Files
Nim/lib/pure/fenv.nim
alaviss 7ef268274f Haiku support for Nim (#8542)
* posix_other: Haiku now has spawn.h

This is added per https://dev.haiku-os.org/ticket/13446

* posix_other: Add Haiku specific Dirent members

* cpuinfo: Add an implementation for Haiku

* distros: Add basic Haiku support

* encodings: update Haiku support

* fenv, math: Haiku now provides libm

* times: Add Haiku struct members

* ansi_c, osalloc: Add Haiku constants

* threads: Add Haiku support

* testament: Haiku uses LIBRARY_PATH

* nim.cfg: Update Haiku support

libnetwork should only be linked if network functions are used

* threads: Haiku does not support -pthread switch

* tworkingdir: Haiku's env is in /bin

* posix_other: add SIGKILLTHR for Haiku

* sockets: link with libnetwork on Haiku

* coro: correct ucontext.h location

http://pubs.opengroup.org/onlinepubs/009696699/basedefs/ucontext.h.html

* coro: ucontext backend is not available on Haiku

Haiku doesn't provide the <ucontext.h> header, as it was removed from POSIX

* coro: fix setjmp backend

The compiler does not allow statements after a noreturn function

* nativesockets: Haiku doesn't support AI_V4MAPPED

* system: hostOS can contains "haiku"

* os: add support for Haiku's packagefs

packagefs is read-only, but there are writable holes to the underlying
file system as well

* os: update constant for Haiku
2018-08-14 09:35:07 +02:00

191 lines
9.2 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Floating-point environment. Handling of floating-point rounding and
## exceptions (overflow, division by zero, etc.).
{.deadCodeElim: on.} # dce option deprecated
when defined(Posix):
{.passl: "-lm".}
var
FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
## division by zero
FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
## inexact result
FE_INVALID* {.importc, header: "<fenv.h>".}: cint
## invalid operation
FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
## result not representable due to overflow
FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
## result not representable due to underflow
FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
## bitwise OR of all supported exceptions
FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
## round toward -Inf
FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
## round to nearest
FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
## round toward 0
FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
## round toward +Inf
FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
## macro of type pointer to fenv_t to be used as the argument
## to functions taking an argument of type fenv_t; in this
## case the default environment will be used
type
Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
object ## Represents the entire floating-point environment. The
## floating-point environment refers collectively to any
## floating-point status flags and control modes supported
## by the implementation.
Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
object ## Represents the floating-point status flags collectively,
## including any status the implementation associates with the
## flags. A floating-point status flag is a system variable
## whose value is set (but never cleared) when a floating-point
## exception is raised, which occurs as a side effect of
## exceptional floating-point arithmetic to provide auxiliary
## information. A floating-point control mode is a system variable
## whose value may be set by the user to affect the subsequent
## behavior of floating-point arithmetic.
proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Clear the supported exceptions represented by `excepts`.
proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
importc, header: "<fenv.h>".}
## Store implementation-defined representation of the exception flags
## indicated by `excepts` in the object pointed to by `flagp`.
proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Raise the supported exceptions represented by `excepts`.
proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
importc, header: "<fenv.h>".}
## Set complete status for exceptions indicated by `excepts` according to
## the representation in the object pointed to by `flagp`.
proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Determine which of subset of the exceptions specified by `excepts` are
## currently set.
proc fegetround*(): cint {.importc, header: "<fenv.h>".}
## Get current rounding direction.
proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
## Establish the rounding direction represented by `roundingDirection`.
proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Store the current floating-point environment in the object pointed
## to by `envp`.
proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Save the current environment in the object pointed to by `envp`, clear
## exception flags and install a non-stop mode (if available) for all
## exceptions.
proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Establish the floating-point environment represented by the object
## pointed to by `envp`.
proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Save current exceptions in temporary storage, install environment
## represented by object pointed to by `envp` and raise exceptions
## according to saved exceptions.
const
FLT_RADIX = 2 ## the radix of the exponent representation
FLT_MANT_DIG = 24 ## the number of base FLT_RADIX digits in the mantissa part of a float
FLT_DIG = 6 ## the number of digits of precision of a float
FLT_MIN_EXP = -125 # the minimum value of base FLT_RADIX in the exponent part of a float
FLT_MAX_EXP = 128 # the maximum value of base FLT_RADIX in the exponent part of a float
FLT_MIN_10_EXP = -37 ## the minimum value in base 10 of the exponent part of a float
FLT_MAX_10_EXP = 38 ## the maximum value in base 10 of the exponent part of a float
FLT_MIN = 1.17549435e-38'f32 ## the minimum value of a float
FLT_MAX = 3.40282347e+38'f32 ## the maximum value of a float
FLT_EPSILON = 1.19209290e-07'f32 ## the difference between 1 and the least value greater than 1 of a float
DBL_MANT_DIG = 53 ## the number of base FLT_RADIX digits in the mantissa part of a double
DBL_DIG = 15 ## the number of digits of precision of a double
DBL_MIN_EXP = -1021 ## the minimum value of base FLT_RADIX in the exponent part of a double
DBL_MAX_EXP = 1024 ## the maximum value of base FLT_RADIX in the exponent part of a double
DBL_MIN_10_EXP = -307 ## the minimum value in base 10 of the exponent part of a double
DBL_MAX_10_EXP = 308 ## the maximum value in base 10 of the exponent part of a double
DBL_MIN = 2.2250738585072014E-308 ## the minimal value of a double
DBL_MAX = 1.7976931348623157E+308 ## the minimal value of a double
DBL_EPSILON = 2.2204460492503131E-16 ## the difference between 1 and the least value greater than 1 of a double
template fpRadix* : int = FLT_RADIX
## The (integer) value of the radix used to represent any floating
## point type on the architecture used to build the program.
template mantissaDigits*(T : typedesc[float32]) : int = FLT_MANT_DIG
## Number of digits (in base ``floatingPointRadix``) in the mantissa
## of 32-bit floating-point numbers.
template digits*(T : typedesc[float32]) : int = FLT_DIG
## Number of decimal digits that can be represented in a
## 32-bit floating-point type without losing precision.
template minExponent*(T : typedesc[float32]) : int = FLT_MIN_EXP
## Minimum (negative) exponent for 32-bit floating-point numbers.
template maxExponent*(T : typedesc[float32]) : int = FLT_MAX_EXP
## Maximum (positive) exponent for 32-bit floating-point numbers.
template min10Exponent*(T : typedesc[float32]) : int = FLT_MIN_10_EXP
## Minimum (negative) exponent in base 10 for 32-bit floating-point
## numbers.
template max10Exponent*(T : typedesc[float32]) : int = FLT_MAX_10_EXP
## Maximum (positive) exponent in base 10 for 32-bit floating-point
## numbers.
template minimumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MIN
## The smallest positive (nonzero) number that can be represented in a
## 32-bit floating-point type.
template maximumPositiveValue*(T : typedesc[float32]) : float32 = FLT_MAX
## The largest positive number that can be represented in a 32-bit
## floating-point type.
template epsilon*(T : typedesc[float32]): float32 = FLT_EPSILON
## The difference between 1.0 and the smallest number greater than
## 1.0 that can be represented in a 32-bit floating-point type.
template mantissaDigits*(T : typedesc[float64]) : int = DBL_MANT_DIG
## Number of digits (in base ``floatingPointRadix``) in the mantissa
## of 64-bit floating-point numbers.
template digits*(T : typedesc[float64]) : int = DBL_DIG
## Number of decimal digits that can be represented in a
## 64-bit floating-point type without losing precision.
template minExponent*(T : typedesc[float64]) : int = DBL_MIN_EXP
## Minimum (negative) exponent for 64-bit floating-point numbers.
template maxExponent*(T : typedesc[float64]) : int = DBL_MAX_EXP
## Maximum (positive) exponent for 64-bit floating-point numbers.
template min10Exponent*(T : typedesc[float64]) : int = DBL_MIN_10_EXP
## Minimum (negative) exponent in base 10 for 64-bit floating-point
## numbers.
template max10Exponent*(T : typedesc[float64]) : int = DBL_MAX_10_EXP
## Maximum (positive) exponent in base 10 for 64-bit floating-point
## numbers.
template minimumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MIN
## The smallest positive (nonzero) number that can be represented in a
## 64-bit floating-point type.
template maximumPositiveValue*(T : typedesc[float64]) : float64 = DBL_MAX
## The largest positive number that can be represented in a 64-bit
## floating-point type.
template epsilon*(T : typedesc[float64]): float64 = DBL_EPSILON
## The difference between 1.0 and the smallest number greater than
## 1.0 that can be represented in a 64-bit floating-point type.
when isMainModule:
func is_significant(x: float): bool =
if x > minimumPositiveValue(float) and x < maximumPositiveValue(float): true
else: false
doAssert is_significant(10.0)