs can have
# the Nim calling convention. This is needed because thread procs are
# ``stdcall`` on Windows and ``noconv`` on UNIX. Alternative would be to just
# use ``stdcall`` since it is mapped to ``noconv`` on UNIX anyway.
type
Thread* {.pure, final.}[TArg] = object
core: PGcThread
sys: SysThread
when TArg is void:
dataFn: proc () {.nimcall, gcsafe.}
else:
dataFn: proc (m: TArg) {.nimcall, gcsafe.}
data: TArg
{.deprecated: [TThread: Thread].}
var
threadDestructionHandlers {.rtlThreadVar.}: seq[proc () {.closure, gcsafe.}]
proc onThreadDestruction*(handler: proc () {.closure, gcsafe.}) =
## Registers a *thread local* handler that is called at the thread's
## destruction.
## A thread is destructed when the ``.thread`` proc returns
## normally or when it raises an exception. Note that unhandled exceptions
## in a thread nevertheless cause the whole process to die.
if threadDestructionHandlers.isNil:
threadDestructionHandlers = @[]
threadDestructionHandlers.add handler
template afterThreadRuns() =
for i in countdown(threadDestructionHandlers.len-1, 0):
threadDestructionHandlers[i]()
when not defined(boehmgc) and not hasSharedHeap and not defined(gogc) and not defined(gcRegions):
proc deallocOsPages()
when defined(boehmgc):
type GCStackBaseProc = proc(sb: pointer, t: pointer) {.noconv.}
proc boehmGC_call_with_stack_base(sbp: GCStackBaseProc, p: pointer)
{.importc: "GC_call_with_stack_base", boehmGC.}
proc boehmGC_register_my_thread(sb: pointer)
{.importc: "GC_register_my_thread", boehmGC.}
proc boehmGC_unregister_my_thread()
{.importc: "GC_unregister_my_thread", boehmGC.}
proc threadProcWrapDispatch[TArg](sb: pointer, thrd: pointer) {.noconv.} =
boehmGC_register_my_thread(sb)
try:
let thrd = cast[ptr Thread[TArg]](thrd)
when TArg is void:
thrd.dataFn()
else:
thrd.dataFn(thrd.data)
finally:
afterThreadRuns()
boehmGC_unregister_my_thread()
else:
proc threadProcWrapDispatch[TArg](thrd: ptr Thread[TArg]) =
try:
when TArg is void:
thrd.dataFn()
else:
var x: TArg
deepCopy(x, thrd.data)
thrd.dataFn(x)
finally:
afterThreadRuns()
proc threadProcWrapStackFrame[TArg](thrd: ptr Thread[TArg]) =
when defined(boehmgc):
boehmGC_call_with_stack_base(threadProcWrapDispatch[TArg], thrd)
elif not defined(nogc) and not defined(gogc) and not defined(gcRegions):
var p {.volatile.}: proc(a: ptr Thread[TArg]) {.nimcall.} =
threadProcWrapDispatch[TArg]
when not hasSharedHeap:
# init the GC for refc/markandsweep
setStackBottom(addr(p))
initGC()
when declared(threadType):
threadType = ThreadType.NimThread
when declared(registerThread):
thrd.core.stackBottom = addr(thrd)
registerThread(thrd.core)
p(thrd)
when declared(registerThread): unregisterThread(thrd.core)
when declared(deallocOsPages): deallocOsPages()
else:
threadProcWrapDispatch(thrd)
template threadProcWrapperBody(closure: untyped): untyped =
var thrd = cast[ptr Thread[TArg]](closure)
var core = thrd.core
when declared(globalsSlot): threadVarSetValue(globalsSlot, thrd.core)
when declared(initAllocator):
initAllocator()
threadProcWrapStackFrame(thrd)
# Since an unhandled exception terminates the whole process (!), there is
# no need for a ``try finally`` here, nor would it be correct: The current
# exception is tried to be re-raised by the code-gen after the ``finally``!
# However this is doomed to fail, because we already unmapped every heap
# page!
# mark as not running anymore:
thrd.core = nil
thrd.dataFn = nil
deallocShared(cast[pointer](core))
{.push stack_trace:off.}
when defined(windows):
proc threadProcWrapper[TArg](closure: pointer): int32 {.stdcall.} =
threadProcWrapperBody(closure)
# implicitly return 0
elif defined(genode):
proc threadProcWrapper[TArg](closure: pointer) {.noconv.} =
threadProcWrapperBody(closure)
else:
proc threadProcWrapper[TArg](closure: pointer): pointer {.noconv.} =
threadProcWrapperBody(closure)
{.pop.}
proc running*[TArg](t: Thread[TArg]): bool {.inline.} =
## returns true if `t` is running.
result = t.dataFn != nil
proc handle*[TArg](t: Thread[TArg]): SysThread {.inline.} =
## returns the thread handle of `t`.
result = t.sys
when hostOS == "windows":
const MAXIMUM_WAIT_OBJECTS = 64
proc joinThread*[TArg](t: Thread[TArg]) {.inline.} =
## waits for the thread `t` to finish.
discard waitForSingleObject(t.sys, -1'i32)
proc joinThreads*[TArg](t: varargs[Thread[TArg]]) =
## waits for every thread in `t` to finish.
var a: array[MAXIMUM_WAIT_OBJECTS, SysThread]
var k = 0
while k < len(t):
var count = min(len(t) - k, MAXIMUM_WAIT_OBJECTS)
for i in 0..(count - 1): a[i] = t[i + k].sys
discard waitForMultipleObjects(int32(count),
cast[ptr SysThread](addr(a)), 1, -1)
inc(k, MAXIMUM_WAIT_OBJECTS)
elif defined(genode):
proc joinThread*[TArg](t: Thread[TArg]) {.importcpp.}
## waits for the thread `t` to finish.
proc joinThreads*[TArg](t: varargs[Thread[TArg]]) =
## waits for every thread in `t` to finish.
for i in 0..t.high: joinThread(t[i])
else:
proc joinThread*[TArg](t: Thread[TArg]) {.inline.} =
## waits for the thread `t` to finish.
discard pthread_join(t.sys, nil)
proc joinThreads*[TArg](t: varargs[Thread[TArg]]) =
## waits for every thread in `t` to finish.
for i in 0..t.high: joinThread(t[i])
when false:
# XXX a thread should really release its heap here somehow:
proc destroyThread*[TArg](t: var Thread[TArg]) =
## forces the thread `t` to terminate. This is potentially dangerous if
## you don't have full control over `t` and its acquired resources.
when hostOS == "windows":
discard TerminateThread(t.sys, 1'i32)
else:
discard pthread_cancel(t.sys)
when declared(registerThread): unregisterThread(addr(t))
t.dataFn = nil
## if thread `t` already exited, `t.core` will be `null`.
if not isNil(t.core):
deallocShared(t.core)
t.core = nil
when hostOS == "windows":
proc createThread*[TArg](t: var Thread[TArg],
tp: proc (arg: TArg) {.thread, nimcall.},
param: TArg) =
## creates a new thread `t` and starts its execution. Entry point is the
## proc `tp`. `param` is passed to `tp`. `TArg` can be ``void`` if you
## don't need to pass any data to the thread.
t.core = cast[PGcThread](allocShared0(sizeof(GcThread)))
when TArg isnot void: t.data = param
t.dataFn = tp
when hasSharedHeap: t.core.stackSize = ThreadStackSize
var dummyThreadId: int32
t.sys = createThread(nil, ThreadStackSize, threadProcWrapper[TArg],
addr(t), 0'i32, dummyThreadId)
if t.sys <= 0:
raise newException(ResourceExhaustedError, "cannot create thread")
proc pinToCpu*[Arg](t: var Thread[Arg]; cpu: Natural) =
## pins a thread to a `CPU`:idx:. In other words sets a
## thread's `affinity`:idx:. If you don't know what this means, you
## shouldn't use this proc.
setThreadAffinityMask(t.sys, uint(1 shl cpu))
elif defined(genode):
var affinityOffset: cuint = 1
# CPU affinity offset for next thread, safe to roll-over
proc createThread*[TArg](t: var Thread[TArg],
tp: proc (arg: TArg) {.thread, nimcall.},
param: TArg) =
t.core = cast[PGcThread](allocShared0(sizeof(GcThread)))
when TArg isnot void: t.data = param
t.dataFn = tp
when hasSharedHeap: t.stackSize = ThreadStackSize
t.sys.initThread(
ThreadStackSize.culonglong,
threadProcWrapper[TArg], addr(t), affinityOffset)
inc affinityOffset
proc pinToCpu*[Arg](t: var Thread[Arg]; cpu: Natural) =
{.hint: "cannot change Genode thread CPU affinity after initialization".}
discard
else:
proc createThread*[TArg](t: var Thread[TArg],
tp: proc (arg: TArg) {.thread, nimcall.},
param: TArg) =
## creates a new thread `t` and starts its execution. Entry point is the
## proc `tp`. `param` is passed to `tp`. `TArg` can be ``void`` if you
## don't need to pass any data to the thread.
t.core = cast[PGcThread](allocShared0(sizeof(GcThread)))
when TArg isnot void: t.data = param
t.dataFn = tp
when hasSharedHeap: t.core.stackSize = ThreadStackSize
var a {.noinit.}: PthreadAttr
pthread_attr_init(a)
pthread_attr_setstacksize(a, ThreadStackSize)
if pthread_create(t.sys, a, threadProcWrapper[TArg], addr(t)) != 0:
raise newException(ResourceExhaustedError, "cannot create thread")
proc pinToCpu*[Arg](t: var Thread[Arg]; cpu: Natural) =
## pins a thread to a `CPU`:idx:. In other words sets a
## thread's `affinity`:idx:. If you don't know what this means, you
## shouldn't use this proc.
when not defined(macosx):
var s {.noinit.}: CpuSet
cpusetZero(s)
cpusetIncl(cpu.cint, s)
setAffinity(t.sys, sizeof(s), s)
proc createThread*(t: var Thread[void], tp: proc () {.thread, nimcall.}) =
createThread[void](t, tp)
when false:
proc mainThreadId*[TArg](): ThreadId[TArg] =
## returns the thread ID of the main thread.
result = cast[ThreadId[TArg]](addr(mainThread))
when useStackMaskHack:
proc runMain(tp: proc () {.thread.}) {.compilerproc.} =
var mainThread: Thread[pointer]
createThread(mainThread, tp)
joinThread(mainThread)
## we need to cache current threadId to not perform syscall all the time
var threadId {.threadvar.}: int
when defined(windows):
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(getCurrentThreadId())
result = threadId
elif defined(linux):
proc syscall(arg: clong): clong {.varargs, importc: "syscall", header: "<unistd.h>".}
var NR_gettid {.importc: "__NR_gettid", header: "<sys/syscall.h>".}: int
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(syscall(NR_gettid))
result = threadId
elif defined(dragonfly):
proc lwp_gettid(): int32 {.importc, header: "unistd.h".}
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(lwp_gettid())
result = threadId
elif defined(openbsd):
proc getthrid(): int32 {.importc: "getthrid", header: "<unistd.h>".}
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(getthrid())
result = threadId
elif defined(netbsd):
proc lwp_self(): int32 {.importc: "_lwp_self", header: "<lwp.h>".}
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(lwp_self())
result = threadId
elif defined(freebsd):
proc syscall(arg: cint, arg0: ptr cint): cint {.varargs, importc: "syscall", header: "<unistd.h>".}
var SYS_thr_self {.importc:"SYS_thr_self", header:"<sys/syscall.h>"}: cint
proc getThreadId*(): int =
## get the ID of the currently running thread.
var tid = 0.cint
if threadId == 0:
discard syscall(SYS_thr_self, addr tid)
threadId = tid
result = threadId
elif defined(macosx):
proc syscall(arg: cint): cint {.varargs, importc: "syscall", header: "<unistd.h>".}
var SYS_thread_selfid {.importc:"SYS_thread_selfid", header:"<sys/syscall.h>".}: cint
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(syscall(SYS_thread_selfid))
result = threadId
elif defined(solaris):
type thread_t {.importc: "thread_t", header: "<thread.h>".} = distinct int
proc thr_self(): thread_t {.importc, header: "<thread.h>".}
proc getThreadId*(): int =
## get the ID of the currently running thread.
if threadId == 0:
threadId = int(thr_self())
result = threadId