mirror of
https://github.com/nim-lang/Nim.git
synced 2026-01-04 20:17:42 +00:00
fixes #22479, fixes #24374, depends on #24429 and #24430
When instantiating generic types which directly have nominal types
(object, distinct, ref/ptr object but not enums[^1]) as their values,
the nominal type is now copied (in the case of ref objects, its child as
well) so that it receives a fresh ID and `typeInst` field. Previously
this only happened if it contained any generic types in its structure,
as is the case for all other types.
This solves #22479 and #24374 by virtue of the IDs being unique, which
is what destructors check for. Technically types containing generic
param fields work for the same reason. There is also the benefit that
the `typeInst` field is correct. However issues like #22445 aren't
solved because the compiler still uses structural object equality checks
for inheritance etc. which could be removed in a later PR.
Also fixes a pre-existing issue where destructors bound to object types
with generic fields would not error when attempting to define a user
destructor after the fact, but the error message doesn't show where the
implicit destructor was created now since it was only created for
another instance. To do this, a type flag is used that marks the generic
type symbol when a generic instance has a destructor created. Reusing
`tfCheckedForDestructor` for this doesn't work.
Maybe there is a nicer design that isn't an overreliance on the ID
mechanism, but the shortcomings of `tyGenericInst` are too ingrained in
the compiler to use for this. I thought about maybe adding something
like `tyNominalGenericInst`, but it's really much easier if the nominal
type itself directly contains the information of its generic parameters,
or at least its "symbol", which the design is heading towards.
[^1]: See [this
test](21420d8b09/lib/std/enumutils.nim (L102))
in enumutils. The field symbols `b0`/`b1` always have the uninstantiated
type `B` because enum fields don't expect to be generic, so no generic
instance of `B` matches its own symbols. Wouldn't expect anyone to use
generic enums but maybe someone does.
857 lines
32 KiB
Nim
857 lines
32 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2015 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# This module does the instantiation of generic types.
|
|
|
|
import std / tables
|
|
|
|
import ast, astalgo, msgs, types, magicsys, semdata, renderer, options,
|
|
lineinfos, modulegraphs, layeredtable
|
|
|
|
when defined(nimPreviewSlimSystem):
|
|
import std/assertions
|
|
|
|
const tfInstClearedFlags = {tfHasMeta, tfUnresolved}
|
|
|
|
proc checkPartialConstructedType(conf: ConfigRef; info: TLineInfo, t: PType) =
|
|
if t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
|
|
localError(conf, info, "type 'var var' is not allowed")
|
|
|
|
proc checkConstructedType*(conf: ConfigRef; info: TLineInfo, typ: PType) =
|
|
var t = typ.skipTypes({tyDistinct})
|
|
if t.kind in tyTypeClasses: discard
|
|
elif t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
|
|
localError(conf, info, "type 'var var' is not allowed")
|
|
elif computeSize(conf, t) == szIllegalRecursion or isTupleRecursive(t):
|
|
localError(conf, info, "illegal recursion in type '" & typeToString(t) & "'")
|
|
|
|
proc searchInstTypes*(g: ModuleGraph; key: PType): PType =
|
|
result = nil
|
|
let genericTyp = key[0]
|
|
if not (genericTyp.kind == tyGenericBody and
|
|
genericTyp.sym != nil): return
|
|
|
|
for inst in typeInstCacheItems(g, genericTyp.sym):
|
|
if inst.id == key.id: return inst
|
|
if inst.kidsLen < key.kidsLen:
|
|
# XXX: This happens for prematurely cached
|
|
# types such as Channel[empty]. Why?
|
|
# See the notes for PActor in handleGenericInvocation
|
|
# if this is return the same type gets cached more than it needs to
|
|
continue
|
|
if not sameFlags(inst, key):
|
|
continue
|
|
|
|
block matchType:
|
|
for j in FirstGenericParamAt..<key.kidsLen:
|
|
# XXX sameType is not really correct for nested generics?
|
|
if not compareTypes(inst[j], key[j],
|
|
flags = {ExactGenericParams, PickyCAliases}):
|
|
break matchType
|
|
|
|
return inst
|
|
|
|
proc cacheTypeInst(c: PContext; inst: PType) =
|
|
let gt = inst[0]
|
|
let t = if gt.kind == tyGenericBody: gt.typeBodyImpl else: gt
|
|
if t.kind in {tyStatic, tyError, tyGenericParam} + tyTypeClasses:
|
|
return
|
|
addToGenericCache(c, gt.sym, inst)
|
|
|
|
type
|
|
TReplTypeVars* = object
|
|
c*: PContext
|
|
typeMap*: LayeredIdTable # map PType to PType
|
|
symMap*: SymMapping # map PSym to PSym
|
|
localCache*: TypeMapping # local cache for remembering already replaced
|
|
# types during instantiation of meta types
|
|
# (they are not stored in the global cache)
|
|
info*: TLineInfo
|
|
allowMetaTypes*: bool # allow types such as seq[Number]
|
|
# i.e. the result contains unresolved generics
|
|
skipTypedesc*: bool # whether we should skip typeDescs
|
|
isReturnType*: bool
|
|
owner*: PSym # where this instantiation comes from
|
|
recursionLimit: int
|
|
|
|
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType, isInstValue = false): PType
|
|
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym
|
|
proc replaceTypeVarsN*(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode
|
|
|
|
proc newTypeMapLayer*(cl: var TReplTypeVars): LayeredIdTable =
|
|
result = newTypeMapLayer(cl.typeMap)
|
|
|
|
template checkMetaInvariants(cl: TReplTypeVars, t: PType) = # noop code
|
|
when false:
|
|
if t != nil and tfHasMeta in t.flags and
|
|
cl.allowMetaTypes == false:
|
|
echo "UNEXPECTED META ", t.id, " ", instantiationInfo(-1)
|
|
debug t
|
|
writeStackTrace()
|
|
|
|
proc replaceTypeVarsT*(cl: var TReplTypeVars, t: PType, isInstValue = false): PType =
|
|
result = replaceTypeVarsTAux(cl, t, isInstValue)
|
|
checkMetaInvariants(cl, result)
|
|
|
|
proc prepareNode*(cl: var TReplTypeVars, n: PNode): PNode =
|
|
## instantiates a given generic expression, not a type node
|
|
if n.kind == nkSym and n.sym.kind == skType and
|
|
n.sym.typ != nil and n.sym.typ.kind == tyGenericBody:
|
|
# generic body types are allowed as user expressions, see #24090
|
|
return n
|
|
let t = replaceTypeVarsT(cl, n.typ)
|
|
if t != nil and t.kind == tyStatic and t.n != nil:
|
|
return if tfUnresolved in t.flags: prepareNode(cl, t.n)
|
|
else: t.n
|
|
result = copyNode(n)
|
|
result.typ() = t
|
|
if result.kind == nkSym:
|
|
result.sym =
|
|
if n.typ != nil and n.typ == n.sym.typ:
|
|
replaceTypeVarsS(cl, n.sym, result.typ)
|
|
else:
|
|
replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
|
|
# we need to avoid trying to instantiate nodes that can have uninstantiated
|
|
# types, like generic proc symbols or raw generic type symbols
|
|
case n.kind
|
|
of nkSymChoices:
|
|
# don't try to instantiate symchoice symbols, they can be
|
|
# generic procs which the compiler will think are uninstantiated
|
|
# because their type will contain uninstantiated params
|
|
for i in 0..<n.len:
|
|
result.add(n[i])
|
|
of nkCallKinds:
|
|
# don't try to instantiate call names since they may be generic proc syms
|
|
# also bracket expressions can turn into calls with symchoice [] and
|
|
# we need to not instantiate the Generic in Generic[int]
|
|
# exception exists for the call name being a dot expression since
|
|
# dot expressions need their LHS instantiated
|
|
assert n.len != 0
|
|
# avoid instantiating generic proc symbols, refine condition if needed:
|
|
let ignoreFirst = n[0].kind notin {nkDotExpr, nkBracketExpr} + nkCallKinds
|
|
let name = n[0].getPIdent
|
|
let ignoreSecond = name != nil and name.s == "[]" and n.len > 1 and
|
|
# generic type instantiation:
|
|
((n[1].typ != nil and n[1].typ.kind == tyTypeDesc) or
|
|
# generic proc instantiation:
|
|
(n[1].kind == nkSym and n[1].sym.isGenericRoutineStrict))
|
|
if ignoreFirst:
|
|
result.add(n[0])
|
|
else:
|
|
result.add(prepareNode(cl, n[0]))
|
|
if n.len > 1:
|
|
if ignoreSecond:
|
|
result.add(n[1])
|
|
else:
|
|
result.add(prepareNode(cl, n[1]))
|
|
for i in 2..<n.len:
|
|
result.add(prepareNode(cl, n[i]))
|
|
of nkBracketExpr:
|
|
# don't instantiate Generic body type in expression like Generic[T]
|
|
# exception exists for the call name being a dot expression since
|
|
# dot expressions need their LHS instantiated
|
|
assert n.len != 0
|
|
let ignoreFirst = n[0].kind != nkDotExpr and
|
|
# generic type instantiation:
|
|
((n[0].typ != nil and n[0].typ.kind == tyTypeDesc) or
|
|
# generic proc instantiation:
|
|
(n[0].kind == nkSym and n[0].sym.isGenericRoutineStrict))
|
|
if ignoreFirst:
|
|
result.add(n[0])
|
|
else:
|
|
result.add(prepareNode(cl, n[0]))
|
|
for i in 1..<n.len:
|
|
result.add(prepareNode(cl, n[i]))
|
|
of nkDotExpr:
|
|
# don't try to instantiate RHS of dot expression, it can outright be
|
|
# undeclared, but definitely instantiate LHS
|
|
assert n.len >= 2
|
|
result.add(prepareNode(cl, n[0]))
|
|
result.add(n[1])
|
|
for i in 2..<n.len:
|
|
result.add(prepareNode(cl, n[i]))
|
|
else:
|
|
for i in 0..<n.safeLen:
|
|
result.add(prepareNode(cl, n[i]))
|
|
|
|
proc isTypeParam(n: PNode): bool =
|
|
# XXX: generic params should use skGenericParam instead of skType
|
|
return n.kind == nkSym and
|
|
(n.sym.kind == skGenericParam or
|
|
(n.sym.kind == skType and sfFromGeneric in n.sym.flags))
|
|
|
|
when false: # old workaround
|
|
proc reResolveCallsWithTypedescParams(cl: var TReplTypeVars, n: PNode): PNode =
|
|
# This is needed for tuninstantiatedgenericcalls
|
|
# It's possible that a generic param will be used in a proc call to a
|
|
# typedesc accepting proc. After generic param substitution, such procs
|
|
# should be optionally instantiated with the correct type. In order to
|
|
# perform this instantiation, we need to re-run the generateInstance path
|
|
# in the compiler, but it's quite complicated to do so at the moment so we
|
|
# resort to a mild hack; the head symbol of the call is temporary reset and
|
|
# overload resolution is executed again (which may trigger generateInstance).
|
|
if n.kind in nkCallKinds and sfFromGeneric in n[0].sym.flags:
|
|
var needsFixing = false
|
|
for i in 1..<n.safeLen:
|
|
if isTypeParam(n[i]): needsFixing = true
|
|
if needsFixing:
|
|
n[0] = newSymNode(n[0].sym.owner)
|
|
return cl.c.semOverloadedCall(cl.c, n, n, {skProc, skFunc}, {})
|
|
|
|
for i in 0..<n.safeLen:
|
|
n[i] = reResolveCallsWithTypedescParams(cl, n[i])
|
|
|
|
return n
|
|
|
|
proc replaceObjBranches(cl: TReplTypeVars, n: PNode): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
discard
|
|
of nkRecWhen:
|
|
var branch: PNode = nil # the branch to take
|
|
for i in 0..<n.len:
|
|
var it = n[i]
|
|
if it == nil: illFormedAst(n, cl.c.config)
|
|
case it.kind
|
|
of nkElifBranch:
|
|
checkSonsLen(it, 2, cl.c.config)
|
|
var cond = it[0]
|
|
var e = cl.c.semConstExpr(cl.c, cond)
|
|
if e.kind != nkIntLit:
|
|
internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
|
|
if e.intVal != 0 and branch == nil: branch = it[1]
|
|
of nkElse:
|
|
checkSonsLen(it, 1, cl.c.config)
|
|
if branch == nil: branch = it[0]
|
|
else: illFormedAst(n, cl.c.config)
|
|
if branch != nil:
|
|
result = replaceObjBranches(cl, branch)
|
|
else:
|
|
result = newNodeI(nkRecList, n.info)
|
|
else:
|
|
for i in 0..<n.len:
|
|
n[i] = replaceObjBranches(cl, n[i])
|
|
|
|
proc hasValuelessStatics(n: PNode): bool =
|
|
# We should only attempt to call an expression that has no tyStatics
|
|
# As those are unresolved generic parameters, which means in the following
|
|
# The compiler attempts to do `T == 300` which errors since the typeclass `MyThing` lacks a parameter
|
|
#[
|
|
type MyThing[T: static int] = object
|
|
when T == 300:
|
|
a
|
|
proc doThing(_: MyThing)
|
|
]#
|
|
if n.safeLen == 0 and n.kind != nkEmpty: # Some empty nodes can get in here
|
|
n.typ == nil or n.typ.kind == tyStatic
|
|
else:
|
|
for x in n:
|
|
if hasValuelessStatics(x):
|
|
return true
|
|
false
|
|
|
|
proc replaceTypeVarsN(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode =
|
|
if n == nil: return
|
|
result = copyNode(n)
|
|
if n.typ != nil:
|
|
if n.typ.kind == tyFromExpr:
|
|
# type of node should not be evaluated as a static value
|
|
n.typ.flags.incl tfNonConstExpr
|
|
result.typ() = replaceTypeVarsT(cl, n.typ)
|
|
checkMetaInvariants(cl, result.typ)
|
|
case n.kind
|
|
of nkNone..pred(nkSym), succ(nkSym)..nkNilLit:
|
|
discard
|
|
of nkOpenSymChoice, nkClosedSymChoice: result = n
|
|
of nkSym:
|
|
result.sym =
|
|
if n.typ != nil and n.typ == n.sym.typ:
|
|
replaceTypeVarsS(cl, n.sym, result.typ)
|
|
else:
|
|
replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
|
|
if result.sym.kind == skField and result.sym.ast != nil and
|
|
(cl.owner == nil or result.sym.owner == cl.owner):
|
|
# instantiate default value of object/tuple field
|
|
cl.c.fitDefaultNode(cl.c, result.sym.ast, result.sym.typ)
|
|
result.sym.typ = result.sym.ast.typ
|
|
# sym type can be nil if was gensym created by macro, see #24048
|
|
if result.sym.typ != nil and result.sym.typ.kind == tyVoid:
|
|
# don't add the 'void' field
|
|
result = newNodeI(nkRecList, n.info)
|
|
of nkRecWhen:
|
|
var branch: PNode = nil # the branch to take
|
|
for i in 0..<n.len:
|
|
var it = n[i]
|
|
if it == nil: illFormedAst(n, cl.c.config)
|
|
case it.kind
|
|
of nkElifBranch:
|
|
checkSonsLen(it, 2, cl.c.config)
|
|
var cond = prepareNode(cl, it[0])
|
|
if not cond.hasValuelessStatics:
|
|
var e = cl.c.semConstExpr(cl.c, cond)
|
|
if e.kind != nkIntLit:
|
|
internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
|
|
if e.intVal != 0 and branch == nil: branch = it[1]
|
|
of nkElse:
|
|
checkSonsLen(it, 1, cl.c.config)
|
|
if branch == nil: branch = it[0]
|
|
else: illFormedAst(n, cl.c.config)
|
|
if branch != nil:
|
|
result = replaceTypeVarsN(cl, branch)
|
|
else:
|
|
result = newNodeI(nkRecList, n.info)
|
|
of nkStaticExpr:
|
|
var n = prepareNode(cl, n)
|
|
when false:
|
|
n = reResolveCallsWithTypedescParams(cl, n)
|
|
result = if cl.allowMetaTypes: n
|
|
else: cl.c.semExpr(cl.c, n, {}, expectedType)
|
|
if not cl.allowMetaTypes and expectedType != nil:
|
|
assert result.kind notin nkCallKinds
|
|
else:
|
|
if n.len > 0:
|
|
newSons(result, n.len)
|
|
if start > 0:
|
|
result[0] = n[0]
|
|
for i in start..<n.len:
|
|
result[i] = replaceTypeVarsN(cl, n[i])
|
|
|
|
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym =
|
|
if s == nil: return nil
|
|
# symbol is not our business:
|
|
if cl.owner != nil and s.owner != cl.owner:
|
|
return s
|
|
|
|
# XXX: Bound symbols in default parameter expressions may reach here.
|
|
# We cannot process them, because `sym.n` may point to a proc body with
|
|
# cyclic references that will lead to an infinite recursion.
|
|
# Perhaps we should not use a black-list here, but a whitelist instead
|
|
# (e.g. skGenericParam and skType).
|
|
# Note: `s.magic` may be `mType` in an example such as:
|
|
# proc foo[T](a: T, b = myDefault(type(a)))
|
|
if s.kind in routineKinds+{skLet, skConst, skVar} or s.magic != mNone:
|
|
return s
|
|
|
|
#result = PSym(idTableGet(cl.symMap, s))
|
|
#if result == nil:
|
|
#[
|
|
|
|
We cannot naively check for symbol recursions, because otherwise
|
|
object types A, B whould share their fields!
|
|
|
|
import tables
|
|
|
|
type
|
|
Table[S, T] = object
|
|
x: S
|
|
y: T
|
|
|
|
G[T] = object
|
|
inodes: Table[int, T] # A
|
|
rnodes: Table[T, int] # B
|
|
|
|
var g: G[string]
|
|
|
|
]#
|
|
result = copySym(s, cl.c.idgen)
|
|
incl(result.flags, sfFromGeneric)
|
|
#idTablePut(cl.symMap, s, result)
|
|
setOwner(result, s.owner)
|
|
result.typ = t
|
|
if result.kind != skType:
|
|
result.ast = replaceTypeVarsN(cl, s.ast)
|
|
|
|
proc lookupTypeVar(cl: var TReplTypeVars, t: PType): PType =
|
|
if tfRetType in t.flags and t.kind == tyAnything:
|
|
# don't bind `auto` return type to a previous binding of `auto`
|
|
return nil
|
|
result = cl.typeMap.lookup(t)
|
|
if result == nil:
|
|
if cl.allowMetaTypes or tfRetType in t.flags: return
|
|
localError(cl.c.config, t.sym.info, "cannot instantiate: '" & typeToString(t) & "'")
|
|
result = errorType(cl.c)
|
|
# In order to prevent endless recursions, we must remember
|
|
# this bad lookup and replace it with errorType everywhere.
|
|
# These code paths are only active in "nim check"
|
|
cl.typeMap.put(t, result)
|
|
elif result.kind == tyGenericParam and not cl.allowMetaTypes:
|
|
internalError(cl.c.config, cl.info, "substitution with generic parameter")
|
|
|
|
proc instCopyType*(cl: var TReplTypeVars, t: PType): PType =
|
|
# XXX: relying on allowMetaTypes is a kludge
|
|
if cl.allowMetaTypes:
|
|
result = t.exactReplica
|
|
else:
|
|
result = copyType(t, cl.c.idgen, t.owner)
|
|
copyTypeProps(cl.c.graph, cl.c.idgen.module, result, t)
|
|
#cl.typeMap.topLayer.idTablePut(result, t)
|
|
|
|
if cl.allowMetaTypes: return
|
|
result.flags.incl tfFromGeneric
|
|
if not (t.kind in tyMetaTypes or
|
|
(t.kind == tyStatic and t.n == nil)):
|
|
result.flags.excl tfInstClearedFlags
|
|
else:
|
|
result.flags.excl tfHasAsgn
|
|
when false:
|
|
if newDestructors:
|
|
result.assignment = nil
|
|
result.destructor = nil
|
|
result.sink = nil
|
|
|
|
proc handleGenericInvocation(cl: var TReplTypeVars, t: PType): PType =
|
|
# tyGenericInvocation[A, tyGenericInvocation[A, B]]
|
|
# is difficult to handle:
|
|
var body = t.genericHead
|
|
if body.kind != tyGenericBody:
|
|
internalError(cl.c.config, cl.info, "no generic body")
|
|
var header = t
|
|
# search for some instantiation here:
|
|
if cl.allowMetaTypes:
|
|
result = getOrDefault(cl.localCache, t.itemId)
|
|
else:
|
|
result = searchInstTypes(cl.c.graph, t)
|
|
|
|
if result != nil and sameFlags(result, t):
|
|
when defined(reportCacheHits):
|
|
echo "Generic instantiation cached ", typeToString(result), " for ", typeToString(t)
|
|
return
|
|
for i in FirstGenericParamAt..<t.kidsLen:
|
|
var x = t[i]
|
|
if x.kind in {tyGenericParam}:
|
|
x = lookupTypeVar(cl, x)
|
|
if x != nil:
|
|
if header == t: header = instCopyType(cl, t)
|
|
header[i] = x
|
|
propagateToOwner(header, x)
|
|
else:
|
|
propagateToOwner(header, x)
|
|
|
|
if header != t:
|
|
# search again after first pass:
|
|
result = searchInstTypes(cl.c.graph, header)
|
|
if result != nil and sameFlags(result, t):
|
|
when defined(reportCacheHits):
|
|
echo "Generic instantiation cached ", typeToString(result), " for ",
|
|
typeToString(t), " header ", typeToString(header)
|
|
return
|
|
else:
|
|
header = instCopyType(cl, t)
|
|
|
|
result = newType(tyGenericInst, cl.c.idgen, t.genericHead.owner, son = header.genericHead)
|
|
result.flags = header.flags
|
|
# be careful not to propagate unnecessary flags here (don't use rawAddSon)
|
|
# ugh need another pass for deeply recursive generic types (e.g. PActor)
|
|
# we need to add the candidate here, before it's fully instantiated for
|
|
# recursive instantions:
|
|
if not cl.allowMetaTypes:
|
|
cacheTypeInst(cl.c, result)
|
|
else:
|
|
cl.localCache[t.itemId] = result
|
|
|
|
let oldSkipTypedesc = cl.skipTypedesc
|
|
cl.skipTypedesc = true
|
|
|
|
cl.typeMap = newTypeMapLayer(cl)
|
|
|
|
for i in FirstGenericParamAt..<t.kidsLen:
|
|
var x = replaceTypeVarsT(cl):
|
|
if header[i].kind == tyGenericInst:
|
|
t[i]
|
|
else:
|
|
header[i]
|
|
assert x.kind != tyGenericInvocation
|
|
header[i] = x
|
|
propagateToOwner(header, x)
|
|
cl.typeMap.put(body[i-1], x)
|
|
|
|
for i in FirstGenericParamAt..<t.kidsLen:
|
|
# if one of the params is not concrete, we cannot do anything
|
|
# but we already raised an error!
|
|
rawAddSon(result, header[i], propagateHasAsgn = false)
|
|
|
|
if body.kind == tyError:
|
|
return
|
|
|
|
let bbody = last body
|
|
var newbody = replaceTypeVarsT(cl, bbody, isInstValue = true)
|
|
cl.skipTypedesc = oldSkipTypedesc
|
|
newbody.flags = newbody.flags + (t.flags + body.flags - tfInstClearedFlags)
|
|
result.flags = result.flags + newbody.flags - tfInstClearedFlags
|
|
|
|
setToPreviousLayer(cl.typeMap)
|
|
|
|
# This is actually wrong: tgeneric_closure fails with this line:
|
|
#newbody.callConv = body.callConv
|
|
# This type may be a generic alias and we want to resolve it here.
|
|
# One step is enough, because the recursive nature of
|
|
# handleGenericInvocation will handle the alias-to-alias-to-alias case
|
|
if newbody.isGenericAlias: newbody = newbody.skipGenericAlias
|
|
|
|
rawAddSon(result, newbody)
|
|
checkPartialConstructedType(cl.c.config, cl.info, newbody)
|
|
if not cl.allowMetaTypes:
|
|
let dc = cl.c.graph.getAttachedOp(newbody, attachedDeepCopy)
|
|
if dc != nil and sfFromGeneric notin dc.flags:
|
|
# 'deepCopy' needs to be instantiated for
|
|
# generics *when the type is constructed*:
|
|
cl.c.graph.setAttachedOp(cl.c.module.position, newbody, attachedDeepCopy,
|
|
cl.c.instTypeBoundOp(cl.c, dc, result, cl.info, attachedDeepCopy, 1))
|
|
if newbody.typeInst == nil:
|
|
# doAssert newbody.typeInst == nil
|
|
newbody.typeInst = result
|
|
if tfRefsAnonObj in newbody.flags and newbody.kind != tyGenericInst:
|
|
# can come here for tyGenericInst too, see tests/metatype/ttypeor.nim
|
|
# need to look into this issue later
|
|
assert newbody.kind in {tyRef, tyPtr}
|
|
if newbody.last.typeInst != nil:
|
|
#internalError(cl.c.config, cl.info, "ref already has a 'typeInst' field")
|
|
discard
|
|
else:
|
|
newbody.last.typeInst = result
|
|
# DESTROY: adding object|opt for opt[topttree.Tree]
|
|
# sigmatch: Formal opt[=destroy.T] real opt[topttree.Tree]
|
|
# adding myseq for myseq[system.int]
|
|
# sigmatch: Formal myseq[=destroy.T] real myseq[system.int]
|
|
#echo "DESTROY: adding ", typeToString(newbody), " for ", typeToString(result, preferDesc)
|
|
let mm = skipTypes(bbody, abstractPtrs)
|
|
if tfFromGeneric notin mm.flags:
|
|
# bug #5479, prevent endless recursions here:
|
|
incl mm.flags, tfFromGeneric
|
|
for col, meth in methodsForGeneric(cl.c.graph, mm):
|
|
# we instantiate the known methods belonging to that type, this causes
|
|
# them to be registered and that's enough, so we 'discard' the result.
|
|
discard cl.c.instTypeBoundOp(cl.c, meth, result, cl.info,
|
|
attachedAsgn, col)
|
|
excl mm.flags, tfFromGeneric
|
|
|
|
proc eraseVoidParams*(t: PType) =
|
|
# transform '(): void' into '()' because old parts of the compiler really
|
|
# don't deal with '(): void':
|
|
if t.returnType != nil and t.returnType.kind == tyVoid:
|
|
t.setReturnType nil
|
|
|
|
for i in FirstParamAt..<t.signatureLen:
|
|
# don't touch any memory unless necessary
|
|
if t[i].kind == tyVoid:
|
|
var pos = i
|
|
for j in i+1..<t.signatureLen:
|
|
if t[j].kind != tyVoid:
|
|
t[pos] = t[j]
|
|
t.n[pos] = t.n[j]
|
|
inc pos
|
|
newSons t, pos
|
|
setLen t.n.sons, pos
|
|
break
|
|
|
|
proc skipIntLiteralParams*(t: PType; idgen: IdGenerator) =
|
|
for i, p in t.ikids:
|
|
if p == nil: continue
|
|
let skipped = p.skipIntLit(idgen)
|
|
if skipped != p:
|
|
t[i] = skipped
|
|
if i > 0: t.n[i].sym.typ = skipped
|
|
|
|
# when the typeof operator is used on a static input
|
|
# param, the results gets infected with static as well:
|
|
if t.returnType != nil and t.returnType.kind == tyStatic:
|
|
t.setReturnType t.returnType.skipModifier
|
|
|
|
proc propagateFieldFlags(t: PType, n: PNode) =
|
|
# This is meant for objects and tuples
|
|
# The type must be fully instantiated!
|
|
if n.isNil:
|
|
return
|
|
#internalAssert n.kind != nkRecWhen
|
|
case n.kind
|
|
of nkSym:
|
|
propagateToOwner(t, n.sym.typ)
|
|
of nkRecList, nkRecCase, nkOfBranch, nkElse:
|
|
for son in n:
|
|
propagateFieldFlags(t, son)
|
|
else: discard
|
|
|
|
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType, isInstValue = false): PType =
|
|
template bailout =
|
|
if (t.sym == nil) or (t.sym != nil and sfGeneratedType in t.sym.flags):
|
|
# In the first case 't.sym' can be 'nil' if the type is a ref/ptr, see
|
|
# issue https://github.com/nim-lang/Nim/issues/20416 for more details.
|
|
# Fortunately for us this works for now because partial ref/ptr types are
|
|
# not allowed in object construction, eg.
|
|
# type
|
|
# Container[T] = ...
|
|
# O = object
|
|
# val: ref Container
|
|
#
|
|
# In the second case only consider the recursion limit if the symbol is a
|
|
# type with generic parameters that have not been explicitly supplied,
|
|
# typechecking should terminate when generic parameters are explicitly
|
|
# supplied.
|
|
if cl.recursionLimit > 100:
|
|
# bail out, see bug #2509. But note this caching is in general wrong,
|
|
# look at this example where TwoVectors should not share the generic
|
|
# instantiations (bug #3112):
|
|
# type
|
|
# Vector[N: static[int]] = array[N, float64]
|
|
# TwoVectors[Na, Nb: static[int]] = (Vector[Na], Vector[Nb])
|
|
result = getOrDefault(cl.localCache, t.itemId)
|
|
if result != nil: return result
|
|
inc cl.recursionLimit
|
|
|
|
result = t
|
|
if t == nil: return
|
|
|
|
const lookupMetas = {tyStatic, tyGenericParam, tyConcept} + tyTypeClasses - {tyAnything}
|
|
if t.kind in lookupMetas or
|
|
(t.kind == tyAnything and tfRetType notin t.flags):
|
|
let lookup = cl.typeMap.lookup(t)
|
|
if lookup != nil: return lookup
|
|
|
|
case t.kind
|
|
of tyGenericInvocation:
|
|
result = handleGenericInvocation(cl, t)
|
|
if result.last.kind == tyUserTypeClass:
|
|
result.kind = tyUserTypeClassInst
|
|
|
|
of tyGenericBody:
|
|
if cl.allowMetaTypes: return
|
|
localError(
|
|
cl.c.config,
|
|
cl.info,
|
|
"cannot instantiate: '" &
|
|
typeToString(t, preferDesc) &
|
|
"'; Maybe generic arguments are missing?")
|
|
result = errorType(cl.c)
|
|
#result = replaceTypeVarsT(cl, lastSon(t))
|
|
|
|
of tyFromExpr:
|
|
if cl.allowMetaTypes: return
|
|
# This assert is triggered when a tyFromExpr was created in a cyclic
|
|
# way. You should break the cycle at the point of creation by introducing
|
|
# a call such as: `n.typ = makeTypeFromExpr(c, n.copyTree)`
|
|
# Otherwise, the cycle will be fatal for the prepareNode call below
|
|
assert t.n.typ != t
|
|
var n = prepareNode(cl, t.n)
|
|
if n.kind != nkEmpty:
|
|
if tfNonConstExpr in t.flags:
|
|
n = cl.c.semExprWithType(cl.c, n, flags = {efInTypeof})
|
|
else:
|
|
n = cl.c.semConstExpr(cl.c, n)
|
|
if n.typ.kind == tyTypeDesc:
|
|
# XXX: sometimes, chained typedescs enter here.
|
|
# It may be worth investigating why this is happening,
|
|
# because it may cause other bugs elsewhere.
|
|
result = n.typ.skipTypes({tyTypeDesc})
|
|
# result = n.typ.base
|
|
elif tfNonConstExpr in t.flags:
|
|
result = n.typ
|
|
else:
|
|
if n.typ.kind != tyStatic and n.kind != nkType:
|
|
# XXX: In the future, semConstExpr should
|
|
# return tyStatic values to let anyone make
|
|
# use of this knowledge. The patching here
|
|
# won't be necessary then.
|
|
result = newTypeS(tyStatic, cl.c, son = n.typ)
|
|
result.n = n
|
|
else:
|
|
result = n.typ
|
|
|
|
of tyInt, tyFloat:
|
|
result = skipIntLit(t, cl.c.idgen)
|
|
|
|
of tyTypeDesc:
|
|
let lookup = cl.typeMap.lookup(t)
|
|
if lookup != nil:
|
|
result = lookup
|
|
if result.kind != tyTypeDesc:
|
|
result = makeTypeDesc(cl.c, result)
|
|
elif tfUnresolved in t.flags or cl.skipTypedesc:
|
|
result = result.base
|
|
elif t.elementType.kind != tyNone:
|
|
result = makeTypeDesc(cl.c, replaceTypeVarsT(cl, t.elementType))
|
|
|
|
of tyUserTypeClass:
|
|
result = t
|
|
|
|
of tyStatic:
|
|
if cl.c.matchedConcept != nil:
|
|
# allow concepts to not instantiate statics for now
|
|
# they can't always infer them
|
|
return
|
|
if not containsGenericType(t) and (t.n == nil or t.n.kind in nkLiterals):
|
|
# no need to instantiate
|
|
return
|
|
bailout()
|
|
result = instCopyType(cl, t)
|
|
cl.localCache[t.itemId] = result
|
|
for i in FirstGenericParamAt..<result.kidsLen:
|
|
var r = result[i]
|
|
if r != nil:
|
|
r = replaceTypeVarsT(cl, r)
|
|
result[i] = r
|
|
propagateToOwner(result, r)
|
|
result.n = replaceTypeVarsN(cl, result.n)
|
|
if not cl.allowMetaTypes and result.n != nil and
|
|
result.base.kind != tyNone:
|
|
result.n = cl.c.semConstExpr(cl.c, result.n)
|
|
result.n.typ() = result.base
|
|
|
|
of tyGenericInst, tyUserTypeClassInst:
|
|
bailout()
|
|
result = instCopyType(cl, t)
|
|
cl.localCache[t.itemId] = result
|
|
for i in FirstGenericParamAt..<result.kidsLen:
|
|
result[i] = replaceTypeVarsT(cl, result[i])
|
|
propagateToOwner(result, result.last)
|
|
|
|
else:
|
|
if containsGenericType(t) or
|
|
# nominal types as direct generic instantiation values
|
|
# are re-instantiated even if they don't contain generic fields
|
|
(isInstValue and (t.kind in {tyDistinct, tyObject} or isRefPtrObject(t))):
|
|
#if not cl.allowMetaTypes:
|
|
bailout()
|
|
result = instCopyType(cl, t)
|
|
result.size = -1 # needs to be recomputed
|
|
#if not cl.allowMetaTypes:
|
|
cl.localCache[t.itemId] = result
|
|
let propagateInstValue = isInstValue and isRefPtrObject(t)
|
|
|
|
for i, resulti in result.ikids:
|
|
if resulti != nil:
|
|
if resulti.kind == tyGenericBody and not cl.allowMetaTypes:
|
|
localError(cl.c.config, if t.sym != nil: t.sym.info else: cl.info,
|
|
"cannot instantiate '" &
|
|
typeToString(result[i], preferDesc) &
|
|
"' inside of type definition: '" &
|
|
t.owner.name.s & "'; Maybe generic arguments are missing?")
|
|
var r = replaceTypeVarsT(cl, resulti, isInstValue = propagateInstValue)
|
|
if result.kind == tyObject:
|
|
# carefully coded to not skip the precious tyGenericInst:
|
|
let r2 = r.skipTypes({tyAlias, tySink, tyOwned})
|
|
if r2.kind in {tyPtr, tyRef}:
|
|
r = skipTypes(r2, {tyPtr, tyRef})
|
|
result[i] = r
|
|
if result.kind != tyArray or i != 0:
|
|
propagateToOwner(result, r)
|
|
# bug #4677: Do not instantiate effect lists
|
|
result.n = replaceTypeVarsN(cl, result.n, ord(result.kind==tyProc))
|
|
case result.kind
|
|
of tyArray:
|
|
let idx = result.indexType
|
|
internalAssert cl.c.config, idx.kind != tyStatic
|
|
|
|
of tyObject, tyTuple:
|
|
propagateFieldFlags(result, result.n)
|
|
if result.kind == tyObject and cl.c.computeRequiresInit(cl.c, result):
|
|
result.flags.incl tfRequiresInit
|
|
|
|
of tyProc:
|
|
eraseVoidParams(result)
|
|
skipIntLiteralParams(result, cl.c.idgen)
|
|
|
|
of tyRange:
|
|
result.setIndexType result.indexType.skipTypes({tyStatic, tyDistinct})
|
|
|
|
else: discard
|
|
else:
|
|
# If this type doesn't refer to a generic type we may still want to run it
|
|
# trough replaceObjBranches in order to resolve any pending nkRecWhen nodes
|
|
result = t
|
|
|
|
# Slow path, we have some work to do
|
|
if t.kind == tyRef and t.hasElementType and t.elementType.kind == tyObject and t.elementType.n != nil:
|
|
discard replaceObjBranches(cl, t.elementType.n)
|
|
|
|
elif result.n != nil and t.kind == tyObject:
|
|
# Invalidate the type size as we may alter its structure
|
|
result.size = -1
|
|
result.n = replaceObjBranches(cl, result.n)
|
|
|
|
proc initTypeVars*(p: PContext, typeMap: LayeredIdTable, info: TLineInfo;
|
|
owner: PSym): TReplTypeVars =
|
|
result = TReplTypeVars(symMap: initSymMapping(),
|
|
localCache: initTypeMapping(), typeMap: typeMap,
|
|
info: info, c: p, owner: owner)
|
|
|
|
proc replaceTypesInBody*(p: PContext, pt: LayeredIdTable, n: PNode;
|
|
owner: PSym, allowMetaTypes = false,
|
|
fromStaticExpr = false, expectedType: PType = nil): PNode =
|
|
var typeMap = shallowCopy(pt) # use previous bindings without writing to them
|
|
var cl = initTypeVars(p, typeMap, n.info, owner)
|
|
cl.allowMetaTypes = allowMetaTypes
|
|
pushInfoContext(p.config, n.info)
|
|
result = replaceTypeVarsN(cl, n, expectedType = expectedType)
|
|
popInfoContext(p.config)
|
|
|
|
proc prepareTypesInBody*(p: PContext, pt: LayeredIdTable, n: PNode;
|
|
owner: PSym = nil): PNode =
|
|
var typeMap = shallowCopy(pt) # use previous bindings without writing to them
|
|
var cl = initTypeVars(p, typeMap, n.info, owner)
|
|
pushInfoContext(p.config, n.info)
|
|
result = prepareNode(cl, n)
|
|
popInfoContext(p.config)
|
|
|
|
when false:
|
|
# deadcode
|
|
proc replaceTypesForLambda*(p: PContext, pt: TIdTable, n: PNode;
|
|
original, new: PSym): PNode =
|
|
var typeMap = initLayeredTypeMap(pt)
|
|
var cl = initTypeVars(p, typeMap, n.info, original)
|
|
idTablePut(cl.symMap, original, new)
|
|
pushInfoContext(p.config, n.info)
|
|
result = replaceTypeVarsN(cl, n)
|
|
popInfoContext(p.config)
|
|
|
|
proc recomputeFieldPositions*(t: PType; obj: PNode; currPosition: var int) =
|
|
if t != nil and t.baseClass != nil:
|
|
let b = skipTypes(t.baseClass, skipPtrs)
|
|
recomputeFieldPositions(b, b.n, currPosition)
|
|
case obj.kind
|
|
of nkRecList:
|
|
for i in 0..<obj.len: recomputeFieldPositions(nil, obj[i], currPosition)
|
|
of nkRecCase:
|
|
recomputeFieldPositions(nil, obj[0], currPosition)
|
|
for i in 1..<obj.len:
|
|
recomputeFieldPositions(nil, lastSon(obj[i]), currPosition)
|
|
of nkSym:
|
|
obj.sym.position = currPosition
|
|
inc currPosition
|
|
else: discard "cannot happen"
|
|
|
|
proc generateTypeInstance*(p: PContext, pt: LayeredIdTable, info: TLineInfo,
|
|
t: PType): PType =
|
|
# Given `t` like Foo[T]
|
|
# pt: Table with type mappings: T -> int
|
|
# Desired result: Foo[int]
|
|
# proc (x: T = 0); T -> int ----> proc (x: int = 0)
|
|
var typeMap = shallowCopy(pt) # use previous bindings without writing to them
|
|
var cl = initTypeVars(p, typeMap, info, nil)
|
|
pushInfoContext(p.config, info)
|
|
result = replaceTypeVarsT(cl, t)
|
|
popInfoContext(p.config)
|
|
let objType = result.skipTypes(abstractInst)
|
|
if objType.kind == tyObject:
|
|
var position = 0
|
|
recomputeFieldPositions(objType, objType.n, position)
|
|
|
|
proc prepareMetatypeForSigmatch*(p: PContext, pt: LayeredIdTable, info: TLineInfo,
|
|
t: PType): PType =
|
|
var typeMap = shallowCopy(pt) # use previous bindings without writing to them
|
|
var cl = initTypeVars(p, typeMap, info, nil)
|
|
cl.allowMetaTypes = true
|
|
pushInfoContext(p.config, info)
|
|
result = replaceTypeVarsT(cl, t)
|
|
popInfoContext(p.config)
|
|
|
|
template generateTypeInstance*(p: PContext, pt: LayeredIdTable, arg: PNode,
|
|
t: PType): untyped =
|
|
generateTypeInstance(p, pt, arg.info, t)
|