mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-29 09:24:36 +00:00
1065 lines
37 KiB
Nim
Executable File
1065 lines
37 KiB
Nim
Executable File
#
|
|
#
|
|
# The Nimrod Compiler
|
|
# (c) Copyright 2012 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module contains routines for accessing and iterating over types
|
|
|
|
import
|
|
intsets, ast, astalgo, trees, msgs, strutils, platform
|
|
|
|
proc firstOrd*(t: PType): biggestInt
|
|
proc lastOrd*(t: PType): biggestInt
|
|
proc lengthOrd*(t: PType): biggestInt
|
|
type
|
|
TPreferedDesc* = enum
|
|
preferName, preferDesc
|
|
|
|
proc TypeToString*(typ: PType, prefer: TPreferedDesc = preferName): string
|
|
proc getProcHeader*(sym: PSym): string
|
|
proc base*(t: PType): PType
|
|
# ------------------- type iterator: ----------------------------------------
|
|
type
|
|
TTypeIter* = proc (t: PType, closure: PObject): bool # should return true if the iteration should stop
|
|
TTypeMutator* = proc (t: PType, closure: PObject): PType # copy t and mutate it
|
|
TTypePredicate* = proc (t: PType): bool
|
|
|
|
proc IterOverType*(t: PType, iter: TTypeIter, closure: PObject): bool
|
|
# Returns result of `iter`.
|
|
proc mutateType*(t: PType, iter: TTypeMutator, closure: PObject): PType
|
|
# Returns result of `iter`.
|
|
|
|
type
|
|
TParamsEquality* = enum # they are equal, but their
|
|
# identifiers or their return
|
|
# type differ (i.e. they cannot be
|
|
# overloaded)
|
|
# this used to provide better error messages
|
|
paramsNotEqual, # parameters are not equal
|
|
paramsEqual, # parameters are equal
|
|
paramsIncompatible
|
|
|
|
proc equalParams*(a, b: PNode): TParamsEquality
|
|
# returns whether the parameter lists of the procs a, b are exactly the same
|
|
proc isOrdinalType*(t: PType): bool
|
|
proc enumHasHoles*(t: PType): bool
|
|
const
|
|
abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
|
|
tyConst, tyMutable}
|
|
abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal,
|
|
tyConst, tyMutable}
|
|
abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal,
|
|
tyConst, tyMutable}
|
|
abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
|
|
tyConst, tyMutable}
|
|
abstractInst* = {tyGenericInst, tyDistinct, tyConst, tyMutable, tyOrdinal}
|
|
|
|
skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyConst, tyMutable}
|
|
|
|
proc skipTypes*(t: PType, kinds: TTypeKinds): PType
|
|
proc containsObject*(t: PType): bool
|
|
proc containsGarbageCollectedRef*(typ: PType): bool
|
|
proc containsHiddenPointer*(typ: PType): bool
|
|
proc canFormAcycle*(typ: PType): bool
|
|
proc isCompatibleToCString*(a: PType): bool
|
|
proc getOrdValue*(n: PNode): biggestInt
|
|
proc computeSize*(typ: PType): biggestInt
|
|
proc getSize*(typ: PType): biggestInt
|
|
proc isPureObject*(typ: PType): bool
|
|
proc InvalidGenericInst*(f: PType): bool
|
|
# for debugging
|
|
type
|
|
TTypeFieldResult* = enum
|
|
frNone, # type has no object type field
|
|
frHeader, # type has an object type field only in the header
|
|
frEmbedded # type has an object type field somewhere embedded
|
|
|
|
proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult
|
|
# this does a complex analysis whether a call to ``objectInit`` needs to be
|
|
# made or intializing of the type field suffices or if there is no type field
|
|
# at all in this type.
|
|
proc typeAllowed*(t: PType, kind: TSymKind): bool
|
|
# implementation
|
|
|
|
proc InvalidGenericInst(f: PType): bool =
|
|
result = (f.kind == tyGenericInst) and (lastSon(f) == nil)
|
|
|
|
proc isPureObject(typ: PType): bool =
|
|
var t = typ
|
|
while t.sons[0] != nil: t = t.sons[0]
|
|
result = t.sym != nil and sfPure in t.sym.flags
|
|
|
|
proc getOrdValue(n: PNode): biggestInt =
|
|
case n.kind
|
|
of nkCharLit..nkInt64Lit: result = n.intVal
|
|
of nkNilLit: result = 0
|
|
else:
|
|
LocalError(n.info, errOrdinalTypeExpected)
|
|
result = 0
|
|
|
|
proc isCompatibleToCString(a: PType): bool =
|
|
if a.kind == tyArray:
|
|
if (firstOrd(a.sons[0]) == 0) and
|
|
(skipTypes(a.sons[0], {tyRange, tyConst,
|
|
tyMutable, tyGenericInst}).kind in
|
|
{tyInt..tyInt64, tyUInt..tyUInt64}) and
|
|
(a.sons[1].kind == tyChar):
|
|
result = true
|
|
|
|
proc getProcHeader(sym: PSym): string =
|
|
result = sym.name.s & '('
|
|
var n = sym.typ.n
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
var p = n.sons[i]
|
|
if p.kind != nkSym: InternalError("getProcHeader")
|
|
add(result, p.sym.name.s)
|
|
add(result, ": ")
|
|
add(result, typeToString(p.sym.typ))
|
|
if i != sonsLen(n)-1: add(result, ", ")
|
|
add(result, ')')
|
|
if n.sons[0].typ != nil: result.add(": " & typeToString(n.sons[0].typ))
|
|
|
|
proc elemType*(t: PType): PType =
|
|
assert(t != nil)
|
|
case t.kind
|
|
of tyGenericInst, tyDistinct: result = elemType(lastSon(t))
|
|
of tyArray, tyArrayConstr: result = t.sons[1]
|
|
else: result = t.sons[0]
|
|
assert(result != nil)
|
|
|
|
proc skipGeneric(t: PType): PType =
|
|
result = t
|
|
while result.kind == tyGenericInst: result = lastSon(result)
|
|
|
|
proc skipTypes(t: PType, kinds: TTypeKinds): PType =
|
|
result = t
|
|
while result.kind in kinds: result = lastSon(result)
|
|
|
|
proc isOrdinalType(t: PType): bool =
|
|
assert(t != nil)
|
|
result = (t.Kind in {tyChar, tyInt..tyInt64, tyBool, tyEnum}) or
|
|
(t.Kind in {tyRange, tyOrdinal, tyConst, tyMutable, tyGenericInst}) and
|
|
isOrdinalType(t.sons[0])
|
|
|
|
proc enumHasHoles(t: PType): bool =
|
|
var b = t
|
|
while b.kind in {tyConst, tyMutable, tyRange, tyGenericInst}: b = b.sons[0]
|
|
result = b.Kind == tyEnum and tfEnumHasHoles in b.flags
|
|
|
|
proc iterOverTypeAux(marker: var TIntSet, t: PType, iter: TTypeIter,
|
|
closure: PObject): bool
|
|
proc iterOverNode(marker: var TIntSet, n: PNode, iter: TTypeIter,
|
|
closure: PObject): bool =
|
|
if n != nil:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
# a leaf
|
|
result = iterOverTypeAux(marker, n.typ, iter, closure)
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
result = iterOverNode(marker, n.sons[i], iter, closure)
|
|
if result: return
|
|
|
|
proc iterOverTypeAux(marker: var TIntSet, t: PType, iter: TTypeIter,
|
|
closure: PObject): bool =
|
|
result = false
|
|
if t == nil: return
|
|
result = iter(t, closure)
|
|
if result: return
|
|
if not ContainsOrIncl(marker, t.id):
|
|
case t.kind
|
|
of tyGenericInst, tyGenericBody:
|
|
result = iterOverTypeAux(marker, lastSon(t), iter, closure)
|
|
else:
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result = iterOverTypeAux(marker, t.sons[i], iter, closure)
|
|
if result: return
|
|
if t.n != nil: result = iterOverNode(marker, t.n, iter, closure)
|
|
|
|
proc IterOverType(t: PType, iter: TTypeIter, closure: PObject): bool =
|
|
var marker = InitIntSet()
|
|
result = iterOverTypeAux(marker, t, iter, closure)
|
|
|
|
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
|
|
marker: var TIntSet): bool
|
|
|
|
proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
|
|
marker: var TIntSet): bool =
|
|
result = false
|
|
case n.kind
|
|
of nkRecList:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
result = searchTypeNodeForAux(n.sons[i], p, marker)
|
|
if result: return
|
|
of nkRecCase:
|
|
assert(n.sons[0].kind == nkSym)
|
|
result = searchTypeNodeForAux(n.sons[0], p, marker)
|
|
if result: return
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
case n.sons[i].kind
|
|
of nkOfBranch, nkElse:
|
|
result = searchTypeNodeForAux(lastSon(n.sons[i]), p, marker)
|
|
if result: return
|
|
else: internalError("searchTypeNodeForAux(record case branch)")
|
|
of nkSym:
|
|
result = searchTypeForAux(n.sym.typ, p, marker)
|
|
else: internalError(n.info, "searchTypeNodeForAux()")
|
|
|
|
proc searchTypeForAux(t: PType, predicate: TTypePredicate,
|
|
marker: var TIntSet): bool =
|
|
# iterates over VALUE types!
|
|
result = false
|
|
if t == nil: return
|
|
if ContainsOrIncl(marker, t.id): return
|
|
result = Predicate(t)
|
|
if result: return
|
|
case t.kind
|
|
of tyObject:
|
|
result = searchTypeForAux(t.sons[0], predicate, marker)
|
|
if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
|
|
of tyGenericInst, tyDistinct:
|
|
result = searchTypeForAux(lastSon(t), predicate, marker)
|
|
of tyArray, tyArrayConstr, tySet, tyTuple:
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result = searchTypeForAux(t.sons[i], predicate, marker)
|
|
if result: return
|
|
else:
|
|
nil
|
|
|
|
proc searchTypeFor(t: PType, predicate: TTypePredicate): bool =
|
|
var marker = InitIntSet()
|
|
result = searchTypeForAux(t, predicate, marker)
|
|
|
|
proc isObjectPredicate(t: PType): bool =
|
|
result = t.kind == tyObject
|
|
|
|
proc containsObject(t: PType): bool =
|
|
result = searchTypeFor(t, isObjectPredicate)
|
|
|
|
proc isObjectWithTypeFieldPredicate(t: PType): bool =
|
|
result = t.kind == tyObject and t.sons[0] == nil and
|
|
not (t.sym != nil and sfPure in t.sym.flags) and
|
|
tfFinal notin t.flags
|
|
|
|
proc analyseObjectWithTypeFieldAux(t: PType,
|
|
marker: var TIntSet): TTypeFieldResult =
|
|
var res: TTypeFieldResult
|
|
result = frNone
|
|
if t == nil: return
|
|
case t.kind
|
|
of tyObject:
|
|
if (t.n != nil):
|
|
if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
|
|
return frEmbedded
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
res = analyseObjectWithTypeFieldAux(t.sons[i], marker)
|
|
if res == frEmbedded:
|
|
return frEmbedded
|
|
if res == frHeader: result = frHeader
|
|
if result == frNone:
|
|
if isObjectWithTypeFieldPredicate(t): result = frHeader
|
|
of tyGenericInst, tyDistinct, tyConst, tyMutable:
|
|
result = analyseObjectWithTypeFieldAux(lastSon(t), marker)
|
|
of tyArray, tyArrayConstr, tyTuple:
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
res = analyseObjectWithTypeFieldAux(t.sons[i], marker)
|
|
if res != frNone:
|
|
return frEmbedded
|
|
else:
|
|
nil
|
|
|
|
proc analyseObjectWithTypeField(t: PType): TTypeFieldResult =
|
|
var marker = InitIntSet()
|
|
result = analyseObjectWithTypeFieldAux(t, marker)
|
|
|
|
proc isGCRef(t: PType): bool =
|
|
result = t.kind in GcTypeKinds or
|
|
(t.kind == tyProc and t.callConv == ccClosure)
|
|
|
|
proc containsGarbageCollectedRef(typ: PType): bool =
|
|
# returns true if typ contains a reference, sequence or string (all the
|
|
# things that are garbage-collected)
|
|
result = searchTypeFor(typ, isGCRef)
|
|
|
|
proc isTyRef(t: PType): bool =
|
|
result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)
|
|
|
|
proc containsTyRef*(typ: PType): bool =
|
|
# returns true if typ contains a 'ref'
|
|
result = searchTypeFor(typ, isTyRef)
|
|
|
|
proc isHiddenPointer(t: PType): bool =
|
|
result = t.kind in {tyString, tySequence}
|
|
|
|
proc containsHiddenPointer(typ: PType): bool =
|
|
# returns true if typ contains a string, table or sequence (all the things
|
|
# that need to be copied deeply)
|
|
result = searchTypeFor(typ, isHiddenPointer)
|
|
|
|
proc canFormAcycleAux(marker: var TIntSet, typ: PType, startId: int): bool
|
|
proc canFormAcycleNode(marker: var TIntSet, n: PNode, startId: int): bool =
|
|
result = false
|
|
if n != nil:
|
|
result = canFormAcycleAux(marker, n.typ, startId)
|
|
if not result:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
nil
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
result = canFormAcycleNode(marker, n.sons[i], startId)
|
|
if result: return
|
|
|
|
proc canFormAcycleAux(marker: var TIntSet, typ: PType, startId: int): bool =
|
|
result = false
|
|
if typ == nil: return
|
|
if tfAcyclic in typ.flags: return
|
|
var t = skipTypes(typ, abstractInst)
|
|
if tfAcyclic in t.flags: return
|
|
case t.kind
|
|
of tyTuple, tyObject, tyRef, tySequence, tyArray, tyArrayConstr, tyOpenArray:
|
|
if not ContainsOrIncl(marker, t.id):
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result = canFormAcycleAux(marker, t.sons[i], startId)
|
|
if result: return
|
|
if t.n != nil: result = canFormAcycleNode(marker, t.n, startId)
|
|
else:
|
|
result = t.id == startId
|
|
else:
|
|
nil
|
|
|
|
proc canFormAcycle(typ: PType): bool =
|
|
# XXX as I expect cycles introduced by closures are very rare, we pretend
|
|
# they can't happen here.
|
|
var marker = InitIntSet()
|
|
result = canFormAcycleAux(marker, typ, typ.id)
|
|
|
|
proc mutateTypeAux(marker: var TIntSet, t: PType, iter: TTypeMutator,
|
|
closure: PObject): PType
|
|
proc mutateNode(marker: var TIntSet, n: PNode, iter: TTypeMutator,
|
|
closure: PObject): PNode =
|
|
result = nil
|
|
if n != nil:
|
|
result = copyNode(n)
|
|
result.typ = mutateTypeAux(marker, n.typ, iter, closure)
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
# a leaf
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
addSon(result, mutateNode(marker, n.sons[i], iter, closure))
|
|
|
|
proc mutateTypeAux(marker: var TIntSet, t: PType, iter: TTypeMutator,
|
|
closure: PObject): PType =
|
|
result = nil
|
|
if t == nil: return
|
|
result = iter(t, closure)
|
|
if not ContainsOrIncl(marker, t.id):
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result.sons[i] = mutateTypeAux(marker, result.sons[i], iter, closure)
|
|
if t.n != nil: result.n = mutateNode(marker, t.n, iter, closure)
|
|
assert(result != nil)
|
|
|
|
proc mutateType(t: PType, iter: TTypeMutator, closure: PObject): PType =
|
|
var marker = InitIntSet()
|
|
result = mutateTypeAux(marker, t, iter, closure)
|
|
|
|
proc rangeToStr(n: PNode): string =
|
|
assert(n.kind == nkRange)
|
|
result = ValueToString(n.sons[0]) & ".." & ValueToString(n.sons[1])
|
|
|
|
proc constraintsToStr(t: PType): string =
|
|
let sep = if tfAny in t.flags: " or " else: " and "
|
|
result = ""
|
|
for i in countup(0, t.sons.len - 1):
|
|
if i > 0: result.add(sep)
|
|
result.add(t.sons[i].typeToString)
|
|
|
|
proc TypeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
|
|
const
|
|
typeToStr: array[TTypeKind, string] = ["None", "bool", "Char", "empty",
|
|
"Array Constructor [$1]", "nil", "expr", "stmt", "typeDesc",
|
|
"GenericInvokation", "GenericBody", "GenericInst", "GenericParam",
|
|
"distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
|
|
"set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
|
|
"pointer", "OpenArray[$1]", "string", "CString", "Forward", "int", "int8",
|
|
"int16", "int32", "int64", "float", "float32", "float64", "float128",
|
|
|
|
"uint", "uint8", "uint16", "uint32", "uint64", "bignum", "const ",
|
|
"!", "varargs[$1]", "iter[$1]", "proxy[$1]", "TypeClass" ]
|
|
var t = typ
|
|
result = ""
|
|
if t == nil: return
|
|
if prefer == preferName and t.sym != nil and sfAnon notin t.sym.flags:
|
|
return t.sym.Name.s
|
|
case t.Kind
|
|
of tyGenericBody, tyGenericInst, tyGenericInvokation:
|
|
result = typeToString(t.sons[0]) & '['
|
|
for i in countup(1, sonsLen(t) -1 -ord(t.kind != tyGenericInvokation)):
|
|
if i > 1: add(result, ", ")
|
|
add(result, typeToString(t.sons[i]))
|
|
add(result, ']')
|
|
of tyTypeDesc:
|
|
if t.sons.len == 0: result = "typedesc"
|
|
else: result = "typedesc{" & constraintsToStr(t) & "}"
|
|
of tyTypeClass:
|
|
result = constraintsToStr(t)
|
|
of tyExpr:
|
|
if t.sons.len == 0: result = "expr"
|
|
else: result = "expr{" & constraintsToStr(t) & "}"
|
|
of tyArray:
|
|
if t.sons[0].kind == tyRange:
|
|
result = "array[" & rangeToStr(t.sons[0].n) & ", " &
|
|
typeToString(t.sons[1]) & ']'
|
|
else:
|
|
result = "array[" & typeToString(t.sons[0]) & ", " &
|
|
typeToString(t.sons[1]) & ']'
|
|
of tyArrayConstr:
|
|
result = "Array constructor[" & rangeToStr(t.sons[0].n) & ", " &
|
|
typeToString(t.sons[1]) & ']'
|
|
of tySequence:
|
|
result = "seq[" & typeToString(t.sons[0]) & ']'
|
|
of tyOrdinal:
|
|
result = "ordinal[" & typeToString(t.sons[0]) & ']'
|
|
of tySet:
|
|
result = "set[" & typeToString(t.sons[0]) & ']'
|
|
of tyOpenArray:
|
|
result = "openarray[" & typeToString(t.sons[0]) & ']'
|
|
of tyDistinct:
|
|
result = "distinct " & typeToString(t.sons[0], preferName)
|
|
of tyTuple:
|
|
# we iterate over t.sons here, because t.n may be nil
|
|
result = "tuple["
|
|
if t.n != nil:
|
|
assert(sonsLen(t.n) == sonsLen(t))
|
|
for i in countup(0, sonsLen(t.n) - 1):
|
|
assert(t.n.sons[i].kind == nkSym)
|
|
add(result, t.n.sons[i].sym.name.s & ": " & typeToString(t.sons[i]))
|
|
if i < sonsLen(t.n) - 1: add(result, ", ")
|
|
else:
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
add(result, typeToString(t.sons[i]))
|
|
if i < sonsLen(t) - 1: add(result, ", ")
|
|
add(result, ']')
|
|
of tyPtr, tyRef, tyVar, tyMutable, tyConst:
|
|
result = typeToStr[t.kind] & typeToString(t.sons[0])
|
|
of tyRange:
|
|
result = "range " & rangeToStr(t.n)
|
|
of tyProc:
|
|
result = "proc ("
|
|
for i in countup(1, sonsLen(t) - 1):
|
|
add(result, typeToString(t.sons[i]))
|
|
if i < sonsLen(t) - 1: add(result, ", ")
|
|
add(result, ')')
|
|
if t.sons[0] != nil: add(result, ": " & TypeToString(t.sons[0]))
|
|
var prag: string
|
|
if t.callConv != ccDefault: prag = CallingConvToStr[t.callConv]
|
|
else: prag = ""
|
|
if tfNoSideEffect in t.flags:
|
|
addSep(prag)
|
|
add(prag, "noSideEffect")
|
|
if tfThread in t.flags:
|
|
addSep(prag)
|
|
add(prag, "thread")
|
|
if len(prag) != 0: add(result, "{." & prag & ".}")
|
|
of tyVarargs, tyIter, tyProxy:
|
|
result = typeToStr[t.kind] % typeToString(t.sons[0])
|
|
else:
|
|
result = typeToStr[t.kind]
|
|
|
|
proc resultType(t: PType): PType =
|
|
assert(t.kind == tyProc)
|
|
result = t.sons[0] # nil is allowed
|
|
|
|
proc base(t: PType): PType =
|
|
result = t.sons[0]
|
|
|
|
proc firstOrd(t: PType): biggestInt =
|
|
case t.kind
|
|
of tyBool, tyChar, tySequence, tyOpenArray, tyString: result = 0
|
|
of tySet, tyVar: result = firstOrd(t.sons[0])
|
|
of tyArray, tyArrayConstr: result = firstOrd(t.sons[0])
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
result = getOrdValue(t.n.sons[0])
|
|
of tyInt:
|
|
if platform.intSize == 4: result = - (2147483646) - 2
|
|
else: result = 0x8000000000000000'i64
|
|
of tyInt8: result = - 128
|
|
of tyInt16: result = - 32768
|
|
of tyInt32: result = - 2147483646 - 2
|
|
of tyInt64: result = 0x8000000000000000'i64
|
|
of tyEnum:
|
|
# if basetype <> nil then return firstOrd of basetype
|
|
if (sonsLen(t) > 0) and (t.sons[0] != nil):
|
|
result = firstOrd(t.sons[0])
|
|
else:
|
|
assert(t.n.sons[0].kind == nkSym)
|
|
result = t.n.sons[0].sym.position
|
|
of tyGenericInst, tyDistinct, tyConst, tyMutable:
|
|
result = firstOrd(lastSon(t))
|
|
else:
|
|
InternalError("invalid kind for first(" & $t.kind & ')')
|
|
result = 0
|
|
|
|
proc lastOrd(t: PType): biggestInt =
|
|
case t.kind
|
|
of tyBool: result = 1
|
|
of tyChar: result = 255
|
|
of tySet, tyVar: result = lastOrd(t.sons[0])
|
|
of tyArray, tyArrayConstr: result = lastOrd(t.sons[0])
|
|
of tyRange:
|
|
assert(t.n != nil) # range directly given:
|
|
assert(t.n.kind == nkRange)
|
|
result = getOrdValue(t.n.sons[1])
|
|
of tyInt:
|
|
if platform.intSize == 4: result = 0x7FFFFFFF
|
|
else: result = 0x7FFFFFFFFFFFFFFF'i64
|
|
of tyInt8: result = 0x0000007F
|
|
of tyInt16: result = 0x00007FFF
|
|
of tyInt32: result = 0x7FFFFFFF
|
|
of tyInt64: result = 0x7FFFFFFFFFFFFFFF'i64
|
|
of tyEnum:
|
|
assert(t.n.sons[sonsLen(t.n) - 1].kind == nkSym)
|
|
result = t.n.sons[sonsLen(t.n) - 1].sym.position
|
|
of tyGenericInst, tyDistinct, tyConst, tyMutable:
|
|
result = lastOrd(lastSon(t))
|
|
else:
|
|
InternalError("invalid kind for last(" & $t.kind & ')')
|
|
result = 0
|
|
|
|
proc lengthOrd(t: PType): biggestInt =
|
|
case t.kind
|
|
of tyInt64, tyInt32, tyInt: result = lastOrd(t)
|
|
of tyDistinct, tyConst, tyMutable: result = lengthOrd(t.sons[0])
|
|
else: result = lastOrd(t) - firstOrd(t) + 1
|
|
|
|
# -------------- type equality -----------------------------------------------
|
|
|
|
type
|
|
TDistinctCompare* = enum ## how distinct types are to be compared
|
|
dcEq, ## a and b should be the same type
|
|
dcEqIgnoreDistinct, ## compare symetrically: (distinct a) == b, a == b
|
|
## or a == (distinct b)
|
|
dcEqOrDistinctOf ## a equals b or a is distinct of b
|
|
|
|
TSameTypeClosure = object {.pure.}
|
|
cmp: TDistinctCompare
|
|
ignoreTupleFields: bool
|
|
recCheck: int
|
|
s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
|
|
# (few elements expected)
|
|
|
|
proc initSameTypeClosure: TSameTypeClosure =
|
|
# we do the initialization lazy for performance (avoids memory allocations)
|
|
nil
|
|
|
|
proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
|
|
result = not IsNil(c.s) and c.s.contains((a.id, b.id))
|
|
if not result:
|
|
if IsNil(c.s): c.s = @[]
|
|
c.s.add((a.id, b.id))
|
|
|
|
proc SameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
|
|
proc SameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
|
|
if a == b:
|
|
result = true
|
|
else:
|
|
if a == nil or b == nil: result = false
|
|
else: result = SameTypeAux(a, b, c)
|
|
|
|
proc SameTypeOrNil*(a, b: PType): bool =
|
|
if a == b:
|
|
result = true
|
|
else:
|
|
if a == nil or b == nil: result = false
|
|
else:
|
|
var c = initSameTypeClosure()
|
|
result = SameTypeAux(a, b, c)
|
|
|
|
proc equalParam(a, b: PSym): TParamsEquality =
|
|
if SameTypeOrNil(a.typ, b.typ):
|
|
if a.ast == b.ast:
|
|
result = paramsEqual
|
|
elif a.ast != nil and b.ast != nil:
|
|
if ExprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
|
|
else: result = paramsIncompatible
|
|
elif a.ast != nil:
|
|
result = paramsEqual
|
|
elif b.ast != nil:
|
|
result = paramsIncompatible
|
|
else:
|
|
result = paramsNotEqual
|
|
|
|
proc equalParams(a, b: PNode): TParamsEquality =
|
|
result = paramsEqual
|
|
var length = sonsLen(a)
|
|
if length != sonsLen(b):
|
|
result = paramsNotEqual
|
|
else:
|
|
for i in countup(1, length - 1):
|
|
var m = a.sons[i].sym
|
|
var n = b.sons[i].sym
|
|
assert((m.kind == skParam) and (n.kind == skParam))
|
|
case equalParam(m, n)
|
|
of paramsNotEqual:
|
|
return paramsNotEqual
|
|
of paramsEqual:
|
|
nil
|
|
of paramsIncompatible:
|
|
result = paramsIncompatible
|
|
if (m.name.id != n.name.id):
|
|
# BUGFIX
|
|
return paramsNotEqual # paramsIncompatible;
|
|
# continue traversal! If not equal, we can return immediately; else
|
|
# it stays incompatible
|
|
if not SameTypeOrNil(a.sons[0].typ, b.sons[0].typ):
|
|
if (a.sons[0].typ == nil) or (b.sons[0].typ == nil):
|
|
result = paramsNotEqual # one proc has a result, the other not is OK
|
|
else:
|
|
result = paramsIncompatible # overloading by different
|
|
# result types does not work
|
|
|
|
proc SameLiteral(x, y: PNode): bool =
|
|
if x.kind == y.kind:
|
|
case x.kind
|
|
of nkCharLit..nkInt64Lit: result = x.intVal == y.intVal
|
|
of nkFloatLit..nkFloat64Lit: result = x.floatVal == y.floatVal
|
|
of nkNilLit: result = true
|
|
else: assert(false)
|
|
|
|
proc SameRanges(a, b: PNode): bool =
|
|
result = SameLiteral(a.sons[0], b.sons[0]) and
|
|
SameLiteral(a.sons[1], b.sons[1])
|
|
|
|
proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
|
|
# two tuples are equivalent iff the names, types and positions are the same;
|
|
# however, both types may not have any field names (t.n may be nil) which
|
|
# complicates the matter a bit.
|
|
if sonsLen(a) == sonsLen(b):
|
|
result = true
|
|
for i in countup(0, sonsLen(a) - 1):
|
|
result = SameTypeAux(a.sons[i], b.sons[i], c)
|
|
if not result: return
|
|
if a.n != nil and b.n != nil and not c.ignoreTupleFields:
|
|
for i in countup(0, sonsLen(a.n) - 1):
|
|
# check field names:
|
|
if a.n.sons[i].kind != nkSym: InternalError(a.n.info, "sameTuple")
|
|
if b.n.sons[i].kind != nkSym: InternalError(b.n.info, "sameTuple")
|
|
var x = a.n.sons[i].sym
|
|
var y = b.n.sons[i].sym
|
|
result = x.name.id == y.name.id
|
|
if not result: break
|
|
else:
|
|
result = false
|
|
|
|
template IfFastObjectTypeCheckFailed(a, b: PType, body: stmt) =
|
|
if tfFromGeneric notin a.flags + b.flags:
|
|
# fast case: id comparison suffices:
|
|
result = a.id == b.id
|
|
else:
|
|
# expensive structural equality test; however due to the way generic and
|
|
# objects work, if one of the types does **not** contain tfFromGeneric,
|
|
# they cannot be equal. The check ``a.sym.Id == b.sym.Id`` checks
|
|
# for the same origin and is essential because we don't want "pure"
|
|
# structural type equivalence:
|
|
#
|
|
# type
|
|
# TA[T] = object
|
|
# TB[T] = object
|
|
# --> TA[int] != TB[int]
|
|
if tfFromGeneric in a.flags * b.flags and a.sym.Id == b.sym.Id:
|
|
# ok, we need the expensive structural check
|
|
body
|
|
|
|
proc sameObjectTypes*(a, b: PType): bool =
|
|
# specialized for efficiency (sigmatch uses it)
|
|
IfFastObjectTypeCheckFailed(a, b):
|
|
var c = initSameTypeClosure()
|
|
result = sameTypeAux(a, b, c)
|
|
|
|
proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
|
|
result = sameObjectTypes(a, b)
|
|
|
|
proc sameEnumTypes*(a, b: PType): bool {.inline.} =
|
|
result = a.id == b.id
|
|
|
|
proc SameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
|
|
if a == b:
|
|
result = true
|
|
elif (a != nil) and (b != nil) and (a.kind == b.kind):
|
|
if sameTypeOrNilAux(a.typ, b.typ, c):
|
|
case a.kind
|
|
of nkSym:
|
|
# same symbol as string is enough:
|
|
result = a.sym.name.id == b.sym.name.id
|
|
of nkIdent: result = a.ident.id == b.ident.id
|
|
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
|
|
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
|
|
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
|
|
of nkEmpty, nkNilLit, nkType: result = true
|
|
else:
|
|
if sonsLen(a) == sonsLen(b):
|
|
for i in countup(0, sonsLen(a) - 1):
|
|
if not SameObjectTree(a.sons[i], b.sons[i], c): return
|
|
result = true
|
|
|
|
proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
|
|
# check base types:
|
|
if sonsLen(a) != sonsLen(b): return
|
|
for i in countup(0, sonsLen(a) - 1):
|
|
if not SameTypeOrNilAux(a.sons[i], b.sons[i], c): return
|
|
if not SameObjectTree(a.n, b.n, c): return
|
|
result = true
|
|
|
|
proc SameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
|
|
template CycleCheck() =
|
|
# believe it or not, the direct check for ``containsOrIncl(c, a, b)``
|
|
# increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
|
|
# again: Since the recursion check is only to not get caught in an endless
|
|
# recursion, we use a counter and only if it's value is over some
|
|
# threshold we perform the expansive exact cycle check:
|
|
if c.recCheck < 3:
|
|
inc c.recCheck
|
|
else:
|
|
if containsOrIncl(c, a, b): return true
|
|
|
|
if x == y: return true
|
|
var a = skipTypes(x, {tyGenericInst})
|
|
var b = skipTypes(y, {tyGenericInst})
|
|
assert(a != nil)
|
|
assert(b != nil)
|
|
if a.kind != b.kind:
|
|
case c.cmp
|
|
of dcEq: return false
|
|
of dcEqIgnoreDistinct:
|
|
while a.kind == tyDistinct: a = a.sons[0]
|
|
while b.kind == tyDistinct: b = b.sons[0]
|
|
if a.kind != b.kind: return false
|
|
of dcEqOrDistinctOf:
|
|
while a.kind == tyDistinct: a = a.sons[0]
|
|
if a.kind != b.kind: return false
|
|
case a.Kind
|
|
of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCString,
|
|
tyInt..tyBigNum, tyStmt:
|
|
result = true
|
|
of tyExpr:
|
|
result = ExprStructuralEquivalent(a.n, b.n)
|
|
of tyObject:
|
|
IfFastObjectTypeCheckFailed(a, b):
|
|
CycleCheck()
|
|
result = sameObjectStructures(a, b, c)
|
|
of tyDistinct:
|
|
CycleCheck()
|
|
if c.cmp == dcEq: result = sameDistinctTypes(a, b)
|
|
else: result = sameTypeAux(a.sons[0], b.sons[0], c)
|
|
of tyEnum, tyForward, tyProxy:
|
|
# XXX generic enums do not make much sense, but require structural checking
|
|
result = a.id == b.id
|
|
of tyTuple:
|
|
CycleCheck()
|
|
result = sameTuple(a, b, c)
|
|
of tyGenericInst: result = sameTypeAux(lastSon(a), lastSon(b), c)
|
|
of tyGenericParam, tyGenericInvokation, tyGenericBody, tySequence,
|
|
tyOpenArray, tySet, tyRef, tyPtr, tyVar, tyArrayConstr,
|
|
tyArray, tyProc, tyConst, tyMutable, tyVarargs, tyIter,
|
|
tyOrdinal, tyTypeDesc, tyTypeClass:
|
|
if sonsLen(a) == sonsLen(b):
|
|
CycleCheck()
|
|
result = true
|
|
for i in countup(0, sonsLen(a) - 1):
|
|
result = SameTypeOrNilAux(a.sons[i], b.sons[i], c)
|
|
if not result: return
|
|
if result and (a.kind == tyProc):
|
|
result = a.callConv == b.callConv
|
|
of tyRange:
|
|
CycleCheck()
|
|
result = SameTypeOrNilAux(a.sons[0], b.sons[0], c) and
|
|
SameValue(a.n.sons[0], b.n.sons[0]) and
|
|
SameValue(a.n.sons[1], b.n.sons[1])
|
|
of tyNone: result = false
|
|
|
|
proc SameType*(x, y: PType): bool =
|
|
var c = initSameTypeClosure()
|
|
result = sameTypeAux(x, y, c)
|
|
|
|
proc sameBackendType*(x, y: PType): bool =
|
|
var c = initSameTypeClosure()
|
|
c.ignoreTupleFields = true
|
|
result = sameTypeAux(x, y, c)
|
|
|
|
proc compareTypes*(x, y: PType, cmp: TDistinctCompare): bool =
|
|
## compares two type for equality (modulo type distinction)
|
|
var c = initSameTypeClosure()
|
|
c.cmp = cmp
|
|
result = sameTypeAux(x, y, c)
|
|
|
|
proc inheritanceDiff*(a, b: PType): int =
|
|
# | returns: 0 iff `a` == `b`
|
|
# | returns: -x iff `a` is the x'th direct superclass of `b`
|
|
# | returns: +x iff `a` is the x'th direct subclass of `b`
|
|
# | returns: `maxint` iff `a` and `b` are not compatible at all
|
|
var x = a
|
|
result = 0
|
|
while x != nil:
|
|
if sameObjectTypes(x, b): return
|
|
x = x.sons[0]
|
|
dec(result)
|
|
var y = b
|
|
result = 0
|
|
while y != nil:
|
|
if sameObjectTypes(y, a): return
|
|
y = y.sons[0]
|
|
inc(result)
|
|
result = high(int)
|
|
|
|
proc typeAllowedAux(marker: var TIntSet, typ: PType, kind: TSymKind): bool
|
|
proc typeAllowedNode(marker: var TIntSet, n: PNode, kind: TSymKind): bool =
|
|
result = true
|
|
if n != nil:
|
|
result = typeAllowedAux(marker, n.typ, kind)
|
|
#if not result: debug(n.typ)
|
|
if result:
|
|
case n.kind
|
|
of nkNone..nkNilLit:
|
|
nil
|
|
else:
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
result = typeAllowedNode(marker, n.sons[i], kind)
|
|
if not result: break
|
|
|
|
proc matchType*(a: PType, pattern: openArray[tuple[k:TTypeKind, i:int]],
|
|
last: TTypeKind): bool =
|
|
var a = a
|
|
for k, i in pattern.items:
|
|
if a.kind != k: return false
|
|
if i >= a.sonslen or a.sons[i] == nil: return false
|
|
a = a.sons[i]
|
|
result = a.kind == last
|
|
|
|
proc typeAllowedAux(marker: var TIntSet, typ: PType, kind: TSymKind): bool =
|
|
assert(kind in {skVar, skLet, skConst, skParam, skResult})
|
|
# if we have already checked the type, return true, because we stop the
|
|
# evaluation if something is wrong:
|
|
result = true
|
|
if typ == nil: return
|
|
if ContainsOrIncl(marker, typ.id): return
|
|
var t = skipTypes(typ, abstractInst)
|
|
case t.kind
|
|
of tyVar:
|
|
if kind == skConst: return false
|
|
var t2 = skipTypes(t.sons[0], abstractInst)
|
|
case t2.kind
|
|
of tyVar:
|
|
result = false # ``var var`` is always an invalid type:
|
|
of tyOpenArray:
|
|
result = kind == skParam and typeAllowedAux(marker, t2, kind)
|
|
else:
|
|
result = kind in {skParam, skResult} and typeAllowedAux(marker, t2, kind)
|
|
of tyProc:
|
|
for i in countup(1, sonsLen(t) - 1):
|
|
result = typeAllowedAux(marker, t.sons[i], skParam)
|
|
if not result: break
|
|
if result and t.sons[0] != nil:
|
|
result = typeAllowedAux(marker, t.sons[0], skResult)
|
|
of tyExpr, tyStmt, tyTypeDesc:
|
|
result = true
|
|
of tyGenericBody, tyGenericParam, tyForward, tyNone, tyGenericInvokation,
|
|
tyTypeClass:
|
|
result = false
|
|
of tyEmpty, tyNil:
|
|
result = kind == skConst
|
|
of tyString, tyBool, tyChar, tyEnum, tyInt..tyBigNum, tyCString, tyPointer:
|
|
result = true
|
|
of tyOrdinal:
|
|
result = kind == skParam
|
|
of tyGenericInst, tyDistinct:
|
|
result = typeAllowedAux(marker, lastSon(t), kind)
|
|
of tyRange:
|
|
result = skipTypes(t.sons[0], abstractInst).kind in
|
|
{tyChar, tyEnum, tyInt..tyFloat128}
|
|
of tyOpenArray, tyVarargs:
|
|
result = (kind == skParam) and typeAllowedAux(marker, t.sons[0], skVar)
|
|
of tySequence:
|
|
result = t.sons[0].kind == tyEmpty or
|
|
typeAllowedAux(marker, t.sons[0], skVar)
|
|
of tyArray:
|
|
result = t.sons[1].kind == tyEmpty or
|
|
typeAllowedAux(marker, t.sons[1], skVar)
|
|
of tyRef:
|
|
if kind == skConst: return false
|
|
result = typeAllowedAux(marker, t.sons[0], skVar)
|
|
of tyPtr:
|
|
result = typeAllowedAux(marker, t.sons[0], skVar)
|
|
of tyArrayConstr, tyTuple, tySet, tyConst, tyMutable, tyIter, tyProxy:
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result = typeAllowedAux(marker, t.sons[i], kind)
|
|
if not result: break
|
|
of tyObject:
|
|
if kind == skConst: return false
|
|
for i in countup(0, sonsLen(t) - 1):
|
|
result = typeAllowedAux(marker, t.sons[i], kind)
|
|
if not result: break
|
|
if result and t.n != nil: result = typeAllowedNode(marker, t.n, kind)
|
|
|
|
proc typeAllowed(t: PType, kind: TSymKind): bool =
|
|
var marker = InitIntSet()
|
|
result = typeAllowedAux(marker, t, kind)
|
|
|
|
proc align(address, alignment: biggestInt): biggestInt =
|
|
result = (address + (alignment - 1)) and not (alignment - 1)
|
|
|
|
proc computeSizeAux(typ: PType, a: var biggestInt): biggestInt
|
|
proc computeRecSizeAux(n: PNode, a, currOffset: var biggestInt): biggestInt =
|
|
var maxAlign, maxSize, b, res: biggestInt
|
|
case n.kind
|
|
of nkRecCase:
|
|
assert(n.sons[0].kind == nkSym)
|
|
result = computeRecSizeAux(n.sons[0], a, currOffset)
|
|
maxSize = 0
|
|
maxAlign = 1
|
|
for i in countup(1, sonsLen(n) - 1):
|
|
case n.sons[i].kind
|
|
of nkOfBranch, nkElse:
|
|
res = computeRecSizeAux(lastSon(n.sons[i]), b, currOffset)
|
|
if res < 0: return res
|
|
maxSize = max(maxSize, res)
|
|
maxAlign = max(maxAlign, b)
|
|
else: internalError("computeRecSizeAux(record case branch)")
|
|
currOffset = align(currOffset, maxAlign) + maxSize
|
|
result = align(result, maxAlign) + maxSize
|
|
a = maxAlign
|
|
of nkRecList:
|
|
result = 0
|
|
maxAlign = 1
|
|
for i in countup(0, sonsLen(n) - 1):
|
|
res = computeRecSizeAux(n.sons[i], b, currOffset)
|
|
if res < 0: return res
|
|
currOffset = align(currOffset, b) + res
|
|
result = align(result, b) + res
|
|
if b > maxAlign: maxAlign = b
|
|
a = maxAlign
|
|
of nkSym:
|
|
result = computeSizeAux(n.sym.typ, a)
|
|
n.sym.offset = int(currOffset)
|
|
else:
|
|
InternalError("computeRecSizeAux()")
|
|
a = 1
|
|
result = - 1
|
|
|
|
proc computeSizeAux(typ: PType, a: var biggestInt): biggestInt =
|
|
var res, maxAlign, length, currOffset: biggestInt
|
|
if typ.size == - 2:
|
|
# we are already computing the size of the type
|
|
# --> illegal recursion in type
|
|
return - 2
|
|
if typ.size >= 0:
|
|
# size already computed
|
|
result = typ.size
|
|
a = typ.align
|
|
return
|
|
typ.size = - 2 # mark as being computed
|
|
case typ.kind
|
|
of tyInt, tyUInt:
|
|
result = IntSize
|
|
a = result
|
|
of tyInt8, tyUInt8, tyBool, tyChar:
|
|
result = 1
|
|
a = result
|
|
of tyInt16, tyUInt16:
|
|
result = 2
|
|
a = result
|
|
of tyInt32, tyUInt32, tyFloat32:
|
|
result = 4
|
|
a = result
|
|
of tyInt64, tyUInt64, tyFloat64:
|
|
result = 8
|
|
a = result
|
|
of tyFloat:
|
|
result = floatSize
|
|
a = result
|
|
of tyProc:
|
|
if typ.callConv == ccClosure: result = 2 * ptrSize
|
|
else: result = ptrSize
|
|
a = ptrSize
|
|
of tyNil, tyCString, tyString, tySequence, tyPtr, tyRef, tyVar, tyOpenArray,
|
|
tyBigNum:
|
|
result = ptrSize
|
|
a = result
|
|
of tyArray, tyArrayConstr:
|
|
result = lengthOrd(typ.sons[0]) * computeSizeAux(typ.sons[1], a)
|
|
of tyEnum:
|
|
if firstOrd(typ) < 0:
|
|
result = 4 # use signed int32
|
|
else:
|
|
length = lastOrd(typ) # BUGFIX: use lastOrd!
|
|
if length + 1 < `shl`(1, 8): result = 1
|
|
elif length + 1 < `shl`(1, 16): result = 2
|
|
elif length + 1 < `shl`(biggestInt(1), 32): result = 4
|
|
else: result = 8
|
|
a = result
|
|
of tySet:
|
|
length = lengthOrd(typ.sons[0])
|
|
if length <= 8: result = 1
|
|
elif length <= 16: result = 2
|
|
elif length <= 32: result = 4
|
|
elif length <= 64: result = 8
|
|
elif align(length, 8) mod 8 == 0: result = align(length, 8) div 8
|
|
else: result = align(length, 8) div 8 + 1
|
|
a = result
|
|
of tyRange:
|
|
result = computeSizeAux(typ.sons[0], a)
|
|
of tyTuple:
|
|
result = 0
|
|
maxAlign = 1
|
|
for i in countup(0, sonsLen(typ) - 1):
|
|
res = computeSizeAux(typ.sons[i], a)
|
|
if res < 0: return res
|
|
maxAlign = max(maxAlign, a)
|
|
result = align(result, a) + res
|
|
result = align(result, maxAlign)
|
|
a = maxAlign
|
|
of tyObject:
|
|
if typ.sons[0] != nil:
|
|
result = computeSizeAux(typ.sons[0], a)
|
|
if result < 0: return
|
|
maxAlign = a
|
|
elif isObjectWithTypeFieldPredicate(typ):
|
|
result = intSize
|
|
maxAlign = result
|
|
else:
|
|
result = 0
|
|
maxAlign = 1
|
|
currOffset = result
|
|
result = computeRecSizeAux(typ.n, a, currOffset)
|
|
if result < 0: return
|
|
if a < maxAlign: a = maxAlign
|
|
result = align(result, a)
|
|
of tyGenericInst, tyDistinct, tyGenericBody, tyMutable, tyConst, tyIter,
|
|
tyProxy:
|
|
result = computeSizeAux(lastSon(typ), a)
|
|
else:
|
|
#internalError("computeSizeAux()")
|
|
result = - 1
|
|
typ.size = result
|
|
typ.align = int(a)
|
|
|
|
proc computeSize(typ: PType): biggestInt =
|
|
var a: biggestInt = 1
|
|
result = computeSizeAux(typ, a)
|
|
|
|
proc getReturnType*(s: PSym): PType =
|
|
# Obtains the return type of a iterator/proc/macro/template
|
|
assert s.kind in {skProc, skTemplate, skMacro, skIterator}
|
|
result = s.typ.sons[0]
|
|
|
|
proc getSize(typ: PType): biggestInt =
|
|
result = computeSize(typ)
|
|
if result < 0: InternalError("getSize(" & $typ.kind & ')')
|
|
|