mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 08:54:53 +00:00
3019 lines
111 KiB
Nim
3019 lines
111 KiB
Nim
#
|
|
#
|
|
# The Nim Compiler
|
|
# (c) Copyright 2013 Andreas Rumpf
|
|
#
|
|
# See the file "copying.txt", included in this
|
|
# distribution, for details about the copyright.
|
|
#
|
|
|
|
# this module does the semantic checking for expressions
|
|
# included from sem.nim
|
|
|
|
when defined(nimCompilerStacktraceHints):
|
|
import std/stackframes
|
|
|
|
const
|
|
errExprXHasNoType = "expression '$1' has no type (or is ambiguous)"
|
|
errXExpectsTypeOrValue = "'$1' expects a type or value"
|
|
errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
|
|
errXStackEscape = "address of '$1' may not escape its stack frame"
|
|
errExprHasNoAddress = "expression has no address"
|
|
errCannotInterpretNodeX = "cannot evaluate '$1'"
|
|
errNamedExprExpected = "named expression expected"
|
|
errNamedExprNotAllowed = "named expression not allowed here"
|
|
errFieldInitTwice = "field initialized twice: '$1'"
|
|
errUndeclaredFieldX = "undeclared field: '$1'"
|
|
|
|
proc semTemplateExpr(c: PContext, n: PNode, s: PSym,
|
|
flags: TExprFlags = {}): PNode =
|
|
rememberExpansion(c, n.info, s)
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
# Note: This is n.info on purpose. It prevents template from creating an info
|
|
# context when called from an another template
|
|
pushInfoContext(c.config, n.info, s.detailedInfo)
|
|
result = evalTemplate(n, s, getCurrOwner(c), c.config, c.cache,
|
|
c.templInstCounter, c.idgen, efFromHlo in flags)
|
|
if efNoSemCheck notin flags: result = semAfterMacroCall(c, n, result, s, flags)
|
|
popInfoContext(c.config)
|
|
|
|
# XXX: A more elaborate line info rewrite might be needed
|
|
result.info = info
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags = {}): PNode
|
|
|
|
template rejectEmptyNode(n: PNode) =
|
|
# No matter what a nkEmpty node is not what we want here
|
|
if n.kind == nkEmpty: illFormedAst(n, c.config)
|
|
|
|
proc semOperand(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
rejectEmptyNode(n)
|
|
# same as 'semExprWithType' but doesn't check for proc vars
|
|
result = semExpr(c, n, flags + {efOperand})
|
|
if result.typ != nil:
|
|
# XXX tyGenericInst here?
|
|
if result.typ.kind == tyProc and hasUnresolvedParams(result, {efOperand}):
|
|
#and tfUnresolved in result.typ.flags:
|
|
localError(c.config, n.info, errProcHasNoConcreteType % n.renderTree)
|
|
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
|
|
elif {efWantStmt, efAllowStmt} * flags != {}:
|
|
result.typ = newTypeS(tyVoid, c)
|
|
else:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
|
|
proc semExprCheck(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
rejectEmptyNode(n)
|
|
result = semExpr(c, n, flags+{efWantValue})
|
|
|
|
let
|
|
isEmpty = result.kind == nkEmpty
|
|
isTypeError = result.typ != nil and result.typ.kind == tyError
|
|
|
|
if isEmpty or isTypeError:
|
|
# bug #12741, redundant error messages are the lesser evil here:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
|
|
if isEmpty:
|
|
# do not produce another redundant error message:
|
|
result = errorNode(c, n)
|
|
|
|
proc semExprWithType(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = semExprCheck(c, n, flags)
|
|
if result.typ == nil and efInTypeof in flags:
|
|
result.typ = c.voidType
|
|
elif result.typ == nil or result.typ == c.enforceVoidContext:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
elif result.typ.kind == tyError:
|
|
# associates the type error to the current owner
|
|
result.typ = errorType(c)
|
|
else:
|
|
if result.typ.kind in {tyVar, tyLent}: result = newDeref(result)
|
|
|
|
proc semExprNoDeref(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
result = semExprCheck(c, n, flags)
|
|
if result.typ == nil:
|
|
localError(c.config, n.info, errExprXHasNoType %
|
|
renderTree(result, {renderNoComments}))
|
|
result.typ = errorType(c)
|
|
|
|
proc semSymGenericInstantiation(c: PContext, n: PNode, s: PSym): PNode =
|
|
result = symChoice(c, n, s, scClosed)
|
|
|
|
proc inlineConst(c: PContext, n: PNode, s: PSym): PNode {.inline.} =
|
|
result = copyTree(s.ast)
|
|
if result.isNil:
|
|
localError(c.config, n.info, "constant of type '" & typeToString(s.typ) & "' has no value")
|
|
result = newSymNode(s)
|
|
else:
|
|
result.typ = s.typ
|
|
result.info = n.info
|
|
|
|
type
|
|
TConvStatus = enum
|
|
convOK,
|
|
convNotNeedeed,
|
|
convNotLegal,
|
|
convNotInRange
|
|
|
|
proc checkConversionBetweenObjects(castDest, src: PType; pointers: int): TConvStatus =
|
|
let diff = inheritanceDiff(castDest, src)
|
|
return if diff == high(int) or (pointers > 1 and diff != 0):
|
|
convNotLegal
|
|
else:
|
|
convOK
|
|
|
|
const
|
|
IntegralTypes = {tyBool, tyEnum, tyChar, tyInt..tyUInt64}
|
|
|
|
proc checkConvertible(c: PContext, targetTyp: PType, src: PNode): TConvStatus =
|
|
let srcTyp = src.typ.skipTypes({tyStatic})
|
|
result = convOK
|
|
if sameType(targetTyp, srcTyp) and targetTyp.sym == srcTyp.sym:
|
|
# don't annoy conversions that may be needed on another processor:
|
|
if targetTyp.kind notin IntegralTypes+{tyRange}:
|
|
result = convNotNeedeed
|
|
return
|
|
var d = skipTypes(targetTyp, abstractVar)
|
|
var s = srcTyp
|
|
if s.kind in tyUserTypeClasses and s.isResolvedUserTypeClass:
|
|
s = s.lastSon
|
|
s = skipTypes(s, abstractVar-{tyTypeDesc, tyOwned})
|
|
if s.kind == tyOwned and d.kind != tyOwned:
|
|
s = s.lastSon
|
|
var pointers = 0
|
|
while (d != nil) and (d.kind in {tyPtr, tyRef, tyOwned}):
|
|
if s.kind == tyOwned and d.kind != tyOwned:
|
|
s = s.lastSon
|
|
elif d.kind != s.kind:
|
|
break
|
|
else:
|
|
d = d.lastSon
|
|
s = s.lastSon
|
|
inc pointers
|
|
|
|
let targetBaseTyp = skipTypes(targetTyp, abstractVarRange)
|
|
let srcBaseTyp = skipTypes(srcTyp, abstractVarRange-{tyTypeDesc})
|
|
|
|
if d == nil:
|
|
result = convNotLegal
|
|
elif d.skipTypes(abstractInst).kind == tyObject and s.skipTypes(abstractInst).kind == tyObject:
|
|
result = checkConversionBetweenObjects(d.skipTypes(abstractInst), s.skipTypes(abstractInst), pointers)
|
|
elif (targetBaseTyp.kind in IntegralTypes) and
|
|
(srcBaseTyp.kind in IntegralTypes):
|
|
if targetTyp.kind == tyEnum and srcBaseTyp.kind == tyEnum:
|
|
if c.config.isDefined("nimLegacyConvEnumEnum"):
|
|
message(c.config, src.info, warnUser, "enum to enum conversion is now deprecated")
|
|
else: result = convNotLegal
|
|
# `elif` would be incorrect here
|
|
if targetTyp.kind == tyBool:
|
|
discard "convOk"
|
|
elif targetTyp.isOrdinalType:
|
|
if src.kind in nkCharLit..nkUInt64Lit and
|
|
src.getInt notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp):
|
|
result = convNotInRange
|
|
elif src.kind in nkFloatLit..nkFloat64Lit and
|
|
(classify(src.floatVal) in {fcNan, fcNegInf, fcInf} or
|
|
src.floatVal.int64 notin firstOrd(c.config, targetTyp)..lastOrd(c.config, targetTyp)):
|
|
result = convNotInRange
|
|
elif targetBaseTyp.kind in tyFloat..tyFloat64:
|
|
if src.kind in nkFloatLit..nkFloat64Lit and
|
|
not floatRangeCheck(src.floatVal, targetTyp):
|
|
result = convNotInRange
|
|
elif src.kind in nkCharLit..nkUInt64Lit and
|
|
not floatRangeCheck(src.intVal.float, targetTyp):
|
|
result = convNotInRange
|
|
else:
|
|
# we use d, s here to speed up that operation a bit:
|
|
case cmpTypes(c, d, s)
|
|
of isNone, isGeneric:
|
|
if not compareTypes(targetTyp.skipTypes(abstractVar), srcTyp.skipTypes({tyOwned}), dcEqIgnoreDistinct):
|
|
result = convNotLegal
|
|
else:
|
|
discard
|
|
|
|
proc isCastable(c: PContext; dst, src: PType): bool =
|
|
## Checks whether the source type can be cast to the destination type.
|
|
## Casting is very unrestrictive; casts are allowed as long as
|
|
## castDest.size >= src.size, and typeAllowed(dst, skParam)
|
|
#const
|
|
# castableTypeKinds = {tyInt, tyPtr, tyRef, tyCstring, tyString,
|
|
# tySequence, tyPointer, tyNil, tyOpenArray,
|
|
# tyProc, tySet, tyEnum, tyBool, tyChar}
|
|
let src = src.skipTypes(tyUserTypeClasses)
|
|
if skipTypes(dst, abstractInst-{tyOpenArray}).kind == tyOpenArray:
|
|
return false
|
|
if skipTypes(src, abstractInst-{tyTypeDesc}).kind == tyTypeDesc:
|
|
return false
|
|
if skipTypes(dst, abstractInst).kind == tyBuiltInTypeClass:
|
|
return false
|
|
let conf = c.config
|
|
if conf.selectedGC in {gcArc, gcOrc}:
|
|
let d = skipTypes(dst, abstractInst)
|
|
let s = skipTypes(src, abstractInst)
|
|
if d.kind == tyRef and s.kind == tyRef and s[0].isFinal != d[0].isFinal:
|
|
return false
|
|
|
|
var dstSize, srcSize: BiggestInt
|
|
dstSize = computeSize(conf, dst)
|
|
srcSize = computeSize(conf, src)
|
|
if dstSize == -3 or srcSize == -3: # szUnknownSize
|
|
# The Nim compiler can't detect if it's legal or not.
|
|
# Just assume the programmer knows what he is doing.
|
|
return true
|
|
if dstSize < 0:
|
|
result = false
|
|
elif srcSize < 0:
|
|
result = false
|
|
elif typeAllowed(dst, skParam, c) != nil:
|
|
result = false
|
|
elif dst.kind == tyProc and dst.callConv == ccClosure:
|
|
result = src.kind == tyProc and src.callConv == ccClosure
|
|
else:
|
|
result = (dstSize >= srcSize) or
|
|
(skipTypes(dst, abstractInst).kind in IntegralTypes) or
|
|
(skipTypes(src, abstractInst-{tyTypeDesc}).kind in IntegralTypes)
|
|
if result and src.kind == tyNil:
|
|
result = dst.size <= conf.target.ptrSize
|
|
|
|
proc isSymChoice(n: PNode): bool {.inline.} =
|
|
result = n.kind in nkSymChoices
|
|
|
|
proc maybeLiftType(t: var PType, c: PContext, info: TLineInfo) =
|
|
# XXX: liftParamType started to perform addDecl
|
|
# we could do that instead in semTypeNode by snooping for added
|
|
# gnrc. params, then it won't be necessary to open a new scope here
|
|
openScope(c)
|
|
var lifted = liftParamType(c, skType, newNodeI(nkArgList, info),
|
|
t, ":anon", info)
|
|
closeScope(c)
|
|
if lifted != nil: t = lifted
|
|
|
|
proc isOwnedSym(c: PContext; n: PNode): bool =
|
|
let s = qualifiedLookUp(c, n, {})
|
|
result = s != nil and sfSystemModule in s.owner.flags and s.name.s == "owned"
|
|
|
|
proc semConv(c: PContext, n: PNode): PNode =
|
|
if n.len != 2:
|
|
localError(c.config, n.info, "a type conversion takes exactly one argument")
|
|
return n
|
|
|
|
result = newNodeI(nkConv, n.info)
|
|
|
|
var targetType = semTypeNode(c, n[0], nil)
|
|
case targetType.kind
|
|
of tyTypeDesc:
|
|
internalAssert c.config, targetType.len > 0
|
|
if targetType.base.kind == tyNone:
|
|
return semTypeOf(c, n)
|
|
else:
|
|
targetType = targetType.base
|
|
of tyStatic:
|
|
var evaluated = semStaticExpr(c, n[1])
|
|
if evaluated.kind == nkType or evaluated.typ.kind == tyTypeDesc:
|
|
result = n
|
|
result.typ = c.makeTypeDesc semStaticType(c, evaluated, nil)
|
|
return
|
|
elif targetType.base.kind == tyNone:
|
|
return evaluated
|
|
else:
|
|
targetType = targetType.base
|
|
else: discard
|
|
|
|
maybeLiftType(targetType, c, n[0].info)
|
|
|
|
if targetType.kind in {tySink, tyLent} or isOwnedSym(c, n[0]):
|
|
let baseType = semTypeNode(c, n[1], nil).skipTypes({tyTypeDesc})
|
|
let t = newTypeS(targetType.kind, c)
|
|
if targetType.kind == tyOwned:
|
|
t.flags.incl tfHasOwned
|
|
t.rawAddSonNoPropagationOfTypeFlags baseType
|
|
result = newNodeI(nkType, n.info)
|
|
result.typ = makeTypeDesc(c, t)
|
|
return
|
|
|
|
result.add copyTree(n[0])
|
|
|
|
# special case to make MyObject(x = 3) produce a nicer error message:
|
|
if n[1].kind == nkExprEqExpr and
|
|
targetType.skipTypes(abstractPtrs).kind == tyObject:
|
|
localError(c.config, n.info, "object construction uses ':', not '='")
|
|
var op = semExprWithType(c, n[1])
|
|
if targetType.kind != tyGenericParam and targetType.isMetaType:
|
|
let final = inferWithMetatype(c, targetType, op, true)
|
|
result.add final
|
|
result.typ = final.typ
|
|
return
|
|
|
|
result.typ = targetType
|
|
# XXX op is overwritten later on, this is likely added too early
|
|
# here or needs to be overwritten too then.
|
|
result.add op
|
|
|
|
if targetType.kind == tyGenericParam:
|
|
result.typ = makeTypeFromExpr(c, copyTree(result))
|
|
return result
|
|
|
|
if not isSymChoice(op):
|
|
let status = checkConvertible(c, result.typ, op)
|
|
case status
|
|
of convOK:
|
|
# handle SomeProcType(SomeGenericProc)
|
|
if op.kind == nkSym and op.sym.isGenericRoutine:
|
|
result[1] = fitNode(c, result.typ, result[1], result.info)
|
|
elif op.kind in {nkPar, nkTupleConstr} and targetType.kind == tyTuple:
|
|
op = fitNode(c, targetType, op, result.info)
|
|
of convNotNeedeed:
|
|
message(c.config, n.info, hintConvFromXtoItselfNotNeeded, result.typ.typeToString)
|
|
of convNotLegal:
|
|
result = fitNode(c, result.typ, result[1], result.info)
|
|
if result == nil:
|
|
localError(c.config, n.info, "illegal conversion from '$1' to '$2'" %
|
|
[op.typ.typeToString, result.typ.typeToString])
|
|
of convNotInRange:
|
|
let value =
|
|
if op.kind in {nkCharLit..nkUInt64Lit}: $op.getInt else: $op.getFloat
|
|
localError(c.config, n.info, errGenerated, value & " can't be converted to " &
|
|
result.typ.typeToString)
|
|
else:
|
|
for i in 0..<op.len:
|
|
let it = op[i]
|
|
let status = checkConvertible(c, result.typ, it)
|
|
if status in {convOK, convNotNeedeed}:
|
|
markUsed(c, n.info, it.sym)
|
|
onUse(n.info, it.sym)
|
|
markIndirect(c, it.sym)
|
|
return it
|
|
errorUseQualifier(c, n.info, op[0].sym)
|
|
|
|
proc semCast(c: PContext, n: PNode): PNode =
|
|
## Semantically analyze a casting ("cast[type](param)")
|
|
checkSonsLen(n, 2, c.config)
|
|
let targetType = semTypeNode(c, n[0], nil)
|
|
let castedExpr = semExprWithType(c, n[1])
|
|
if tfHasMeta in targetType.flags:
|
|
localError(c.config, n[0].info, "cannot cast to a non concrete type: '$1'" % $targetType)
|
|
if not isCastable(c, targetType, castedExpr.typ):
|
|
let tar = $targetType
|
|
let alt = typeToString(targetType, preferDesc)
|
|
let msg = if tar != alt: tar & "=" & alt else: tar
|
|
localError(c.config, n.info, "expression cannot be cast to " & msg)
|
|
result = newNodeI(nkCast, n.info)
|
|
result.typ = targetType
|
|
result.add copyTree(n[0])
|
|
result.add castedExpr
|
|
|
|
proc semLowHigh(c: PContext, n: PNode, m: TMagic): PNode =
|
|
const
|
|
opToStr: array[mLow..mHigh, string] = ["low", "high"]
|
|
if n.len != 2:
|
|
localError(c.config, n.info, errXExpectsTypeOrValue % opToStr[m])
|
|
else:
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType})
|
|
var typ = skipTypes(n[1].typ, abstractVarRange + {tyTypeDesc, tyUserTypeClassInst})
|
|
case typ.kind
|
|
of tySequence, tyString, tyCstring, tyOpenArray, tyVarargs:
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
of tyArray:
|
|
n.typ = typ[0] # indextype
|
|
if n.typ.kind == tyRange and emptyRange(n.typ.n[0], n.typ.n[1]): #Invalid range
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
of tyInt..tyInt64, tyChar, tyBool, tyEnum, tyUInt..tyUInt64, tyFloat..tyFloat64:
|
|
n.typ = n[1].typ.skipTypes({tyTypeDesc})
|
|
of tyGenericParam:
|
|
# prepare this for resolving in semtypinst:
|
|
# we must use copyTree here in order to avoid creating a cycle
|
|
# that could easily turn into an infinite recursion in semtypinst
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
else:
|
|
localError(c.config, n.info, "invalid argument for: " & opToStr[m])
|
|
result = n
|
|
|
|
proc fixupStaticType(c: PContext, n: PNode) =
|
|
# This proc can be applied to evaluated expressions to assign
|
|
# them a static type.
|
|
#
|
|
# XXX: with implicit static, this should not be necessary,
|
|
# because the output type of operations such as `semConstExpr`
|
|
# should be a static type (as well as the type of any other
|
|
# expression that can be implicitly evaluated). For now, we
|
|
# apply this measure only in code that is enlightened to work
|
|
# with static types.
|
|
if n.typ.kind != tyStatic:
|
|
n.typ = newTypeWithSons(getCurrOwner(c), tyStatic, @[n.typ], c.idgen)
|
|
n.typ.n = n # XXX: cycles like the one here look dangerous.
|
|
# Consider using `n.copyTree`
|
|
|
|
proc isOpImpl(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
internalAssert c.config,
|
|
n.len == 3 and
|
|
n[1].typ != nil and
|
|
n[2].kind in {nkStrLit..nkTripleStrLit, nkType}
|
|
|
|
var
|
|
res = false
|
|
t1 = n[1].typ
|
|
t2 = n[2].typ
|
|
|
|
if t1.kind == tyTypeDesc and t2.kind != tyTypeDesc:
|
|
t1 = t1.base
|
|
|
|
if n[2].kind in {nkStrLit..nkTripleStrLit}:
|
|
case n[2].strVal.normalize
|
|
of "closure":
|
|
let t = skipTypes(t1, abstractRange)
|
|
res = t.kind == tyProc and
|
|
t.callConv == ccClosure
|
|
of "iterator":
|
|
let t = skipTypes(t1, abstractRange)
|
|
res = t.kind == tyProc and
|
|
t.callConv == ccClosure and
|
|
tfIterator in t.flags
|
|
else:
|
|
res = false
|
|
else:
|
|
if t1.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct}).kind != tyGenericBody:
|
|
maybeLiftType(t2, c, n.info)
|
|
else:
|
|
#[
|
|
for this case:
|
|
type Foo = object[T]
|
|
Foo is Foo
|
|
]#
|
|
discard
|
|
var m = newCandidate(c, t2)
|
|
if efExplain in flags:
|
|
m.diagnostics = @[]
|
|
m.diagnosticsEnabled = true
|
|
res = typeRel(m, t2, t1) >= isSubtype # isNone
|
|
# `res = sameType(t1, t2)` would be wrong, e.g. for `int is (int|float)`
|
|
|
|
result = newIntNode(nkIntLit, ord(res))
|
|
result.typ = n.typ
|
|
|
|
proc semIs(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
if n.len != 3:
|
|
localError(c.config, n.info, "'is' operator takes 2 arguments")
|
|
|
|
let boolType = getSysType(c.graph, n.info, tyBool)
|
|
result = n
|
|
n.typ = boolType
|
|
var liftLhs = true
|
|
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType, efWantIterator})
|
|
if n[2].kind notin {nkStrLit..nkTripleStrLit}:
|
|
let t2 = semTypeNode(c, n[2], nil)
|
|
n[2] = newNodeIT(nkType, n[2].info, t2)
|
|
if t2.kind == tyStatic:
|
|
let evaluated = tryConstExpr(c, n[1])
|
|
if evaluated != nil:
|
|
c.fixupStaticType(evaluated)
|
|
n[1] = evaluated
|
|
else:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.typ = boolType
|
|
return
|
|
elif t2.kind == tyTypeDesc and
|
|
(t2.base.kind == tyNone or tfExplicit in t2.flags):
|
|
# When the right-hand side is an explicit type, we must
|
|
# not allow regular values to be matched against the type:
|
|
liftLhs = false
|
|
else:
|
|
n[2] = semExpr(c, n[2])
|
|
|
|
var lhsType = n[1].typ
|
|
if lhsType.kind != tyTypeDesc:
|
|
if liftLhs:
|
|
n[1] = makeTypeSymNode(c, lhsType, n[1].info)
|
|
lhsType = n[1].typ
|
|
else:
|
|
if lhsType.base.kind == tyNone or
|
|
(c.inGenericContext > 0 and lhsType.base.containsGenericType):
|
|
# BUGFIX: don't evaluate this too early: ``T is void``
|
|
return
|
|
|
|
result = isOpImpl(c, n, flags)
|
|
|
|
proc semOpAux(c: PContext, n: PNode) =
|
|
const flags = {efDetermineType}
|
|
for i in 1..<n.len:
|
|
var a = n[i]
|
|
if a.kind == nkExprEqExpr and a.len == 2:
|
|
let info = a[0].info
|
|
a[0] = newIdentNode(considerQuotedIdent(c, a[0], a), info)
|
|
a[1] = semExprWithType(c, a[1], flags)
|
|
a.typ = a[1].typ
|
|
else:
|
|
n[i] = semExprWithType(c, a, flags)
|
|
|
|
proc overloadedCallOpr(c: PContext, n: PNode): PNode =
|
|
# quick check if there is *any* () operator overloaded:
|
|
var par = getIdent(c.cache, "()")
|
|
var amb = false
|
|
if searchInScopes(c, par, amb) == nil:
|
|
result = nil
|
|
else:
|
|
result = newNodeI(nkCall, n.info)
|
|
result.add newIdentNode(par, n.info)
|
|
for i in 0..<n.len: result.add n[i]
|
|
result = semExpr(c, result)
|
|
|
|
proc changeType(c: PContext; n: PNode, newType: PType, check: bool) =
|
|
case n.kind
|
|
of nkCurly, nkBracket:
|
|
for i in 0..<n.len:
|
|
changeType(c, n[i], elemType(newType), check)
|
|
of nkPar, nkTupleConstr:
|
|
let tup = newType.skipTypes({tyGenericInst, tyAlias, tySink, tyDistinct})
|
|
if tup.kind != tyTuple:
|
|
if tup.kind == tyObject: return
|
|
globalError(c.config, n.info, "no tuple type for constructor")
|
|
elif n.len > 0 and n[0].kind == nkExprColonExpr:
|
|
# named tuple?
|
|
for i in 0..<n.len:
|
|
var m = n[i][0]
|
|
if m.kind != nkSym:
|
|
globalError(c.config, m.info, "invalid tuple constructor")
|
|
return
|
|
if tup.n != nil:
|
|
var f = getSymFromList(tup.n, m.sym.name)
|
|
if f == nil:
|
|
globalError(c.config, m.info, "unknown identifier: " & m.sym.name.s)
|
|
return
|
|
changeType(c, n[i][1], f.typ, check)
|
|
else:
|
|
changeType(c, n[i][1], tup[i], check)
|
|
else:
|
|
for i in 0..<n.len:
|
|
changeType(c, n[i], tup[i], check)
|
|
when false:
|
|
var m = n[i]
|
|
var a = newNodeIT(nkExprColonExpr, m.info, newType[i])
|
|
a.add newSymNode(newType.n[i].sym)
|
|
a.add m
|
|
changeType(m, tup[i], check)
|
|
of nkCharLit..nkUInt64Lit:
|
|
if check and n.kind != nkUInt64Lit and not sameType(n.typ, newType):
|
|
let value = n.intVal
|
|
if value < firstOrd(c.config, newType) or value > lastOrd(c.config, newType):
|
|
localError(c.config, n.info, "cannot convert " & $value &
|
|
" to " & typeToString(newType))
|
|
of nkFloatLit..nkFloat64Lit:
|
|
if check and not floatRangeCheck(n.floatVal, newType):
|
|
localError(c.config, n.info, errFloatToString % [$n.floatVal, typeToString(newType)])
|
|
else: discard
|
|
n.typ = newType
|
|
|
|
proc arrayConstrType(c: PContext, n: PNode): PType =
|
|
var typ = newTypeS(tyArray, c)
|
|
rawAddSon(typ, nil) # index type
|
|
if n.len == 0:
|
|
rawAddSon(typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
else:
|
|
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
addSonSkipIntLit(typ, t, c.idgen)
|
|
typ[0] = makeRangeType(c, 0, n.len - 1, n.info)
|
|
result = typ
|
|
|
|
proc semArrayConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = newNodeI(nkBracket, n.info)
|
|
result.typ = newTypeS(tyArray, c)
|
|
rawAddSon(result.typ, nil) # index type
|
|
var
|
|
firstIndex, lastIndex: Int128
|
|
indexType = getSysType(c.graph, n.info, tyInt)
|
|
lastValidIndex = lastOrd(c.config, indexType)
|
|
if n.len == 0:
|
|
rawAddSon(result.typ, newTypeS(tyEmpty, c)) # needs an empty basetype!
|
|
lastIndex = toInt128(-1)
|
|
else:
|
|
var x = n[0]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
var idx = semConstExpr(c, x[0])
|
|
if not isOrdinalType(idx.typ):
|
|
localError(c.config, idx.info, "expected ordinal value for array " &
|
|
"index, got '$1'" % renderTree(idx))
|
|
else:
|
|
firstIndex = getOrdValue(idx)
|
|
lastIndex = firstIndex
|
|
indexType = idx.typ
|
|
lastValidIndex = lastOrd(c.config, indexType)
|
|
x = x[1]
|
|
|
|
let yy = semExprWithType(c, x)
|
|
var typ = yy.typ
|
|
result.add yy
|
|
#var typ = skipTypes(result[0].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal})
|
|
for i in 1..<n.len:
|
|
if lastIndex == lastValidIndex:
|
|
let validIndex = makeRangeType(c, toInt64(firstIndex), toInt64(lastValidIndex), n.info,
|
|
indexType)
|
|
localError(c.config, n.info, "size of array exceeds range of index " &
|
|
"type '$1' by $2 elements" % [typeToString(validIndex), $(n.len-i)])
|
|
|
|
x = n[i]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
var idx = semConstExpr(c, x[0])
|
|
idx = fitNode(c, indexType, idx, x.info)
|
|
if lastIndex+1 != getOrdValue(idx):
|
|
localError(c.config, x.info, "invalid order in array constructor")
|
|
x = x[1]
|
|
|
|
let xx = semExprWithType(c, x, flags*{efAllowDestructor})
|
|
result.add xx
|
|
typ = commonType(c, typ, xx.typ)
|
|
#n[i] = semExprWithType(c, x, flags*{efAllowDestructor})
|
|
#result.add fitNode(c, typ, n[i])
|
|
inc(lastIndex)
|
|
addSonSkipIntLit(result.typ, typ, c.idgen)
|
|
for i in 0..<result.len:
|
|
result[i] = fitNode(c, typ, result[i], result[i].info)
|
|
result.typ[0] = makeRangeType(c, toInt64(firstIndex), toInt64(lastIndex), n.info,
|
|
indexType)
|
|
|
|
proc fixAbstractType(c: PContext, n: PNode) =
|
|
for i in 1..<n.len:
|
|
let it = n[i]
|
|
# do not get rid of nkHiddenSubConv for OpenArrays, the codegen needs it:
|
|
if it.kind == nkHiddenSubConv and
|
|
skipTypes(it.typ, abstractVar).kind notin {tyOpenArray, tyVarargs}:
|
|
if skipTypes(it[1].typ, abstractVar).kind in
|
|
{tyNil, tyTuple, tySet} or it[1].isArrayConstr:
|
|
var s = skipTypes(it.typ, abstractVar)
|
|
if s.kind != tyUntyped:
|
|
changeType(c, it[1], s, check=true)
|
|
n[i] = it[1]
|
|
|
|
proc isAssignable(c: PContext, n: PNode; isUnsafeAddr=false): TAssignableResult =
|
|
result = parampatterns.isAssignable(c.p.owner, n, isUnsafeAddr)
|
|
|
|
proc isUnresolvedSym(s: PSym): bool =
|
|
result = s.kind == skGenericParam
|
|
if not result and s.typ != nil:
|
|
result = tfInferrableStatic in s.typ.flags or
|
|
(s.kind == skParam and s.typ.isMetaType) or
|
|
(s.kind == skType and
|
|
s.typ.flags * {tfGenericTypeParam, tfImplicitTypeParam} != {})
|
|
|
|
proc hasUnresolvedArgs(c: PContext, n: PNode): bool =
|
|
# Checks whether an expression depends on generic parameters that
|
|
# don't have bound values yet. E.g. this could happen in situations
|
|
# such as:
|
|
# type Slot[T] = array[T.size, byte]
|
|
# proc foo[T](x: default(T))
|
|
#
|
|
# Both static parameter and type parameters can be unresolved.
|
|
case n.kind
|
|
of nkSym:
|
|
return isUnresolvedSym(n.sym)
|
|
of nkIdent, nkAccQuoted:
|
|
let ident = considerQuotedIdent(c, n)
|
|
var amb = false
|
|
let sym = searchInScopes(c, ident, amb)
|
|
if sym != nil:
|
|
return isUnresolvedSym(sym)
|
|
else:
|
|
return false
|
|
else:
|
|
for i in 0..<n.safeLen:
|
|
if hasUnresolvedArgs(c, n[i]): return true
|
|
return false
|
|
|
|
proc newHiddenAddrTaken(c: PContext, n: PNode): PNode =
|
|
if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
|
|
sfCompileToCpp in c.module.flags):
|
|
checkSonsLen(n, 1, c.config)
|
|
result = n[0]
|
|
else:
|
|
result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
|
|
result.add n
|
|
if isAssignable(c, n) notin {arLValue, arLocalLValue}:
|
|
localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))
|
|
|
|
proc analyseIfAddressTaken(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
case n.kind
|
|
of nkSym:
|
|
# n.sym.typ can be nil in 'check' mode ...
|
|
if n.sym.typ != nil and
|
|
skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
incl(n.sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkDotExpr:
|
|
checkSonsLen(n, 2, c.config)
|
|
if n[1].kind != nkSym:
|
|
internalError(c.config, n.info, "analyseIfAddressTaken")
|
|
return
|
|
if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
incl(n[1].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
|
|
if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
|
|
result = newHiddenAddrTaken(c, n)
|
|
else:
|
|
result = newHiddenAddrTaken(c, n)
|
|
|
|
proc analyseIfAddressTakenInCall(c: PContext, n: PNode) =
|
|
checkMinSonsLen(n, 1, c.config)
|
|
const
|
|
FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
|
|
mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
|
|
mAppendSeqElem, mNewSeq, mReset, mShallowCopy, mDeepCopy, mMove,
|
|
mWasMoved}
|
|
|
|
# get the real type of the callee
|
|
# it may be a proc var with a generic alias type, so we skip over them
|
|
var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
|
|
|
|
if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
|
|
# BUGFIX: check for L-Value still needs to be done for the arguments!
|
|
# note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
|
|
for i in 1..<n.len:
|
|
if i < t.len and t[i] != nil and
|
|
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
|
|
let it = n[i]
|
|
if isAssignable(c, it) notin {arLValue, arLocalLValue}:
|
|
if it.kind != nkHiddenAddr:
|
|
localError(c.config, it.info, errVarForOutParamNeededX % $it)
|
|
# bug #5113: disallow newSeq(result) where result is a 'var T':
|
|
if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
|
|
var arg = n[1] #.skipAddr
|
|
if arg.kind == nkHiddenDeref: arg = arg[0]
|
|
if arg.kind == nkSym and arg.sym.kind == skResult and
|
|
arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
|
|
localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))
|
|
|
|
return
|
|
for i in 1..<n.len:
|
|
let n = if n.kind == nkHiddenDeref: n[0] else: n
|
|
if n[i].kind == nkHiddenCallConv:
|
|
# we need to recurse explicitly here as converters can create nested
|
|
# calls and then they wouldn't be analysed otherwise
|
|
analyseIfAddressTakenInCall(c, n[i])
|
|
if i < t.len and
|
|
skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
|
|
if n[i].kind != nkHiddenAddr:
|
|
n[i] = analyseIfAddressTaken(c, n[i])
|
|
|
|
include semmagic
|
|
|
|
proc evalAtCompileTime(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
if n.kind notin nkCallKinds or n[0].kind != nkSym: return
|
|
var callee = n[0].sym
|
|
# workaround for bug #537 (overly aggressive inlining leading to
|
|
# wrong NimNode semantics):
|
|
if n.typ != nil and tfTriggersCompileTime in n.typ.flags: return
|
|
|
|
# constant folding that is necessary for correctness of semantic pass:
|
|
if callee.magic != mNone and callee.magic in ctfeWhitelist and n.typ != nil:
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n[0])
|
|
var allConst = true
|
|
for i in 1..<n.len:
|
|
var a = getConstExpr(c.module, n[i], c.idgen, c.graph)
|
|
if a == nil:
|
|
allConst = false
|
|
a = n[i]
|
|
if a.kind == nkHiddenStdConv: a = a[1]
|
|
call.add(a)
|
|
if allConst:
|
|
result = semfold.getConstExpr(c.module, call, c.idgen, c.graph)
|
|
if result.isNil: result = n
|
|
else: return result
|
|
|
|
block maybeLabelAsStatic:
|
|
# XXX: temporary work-around needed for tlateboundstatic.
|
|
# This is certainly not correct, but it will get the job
|
|
# done until we have a more robust infrastructure for
|
|
# implicit statics.
|
|
if n.len > 1:
|
|
for i in 1..<n.len:
|
|
# see bug #2113, it's possible that n[i].typ for errornous code:
|
|
if n[i].typ.isNil or n[i].typ.kind != tyStatic or
|
|
tfUnresolved notin n[i].typ.flags:
|
|
break maybeLabelAsStatic
|
|
n.typ = newTypeWithSons(c, tyStatic, @[n.typ])
|
|
n.typ.flags.incl tfUnresolved
|
|
|
|
# optimization pass: not necessary for correctness of the semantic pass
|
|
if callee.kind == skConst or
|
|
{sfNoSideEffect, sfCompileTime} * callee.flags != {} and
|
|
{sfForward, sfImportc} * callee.flags == {} and n.typ != nil:
|
|
|
|
if callee.kind != skConst and
|
|
sfCompileTime notin callee.flags and
|
|
optImplicitStatic notin c.config.options: return
|
|
|
|
if callee.magic notin ctfeWhitelist: return
|
|
|
|
if callee.kind notin {skProc, skFunc, skConverter, skConst} or callee.isGenericRoutine:
|
|
return
|
|
|
|
if n.typ != nil and typeAllowed(n.typ, skConst, c) != nil: return
|
|
|
|
var call = newNodeIT(nkCall, n.info, n.typ)
|
|
call.add(n[0])
|
|
for i in 1..<n.len:
|
|
let a = getConstExpr(c.module, n[i], c.idgen, c.graph)
|
|
if a == nil: return n
|
|
call.add(a)
|
|
|
|
#echo "NOW evaluating at compile time: ", call.renderTree
|
|
if c.inStaticContext == 0 or sfNoSideEffect in callee.flags:
|
|
if sfCompileTime in callee.flags:
|
|
result = evalStaticExpr(c.module, c.idgen, c.graph, call, c.p.owner)
|
|
if result.isNil:
|
|
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(call))
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
else:
|
|
result = evalConstExpr(c.module, c.idgen, c.graph, call)
|
|
if result.isNil: result = n
|
|
else: result = fixupTypeAfterEval(c, result, n)
|
|
else:
|
|
result = n
|
|
#if result != n:
|
|
# echo "SUCCESS evaluated at compile time: ", call.renderTree
|
|
|
|
proc semStaticExpr(c: PContext, n: PNode): PNode =
|
|
inc c.inStaticContext
|
|
openScope(c)
|
|
let a = semExprWithType(c, n)
|
|
closeScope(c)
|
|
dec c.inStaticContext
|
|
if a.findUnresolvedStatic != nil: return a
|
|
result = evalStaticExpr(c.module, c.idgen, c.graph, a, c.p.owner)
|
|
if result.isNil:
|
|
localError(c.config, n.info, errCannotInterpretNodeX % renderTree(n))
|
|
result = c.graph.emptyNode
|
|
else:
|
|
result = fixupTypeAfterEval(c, result, a)
|
|
|
|
proc semOverloadedCallAnalyseEffects(c: PContext, n: PNode, nOrig: PNode,
|
|
flags: TExprFlags): PNode =
|
|
if flags*{efInTypeof, efWantIterator, efWantIterable} != {}:
|
|
# consider: 'for x in pReturningArray()' --> we don't want the restriction
|
|
# to 'skIterator' anymore; skIterator is preferred in sigmatch already
|
|
# for typeof support.
|
|
# for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate, skIterator}, flags)
|
|
else:
|
|
result = semOverloadedCall(c, n, nOrig,
|
|
{skProc, skFunc, skMethod, skConverter, skMacro, skTemplate}, flags)
|
|
|
|
if result != nil:
|
|
if result[0].kind != nkSym:
|
|
internalError(c.config, "semOverloadedCallAnalyseEffects")
|
|
return
|
|
let callee = result[0].sym
|
|
case callee.kind
|
|
of skMacro, skTemplate: discard
|
|
else:
|
|
if callee.kind == skIterator and callee.id == c.p.owner.id:
|
|
localError(c.config, n.info, errRecursiveDependencyIteratorX % callee.name.s)
|
|
# error correction, prevents endless for loop elimination in transf.
|
|
# See bug #2051:
|
|
result[0] = newSymNode(errorSym(c, n))
|
|
elif callee.kind == skIterator:
|
|
if efWantIterable in flags:
|
|
let typ = newTypeS(tyIterable, c)
|
|
rawAddSon(typ, result.typ)
|
|
result.typ = typ
|
|
|
|
proc semObjConstr(c: PContext, n: PNode, flags: TExprFlags): PNode
|
|
|
|
proc resolveIndirectCall(c: PContext; n, nOrig: PNode;
|
|
t: PType): TCandidate =
|
|
initCandidate(c, result, t)
|
|
matches(c, n, nOrig, result)
|
|
if result.state != csMatch:
|
|
# try to deref the first argument:
|
|
if implicitDeref in c.features and canDeref(n):
|
|
n[1] = n[1].tryDeref
|
|
initCandidate(c, result, t)
|
|
matches(c, n, nOrig, result)
|
|
|
|
proc bracketedMacro(n: PNode): PSym =
|
|
if n.len >= 1 and n[0].kind == nkSym:
|
|
result = n[0].sym
|
|
if result.kind notin {skMacro, skTemplate}:
|
|
result = nil
|
|
|
|
proc setGenericParams(c: PContext, n: PNode) =
|
|
for i in 1..<n.len:
|
|
n[i].typ = semTypeNode(c, n[i], nil)
|
|
|
|
proc afterCallActions(c: PContext; n, orig: PNode, flags: TExprFlags): PNode =
|
|
if efNoSemCheck notin flags and n.typ != nil and n.typ.kind == tyError:
|
|
return errorNode(c, n)
|
|
|
|
result = n
|
|
let callee = result[0].sym
|
|
case callee.kind
|
|
of skMacro: result = semMacroExpr(c, result, orig, callee, flags)
|
|
of skTemplate: result = semTemplateExpr(c, result, callee, flags)
|
|
else:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
when false:
|
|
if result.typ != nil and
|
|
not (result.typ.kind == tySequence and result.typ[0].kind == tyEmpty):
|
|
liftTypeBoundOps(c, result.typ, n.info)
|
|
#result = patchResolvedTypeBoundOp(c, result)
|
|
if c.matchedConcept == nil:
|
|
result = evalAtCompileTime(c, result)
|
|
|
|
proc semIndirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = nil
|
|
checkMinSonsLen(n, 1, c.config)
|
|
var prc = n[0]
|
|
if n[0].kind == nkDotExpr:
|
|
checkSonsLen(n[0], 2, c.config)
|
|
let n0 = semFieldAccess(c, n[0])
|
|
if n0.kind == nkDotCall:
|
|
# it is a static call!
|
|
result = n0
|
|
result.transitionSonsKind(nkCall)
|
|
result.flags.incl nfExplicitCall
|
|
for i in 1..<n.len: result.add n[i]
|
|
return semExpr(c, result, flags)
|
|
else:
|
|
n[0] = n0
|
|
else:
|
|
n[0] = semExpr(c, n[0], {efInCall})
|
|
let t = n[0].typ
|
|
if t != nil and t.kind in {tyVar, tyLent}:
|
|
n[0] = newDeref(n[0])
|
|
elif n[0].kind == nkBracketExpr:
|
|
let s = bracketedMacro(n[0])
|
|
if s != nil:
|
|
setGenericParams(c, n[0])
|
|
return semDirectOp(c, n, flags)
|
|
|
|
let nOrig = n.copyTree
|
|
semOpAux(c, n)
|
|
var t: PType = nil
|
|
if n[0].typ != nil:
|
|
t = skipTypes(n[0].typ, abstractInst+{tyOwned}-{tyTypeDesc, tyDistinct})
|
|
if t != nil and t.kind == tyProc:
|
|
# This is a proc variable, apply normal overload resolution
|
|
let m = resolveIndirectCall(c, n, nOrig, t)
|
|
if m.state != csMatch:
|
|
if c.config.m.errorOutputs == {}:
|
|
# speed up error generation:
|
|
globalError(c.config, n.info, "type mismatch")
|
|
return c.graph.emptyNode
|
|
else:
|
|
var hasErrorType = false
|
|
var msg = "type mismatch: got <"
|
|
for i in 1..<n.len:
|
|
if i > 1: msg.add(", ")
|
|
let nt = n[i].typ
|
|
msg.add(typeToString(nt))
|
|
if nt.kind == tyError:
|
|
hasErrorType = true
|
|
break
|
|
if not hasErrorType:
|
|
let typ = n[0].typ
|
|
msg.add(">\nbut expected one of: \n" &
|
|
typeToString(typ))
|
|
# prefer notin preferToResolveSymbols
|
|
# t.sym != nil
|
|
# sfAnon notin t.sym.flags
|
|
# t.kind != tySequence(It is tyProc)
|
|
if typ.sym != nil and sfAnon notin typ.sym.flags and
|
|
typ.kind == tyProc:
|
|
# when can `typ.sym != nil` ever happen?
|
|
msg.add(" = " & typeToString(typ, preferDesc))
|
|
msg.addDeclaredLocMaybe(c.config, typ)
|
|
localError(c.config, n.info, msg)
|
|
return errorNode(c, n)
|
|
result = nil
|
|
else:
|
|
result = m.call
|
|
instGenericConvertersSons(c, result, m)
|
|
|
|
elif t != nil and t.kind == tyTypeDesc:
|
|
if n.len == 1: return semObjConstr(c, n, flags)
|
|
return semConv(c, n)
|
|
else:
|
|
result = overloadedCallOpr(c, n)
|
|
# Now that nkSym does not imply an iteration over the proc/iterator space,
|
|
# the old ``prc`` (which is likely an nkIdent) has to be restored:
|
|
if result == nil:
|
|
# XXX: hmm, what kind of symbols will end up here?
|
|
# do we really need to try the overload resolution?
|
|
n[0] = prc
|
|
nOrig[0] = prc
|
|
n.flags.incl nfExprCall
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil: return errorNode(c, n)
|
|
elif result.kind notin nkCallKinds:
|
|
# the semExpr() in overloadedCallOpr can even break this condition!
|
|
# See bug #904 of how to trigger it:
|
|
return result
|
|
#result = afterCallActions(c, result, nOrig, flags)
|
|
if result[0].kind == nkSym:
|
|
result = afterCallActions(c, result, nOrig, flags)
|
|
else:
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc semDirectOp(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this seems to be a hotspot in the compiler!
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result != nil: result = afterCallActions(c, result, nOrig, flags)
|
|
else: result = errorNode(c, n)
|
|
|
|
proc buildEchoStmt(c: PContext, n: PNode): PNode =
|
|
# we MUST not check 'n' for semantics again here! But for now we give up:
|
|
result = newNodeI(nkCall, n.info)
|
|
let e = systemModuleSym(c.graph, getIdent(c.cache, "echo"))
|
|
if e != nil:
|
|
result.add(newSymNode(e))
|
|
else:
|
|
result.add localErrorNode(c, n, "system needs: echo")
|
|
result.add(n)
|
|
result = semExpr(c, result)
|
|
|
|
proc semExprNoType(c: PContext, n: PNode): PNode =
|
|
let isPush = c.config.hasHint(hintExtendedContext)
|
|
if isPush: pushInfoContext(c.config, n.info)
|
|
result = semExpr(c, n, {efWantStmt})
|
|
discardCheck(c, result, {})
|
|
if isPush: popInfoContext(c.config)
|
|
|
|
proc isTypeExpr(n: PNode): bool =
|
|
case n.kind
|
|
of nkType, nkTypeOfExpr: result = true
|
|
of nkSym: result = n.sym.kind == skType
|
|
else: result = false
|
|
|
|
proc createSetType(c: PContext; baseType: PType): PType =
|
|
assert baseType != nil
|
|
result = newTypeS(tySet, c)
|
|
rawAddSon(result, baseType)
|
|
|
|
proc lookupInRecordAndBuildCheck(c: PContext, n, r: PNode, field: PIdent,
|
|
check: var PNode): PSym =
|
|
# transform in a node that contains the runtime check for the
|
|
# field, if it is in a case-part...
|
|
result = nil
|
|
case r.kind
|
|
of nkRecList:
|
|
for i in 0..<r.len:
|
|
result = lookupInRecordAndBuildCheck(c, n, r[i], field, check)
|
|
if result != nil: return
|
|
of nkRecCase:
|
|
checkMinSonsLen(r, 2, c.config)
|
|
if (r[0].kind != nkSym): illFormedAst(r, c.config)
|
|
result = lookupInRecordAndBuildCheck(c, n, r[0], field, check)
|
|
if result != nil: return
|
|
let setType = createSetType(c, r[0].typ)
|
|
var s = newNodeIT(nkCurly, r.info, setType)
|
|
for i in 1..<r.len:
|
|
var it = r[i]
|
|
case it.kind
|
|
of nkOfBranch:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result == nil:
|
|
for j in 0..<it.len-1: s.add copyTree(it[j])
|
|
else:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
check.add c.graph.emptyNode # make space for access node
|
|
s = newNodeIT(nkCurly, n.info, setType)
|
|
for j in 0..<it.len - 1: s.add copyTree(it[j])
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
|
|
inExpr.add s
|
|
inExpr.add copyTree(r[0])
|
|
check.add inExpr
|
|
#check.add semExpr(c, inExpr)
|
|
return
|
|
of nkElse:
|
|
result = lookupInRecordAndBuildCheck(c, n, lastSon(it), field, check)
|
|
if result != nil:
|
|
if check == nil:
|
|
check = newNodeI(nkCheckedFieldExpr, n.info)
|
|
check.add c.graph.emptyNode # make space for access node
|
|
var inExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
inExpr.add newSymNode(getSysMagic(c.graph, n.info, "contains", mInSet), n.info)
|
|
inExpr.add s
|
|
inExpr.add copyTree(r[0])
|
|
var notExpr = newNodeIT(nkCall, n.info, getSysType(c.graph, n.info, tyBool))
|
|
notExpr.add newSymNode(getSysMagic(c.graph, n.info, "not", mNot), n.info)
|
|
notExpr.add inExpr
|
|
check.add notExpr
|
|
return
|
|
else: illFormedAst(it, c.config)
|
|
of nkSym:
|
|
if r.sym.name.id == field.id: result = r.sym
|
|
else: illFormedAst(n, c.config)
|
|
|
|
const
|
|
tyTypeParamsHolders = {tyGenericInst, tyCompositeTypeClass}
|
|
tyDotOpTransparent = {tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink}
|
|
|
|
proc readTypeParameter(c: PContext, typ: PType,
|
|
paramName: PIdent, info: TLineInfo): PNode =
|
|
# Note: This function will return emptyNode when attempting to read
|
|
# a static type parameter that is not yet resolved (e.g. this may
|
|
# happen in proc signatures such as `proc(x: T): array[T.sizeParam, U]`
|
|
if typ.kind in {tyUserTypeClass, tyUserTypeClassInst}:
|
|
for statement in typ.n:
|
|
case statement.kind
|
|
of nkTypeSection:
|
|
for def in statement:
|
|
if def[0].sym.name.id == paramName.id:
|
|
# XXX: Instead of lifting the section type to a typedesc
|
|
# here, we could try doing it earlier in semTypeSection.
|
|
# This seems semantically correct and then we'll be able
|
|
# to return the section symbol directly here
|
|
let foundType = makeTypeDesc(c, def[2].typ)
|
|
return newSymNode(copySym(def[0].sym, nextSymId c.idgen).linkTo(foundType), info)
|
|
|
|
of nkConstSection:
|
|
for def in statement:
|
|
if def[0].sym.name.id == paramName.id:
|
|
return def[2]
|
|
|
|
else:
|
|
discard
|
|
|
|
if typ.kind != tyUserTypeClass:
|
|
let ty = if typ.kind == tyCompositeTypeClass: typ[1].skipGenericAlias
|
|
else: typ.skipGenericAlias
|
|
let tbody = ty[0]
|
|
for s in 0..<tbody.len-1:
|
|
let tParam = tbody[s]
|
|
if tParam.sym.name.id == paramName.id:
|
|
let rawTyp = ty[s + 1]
|
|
if rawTyp.kind == tyStatic:
|
|
if rawTyp.n != nil:
|
|
return rawTyp.n
|
|
else:
|
|
return c.graph.emptyNode
|
|
else:
|
|
let foundTyp = makeTypeDesc(c, rawTyp)
|
|
return newSymNode(copySym(tParam.sym, nextSymId c.idgen).linkTo(foundTyp), info)
|
|
|
|
return nil
|
|
|
|
proc semSym(c: PContext, n: PNode, sym: PSym, flags: TExprFlags): PNode =
|
|
let s = getGenSym(c, sym)
|
|
case s.kind
|
|
of skConst:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
let typ = skipTypes(s.typ, abstractInst-{tyTypeDesc})
|
|
case typ.kind
|
|
of tyNil, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
|
|
tyTuple, tySet, tyUInt..tyUInt64:
|
|
if s.magic == mNone: result = inlineConst(c, n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
of tyArray, tySequence:
|
|
# Consider::
|
|
# const x = []
|
|
# proc p(a: openarray[int])
|
|
# proc q(a: openarray[char])
|
|
# p(x)
|
|
# q(x)
|
|
#
|
|
# It is clear that ``[]`` means two totally different things. Thus, we
|
|
# copy `x`'s AST into each context, so that the type fixup phase can
|
|
# deal with two different ``[]``.
|
|
if s.ast.safeLen == 0: result = inlineConst(c, n, s)
|
|
else: result = newSymNode(s, n.info)
|
|
of tyStatic:
|
|
if typ.n != nil:
|
|
result = typ.n
|
|
result.typ = typ.base
|
|
else:
|
|
result = newSymNode(s, n.info)
|
|
else:
|
|
result = newSymNode(s, n.info)
|
|
of skMacro:
|
|
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
|
|
(n.kind notin nkCallKinds and s.requiredParams > 0):
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
else:
|
|
result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate:
|
|
if efNoEvaluateGeneric in flags and s.ast[genericParamsPos].len > 0 or
|
|
(n.kind notin nkCallKinds and s.requiredParams > 0) or
|
|
sfCustomPragma in sym.flags:
|
|
let info = getCallLineInfo(n)
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
else:
|
|
result = semTemplateExpr(c, n, s, flags)
|
|
of skParam:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
if s.typ != nil and s.typ.kind == tyStatic and s.typ.n != nil:
|
|
# XXX see the hack in sigmatch.nim ...
|
|
return s.typ.n
|
|
elif sfGenSym in s.flags:
|
|
# the owner should have been set by now by addParamOrResult
|
|
internalAssert c.config, s.owner != nil
|
|
result = newSymNode(s, n.info)
|
|
of skVar, skLet, skResult, skForVar:
|
|
if s.magic == mNimvm:
|
|
localError(c.config, n.info, "illegal context for 'nimvm' magic")
|
|
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
# We cannot check for access to outer vars for example because it's still
|
|
# not sure the symbol really ends up being used:
|
|
# var len = 0 # but won't be called
|
|
# genericThatUsesLen(x) # marked as taking a closure?
|
|
if hasWarn(c.config, warnResultUsed):
|
|
message(c.config, n.info, warnResultUsed)
|
|
|
|
of skGenericParam:
|
|
onUse(n.info, s)
|
|
if s.typ.kind == tyStatic:
|
|
result = newSymNode(s, n.info)
|
|
result.typ = s.typ
|
|
elif s.ast != nil:
|
|
result = semExpr(c, s.ast)
|
|
else:
|
|
n.typ = s.typ
|
|
return n
|
|
of skType:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
if s.typ.kind == tyStatic and s.typ.base.kind != tyNone and s.typ.n != nil:
|
|
return s.typ.n
|
|
result = newSymNode(s, n.info)
|
|
result.typ = makeTypeDesc(c, s.typ)
|
|
of skField:
|
|
var p = c.p
|
|
while p != nil and p.selfSym == nil:
|
|
p = p.next
|
|
if p != nil and p.selfSym != nil:
|
|
var ty = skipTypes(p.selfSym.typ, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef,
|
|
tyAlias, tySink, tyOwned})
|
|
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
let f = lookupInRecordAndBuildCheck(c, n, ty.n, s.name, check)
|
|
if f != nil and fieldVisible(c, f):
|
|
# is the access to a public field or in the same module or in a friend?
|
|
doAssert f == s
|
|
markUsed(c, n.info, f)
|
|
onUse(n.info, f)
|
|
result = newNodeIT(nkDotExpr, n.info, f.typ)
|
|
result.add makeDeref(newSymNode(p.selfSym))
|
|
result.add newSymNode(f) # we now have the correct field
|
|
if check != nil:
|
|
check[0] = result
|
|
check.typ = result.typ
|
|
result = check
|
|
return result
|
|
if ty[0] == nil: break
|
|
ty = skipTypes(ty[0], skipPtrs)
|
|
# old code, not sure if it's live code:
|
|
markUsed(c, n.info, s)
|
|
onUse(n.info, s)
|
|
result = newSymNode(s, n.info)
|
|
else:
|
|
let info = getCallLineInfo(n)
|
|
#if efInCall notin flags:
|
|
markUsed(c, info, s)
|
|
onUse(info, s)
|
|
result = newSymNode(s, info)
|
|
|
|
proc tryReadingGenericParam(c: PContext, n: PNode, i: PIdent, t: PType): PNode =
|
|
case t.kind
|
|
of tyTypeParamsHolders:
|
|
result = readTypeParameter(c, t, i, n.info)
|
|
if result == c.graph.emptyNode:
|
|
result = n
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
of tyUserTypeClasses:
|
|
if t.isResolvedUserTypeClass:
|
|
result = readTypeParameter(c, t, i, n.info)
|
|
else:
|
|
n.typ = makeTypeFromExpr(c, copyTree(n))
|
|
result = n
|
|
of tyGenericParam, tyAnything:
|
|
n.typ = makeTypeFromExpr(c, copyTree(n))
|
|
result = n
|
|
else:
|
|
discard
|
|
|
|
proc tryReadingTypeField(c: PContext, n: PNode, i: PIdent, ty: PType): PNode =
|
|
var ty = ty.skipTypes(tyDotOpTransparent)
|
|
case ty.kind
|
|
of tyEnum:
|
|
# look up if the identifier belongs to the enum:
|
|
var f = PSym(nil)
|
|
while ty != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil: break
|
|
ty = ty.sons[0] # enum inheritance
|
|
if f != nil:
|
|
result = newSymNode(f)
|
|
result.info = n.info
|
|
result.typ = ty
|
|
markUsed(c, n.info, f)
|
|
onUse(n.info, f)
|
|
of tyObject, tyTuple:
|
|
if ty.n != nil and ty.n.kind == nkRecList:
|
|
let field = lookupInRecord(ty.n, i)
|
|
if field != nil:
|
|
n.typ = makeTypeDesc(c, field.typ)
|
|
result = n
|
|
of tyGenericInst:
|
|
result = tryReadingTypeField(c, n, i, ty.lastSon)
|
|
if result == nil:
|
|
result = tryReadingGenericParam(c, n, i, ty)
|
|
else:
|
|
result = tryReadingGenericParam(c, n, i, ty)
|
|
|
|
proc builtinFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if it's not a built-in field access
|
|
checkSonsLen(n, 2, c.config)
|
|
# tests/bind/tbindoverload.nim wants an early exit here, but seems to
|
|
# work without now. template/tsymchoicefield doesn't like an early exit
|
|
# here at all!
|
|
#if isSymChoice(n[1]): return
|
|
when defined(nimsuggest):
|
|
if c.config.cmd == cmdIdeTools:
|
|
suggestExpr(c, n)
|
|
if exactEquals(c.config.m.trackPos, n[1].info): suggestExprNoCheck(c, n)
|
|
|
|
var s = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared, checkModule})
|
|
if s != nil:
|
|
if s.kind in OverloadableSyms:
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym: result = semSym(c, n, s, flags)
|
|
else:
|
|
markUsed(c, n[1].info, s)
|
|
result = semSym(c, n, s, flags)
|
|
onUse(n[1].info, s)
|
|
return
|
|
|
|
n[0] = semExprWithType(c, n[0], flags+{efDetermineType, efWantIterable})
|
|
#restoreOldStyleType(n[0])
|
|
var i = considerQuotedIdent(c, n[1], n)
|
|
var ty = n[0].typ
|
|
var f: PSym = nil
|
|
result = nil
|
|
|
|
if ty.kind == tyTypeDesc:
|
|
if ty.base.kind == tyNone:
|
|
# This is a still unresolved typedesc parameter.
|
|
# If this is a regular proc, then all bets are off and we must return
|
|
# tyFromExpr, but when this happen in a macro this is not a built-in
|
|
# field access and we leave the compiler to compile a normal call:
|
|
if getCurrOwner(c).kind != skMacro:
|
|
n.typ = makeTypeFromExpr(c, n.copyTree)
|
|
return n
|
|
else:
|
|
return nil
|
|
else:
|
|
return tryReadingTypeField(c, n, i, ty.base)
|
|
elif isTypeExpr(n.sons[0]):
|
|
return tryReadingTypeField(c, n, i, ty)
|
|
elif ty.kind == tyError:
|
|
# a type error doesn't have any builtin fields
|
|
return nil
|
|
|
|
if ty.kind in tyUserTypeClasses and ty.isResolvedUserTypeClass:
|
|
ty = ty.lastSon
|
|
ty = skipTypes(ty, {tyGenericInst, tyVar, tyLent, tyPtr, tyRef, tyOwned, tyAlias, tySink})
|
|
while tfBorrowDot in ty.flags: ty = ty.skipTypes({tyDistinct})
|
|
var check: PNode = nil
|
|
if ty.kind == tyObject:
|
|
while true:
|
|
check = nil
|
|
f = lookupInRecordAndBuildCheck(c, n, ty.n, i, check)
|
|
if f != nil: break
|
|
if ty[0] == nil: break
|
|
ty = skipTypes(ty[0], skipPtrs)
|
|
if f != nil:
|
|
let visibilityCheckNeeded =
|
|
if n[1].kind == nkSym and n[1].sym == f:
|
|
false # field lookup was done already, likely by hygienic template or bindSym
|
|
else: true
|
|
if not visibilityCheckNeeded or fieldVisible(c, f):
|
|
# is the access to a public field or in the same module or in a friend?
|
|
markUsed(c, n[1].info, f)
|
|
onUse(n[1].info, f)
|
|
n[0] = makeDeref(n[0])
|
|
n[1] = newSymNode(f) # we now have the correct field
|
|
n.typ = f.typ
|
|
if check == nil:
|
|
result = n
|
|
else:
|
|
check[0] = n
|
|
check.typ = n.typ
|
|
result = check
|
|
elif ty.kind == tyTuple and ty.n != nil:
|
|
f = getSymFromList(ty.n, i)
|
|
if f != nil:
|
|
markUsed(c, n[1].info, f)
|
|
onUse(n[1].info, f)
|
|
n[0] = makeDeref(n[0])
|
|
n[1] = newSymNode(f)
|
|
n.typ = f.typ
|
|
result = n
|
|
|
|
# we didn't find any field, let's look for a generic param
|
|
if result == nil:
|
|
let t = n[0].typ.skipTypes(tyDotOpTransparent)
|
|
result = tryReadingGenericParam(c, n, i, t)
|
|
|
|
proc dotTransformation(c: PContext, n: PNode): PNode =
|
|
if isSymChoice(n[1]):
|
|
result = newNodeI(nkDotCall, n.info)
|
|
result.add n[1]
|
|
result.add copyTree(n[0])
|
|
else:
|
|
var i = considerQuotedIdent(c, n[1], n)
|
|
result = newNodeI(nkDotCall, n.info)
|
|
result.flags.incl nfDotField
|
|
result.add newIdentNode(i, n[1].info)
|
|
result.add copyTree(n[0])
|
|
|
|
proc semFieldAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# this is difficult, because the '.' is used in many different contexts
|
|
# in Nim. We first allow types in the semantic checking.
|
|
result = builtinFieldAccess(c, n, flags)
|
|
if result == nil:
|
|
result = dotTransformation(c, n)
|
|
|
|
proc buildOverloadedSubscripts(n: PNode, ident: PIdent): PNode =
|
|
result = newNodeI(nkCall, n.info)
|
|
result.add(newIdentNode(ident, n.info))
|
|
for s in n: result.add s
|
|
|
|
proc semDeref(c: PContext, n: PNode): PNode =
|
|
checkSonsLen(n, 1, c.config)
|
|
n[0] = semExprWithType(c, n[0])
|
|
let a = getConstExpr(c.module, n[0], c.idgen, c.graph)
|
|
if a != nil:
|
|
if a.kind == nkNilLit:
|
|
localError(c.config, n.info, "nil dereference is not allowed")
|
|
n[0] = a
|
|
result = n
|
|
var t = skipTypes(n[0].typ, {tyGenericInst, tyVar, tyLent, tyAlias, tySink, tyOwned})
|
|
case t.kind
|
|
of tyRef, tyPtr: n.typ = t.lastSon
|
|
else: result = nil
|
|
#GlobalError(n[0].info, errCircumNeedsPointer)
|
|
|
|
proc semSubscript(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
## returns nil if not a built-in subscript operator; also called for the
|
|
## checking of assignments
|
|
if n.len == 1:
|
|
let x = semDeref(c, n)
|
|
if x == nil: return nil
|
|
result = newNodeIT(nkDerefExpr, x.info, x.typ)
|
|
result.add(x[0])
|
|
return
|
|
checkMinSonsLen(n, 2, c.config)
|
|
# make sure we don't evaluate generic macros/templates
|
|
n[0] = semExprWithType(c, n[0],
|
|
{efNoEvaluateGeneric})
|
|
var arr = skipTypes(n[0].typ, {tyGenericInst, tyUserTypeClassInst, tyOwned,
|
|
tyVar, tyLent, tyPtr, tyRef, tyAlias, tySink})
|
|
if arr.kind == tyStatic:
|
|
if arr.base.kind == tyNone:
|
|
result = n
|
|
result.typ = semStaticType(c, n[1], nil)
|
|
return
|
|
elif arr.n != nil:
|
|
return semSubscript(c, arr.n, flags)
|
|
else:
|
|
arr = arr.base
|
|
|
|
case arr.kind
|
|
of tyArray, tyOpenArray, tyVarargs, tySequence, tyString, tyCstring,
|
|
tyUncheckedArray:
|
|
if n.len != 2: return nil
|
|
n[0] = makeDeref(n[0])
|
|
for i in 1..<n.len:
|
|
n[i] = semExprWithType(c, n[i],
|
|
flags*{efInTypeof, efDetermineType})
|
|
# Arrays index type is dictated by the range's type
|
|
if arr.kind == tyArray:
|
|
var indexType = arr[0]
|
|
var arg = indexTypesMatch(c, indexType, n[1].typ, n[1])
|
|
if arg != nil:
|
|
n[1] = arg
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
# Other types have a bit more of leeway
|
|
elif n[1].typ.skipTypes(abstractRange-{tyDistinct}).kind in
|
|
{tyInt..tyInt64, tyUInt..tyUInt64}:
|
|
result = n
|
|
result.typ = elemType(arr)
|
|
of tyTypeDesc:
|
|
# The result so far is a tyTypeDesc bound
|
|
# a tyGenericBody. The line below will substitute
|
|
# it with the instantiated type.
|
|
result = n
|
|
result.typ = makeTypeDesc(c, semTypeNode(c, n, nil))
|
|
#result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
of tyTuple:
|
|
if n.len != 2: return nil
|
|
n[0] = makeDeref(n[0])
|
|
# [] operator for tuples requires constant expression:
|
|
n[1] = semConstExpr(c, n[1])
|
|
if skipTypes(n[1].typ, {tyGenericInst, tyRange, tyOrdinal, tyAlias, tySink}).kind in
|
|
{tyInt..tyInt64}:
|
|
let idx = getOrdValue(n[1])
|
|
if idx >= 0 and idx < arr.len: n.typ = arr[toInt(idx)]
|
|
else: localError(c.config, n.info, "invalid index value for tuple subscript")
|
|
result = n
|
|
else:
|
|
result = nil
|
|
else:
|
|
let s = if n[0].kind == nkSym: n[0].sym
|
|
elif n[0].kind in nkSymChoices: n[0][0].sym
|
|
else: nil
|
|
if s != nil:
|
|
case s.kind
|
|
of skProc, skFunc, skMethod, skConverter, skIterator:
|
|
# type parameters: partial generic specialization
|
|
n[0] = semSymGenericInstantiation(c, n[0], s)
|
|
result = explicitGenericInstantiation(c, n, s)
|
|
if result == n:
|
|
n[0] = copyTree(result)
|
|
else:
|
|
n[0] = result
|
|
of skMacro, skTemplate:
|
|
if efInCall in flags:
|
|
# We are processing macroOrTmpl[] in macroOrTmpl[](...) call.
|
|
# Return as is, so it can be transformed into complete macro or
|
|
# template call in semIndirectOp caller.
|
|
result = n
|
|
else:
|
|
# We are processing macroOrTmpl[] not in call. Transform it to the
|
|
# macro or template call with generic arguments here.
|
|
n.transitionSonsKind(nkCall)
|
|
case s.kind
|
|
of skMacro: result = semMacroExpr(c, n, n, s, flags)
|
|
of skTemplate: result = semTemplateExpr(c, n, s, flags)
|
|
else: discard
|
|
of skType:
|
|
result = symNodeFromType(c, semTypeNode(c, n, nil), n.info)
|
|
else:
|
|
discard
|
|
|
|
proc semArrayAccess(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = semSubscript(c, n, flags)
|
|
if result == nil:
|
|
# overloaded [] operator:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "[]")))
|
|
|
|
proc propertyWriteAccess(c: PContext, n, nOrig, a: PNode): PNode =
|
|
var id = considerQuotedIdent(c, a[1], a)
|
|
var setterId = newIdentNode(getIdent(c.cache, id.s & '='), n.info)
|
|
# a[0] is already checked for semantics, that does ``builtinFieldAccess``
|
|
# this is ugly. XXX Semantic checking should use the ``nfSem`` flag for
|
|
# nodes?
|
|
let aOrig = nOrig[0]
|
|
result = newTreeI(nkCall, n.info, setterId, a[0], semExprWithType(c, n[1]))
|
|
result.flags.incl nfDotSetter
|
|
let orig = newTreeI(nkCall, n.info, setterId, aOrig[0], nOrig[1])
|
|
result = semOverloadedCallAnalyseEffects(c, result, orig, {})
|
|
|
|
if result != nil:
|
|
result = afterCallActions(c, result, nOrig, {})
|
|
#fixAbstractType(c, result)
|
|
#analyseIfAddressTakenInCall(c, result)
|
|
|
|
proc takeImplicitAddr(c: PContext, n: PNode; isLent: bool): PNode =
|
|
# See RFC #7373, calls returning 'var T' are assumed to
|
|
# return a view into the first argument (if there is one):
|
|
let root = exprRoot(n)
|
|
if root != nil and root.owner == c.p.owner:
|
|
template url: string = "var_t_return.html".createDocLink
|
|
if root.kind in {skLet, skVar, skTemp} and sfGlobal notin root.flags:
|
|
localError(c.config, n.info, "'$1' escapes its stack frame; context: '$2'; see $3" % [
|
|
root.name.s, renderTree(n, {renderNoComments}), url])
|
|
elif root.kind == skParam and root.position != 0:
|
|
localError(c.config, n.info, "'$1' is not the first parameter; context: '$2'; see $3" % [
|
|
root.name.s, renderTree(n, {renderNoComments}), url])
|
|
case n.kind
|
|
of nkHiddenAddr, nkAddr: return n
|
|
of nkDerefExpr: return n[0]
|
|
of nkBracketExpr:
|
|
if n.len == 1: return n[0]
|
|
of nkHiddenDeref:
|
|
# issue #13848
|
|
# `proc fun(a: var int): var int = a`
|
|
discard
|
|
else: discard
|
|
let valid = isAssignable(c, n, isLent)
|
|
if valid != arLValue:
|
|
if valid == arLocalLValue:
|
|
localError(c.config, n.info, errXStackEscape % renderTree(n, {renderNoComments}))
|
|
else:
|
|
localError(c.config, n.info, errExprHasNoAddress)
|
|
result = newNodeIT(nkHiddenAddr, n.info, makePtrType(c, n.typ))
|
|
result.add(n)
|
|
|
|
proc asgnToResultVar(c: PContext, n, le, ri: PNode) {.inline.} =
|
|
if le.kind == nkHiddenDeref:
|
|
var x = le[0]
|
|
if x.kind == nkSym and x.sym.kind == skResult and (x.typ.kind in {tyVar, tyLent} or classifyViewType(x.typ) != noView):
|
|
n[0] = x # 'result[]' --> 'result'
|
|
n[1] = takeImplicitAddr(c, ri, x.typ.kind == tyLent)
|
|
x.typ.flags.incl tfVarIsPtr
|
|
#echo x.info, " setting it for this type ", typeToString(x.typ), " ", n.info
|
|
|
|
proc borrowCheck(c: PContext, n, le, ri: PNode) =
|
|
const
|
|
PathKinds0 = {nkDotExpr, nkCheckedFieldExpr,
|
|
nkBracketExpr, nkAddr, nkHiddenAddr,
|
|
nkObjDownConv, nkObjUpConv}
|
|
PathKinds1 = {nkHiddenStdConv, nkHiddenSubConv}
|
|
|
|
proc getRoot(n: PNode; followDeref: bool): PNode =
|
|
result = n
|
|
while true:
|
|
case result.kind
|
|
of nkDerefExpr, nkHiddenDeref:
|
|
if followDeref: result = result[0]
|
|
else: break
|
|
of PathKinds0:
|
|
result = result[0]
|
|
of PathKinds1:
|
|
result = result[1]
|
|
else: break
|
|
|
|
proc scopedLifetime(c: PContext; ri: PNode): bool {.inline.} =
|
|
let n = getRoot(ri, followDeref = false)
|
|
result = (ri.kind in nkCallKinds+{nkObjConstr}) or
|
|
(n.kind == nkSym and n.sym.owner == c.p.owner and n.sym.kind != skResult)
|
|
|
|
proc escapes(c: PContext; le: PNode): bool {.inline.} =
|
|
# param[].foo[] = self definitely escapes, we don't need to
|
|
# care about pointer derefs:
|
|
let n = getRoot(le, followDeref = true)
|
|
result = n.kind == nkSym and n.sym.kind == skParam
|
|
|
|
# Special typing rule: do not allow to pass 'owned T' to 'T' in 'result = x':
|
|
const absInst = abstractInst - {tyOwned}
|
|
if ri.typ != nil and ri.typ.skipTypes(absInst).kind == tyOwned and
|
|
le.typ != nil and le.typ.skipTypes(absInst).kind != tyOwned and
|
|
scopedLifetime(c, ri):
|
|
if le.kind == nkSym and le.sym.kind == skResult:
|
|
localError(c.config, n.info, "cannot return an owned pointer as an unowned pointer; " &
|
|
"use 'owned(" & typeToString(le.typ) & ")' as the return type")
|
|
elif escapes(c, le):
|
|
localError(c.config, n.info,
|
|
"assignment produces a dangling ref: the unowned ref lives longer than the owned ref")
|
|
|
|
template resultTypeIsInferrable(typ: PType): untyped =
|
|
typ.isMetaType and typ.kind != tyTypeDesc
|
|
|
|
proc goodLineInfo(arg: PNode): TLineInfo =
|
|
if arg.kind == nkStmtListExpr and arg.len > 0:
|
|
goodLineInfo(arg[^1])
|
|
else:
|
|
arg.info
|
|
|
|
proc semAsgn(c: PContext, n: PNode; mode=asgnNormal): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
var a = n[0]
|
|
case a.kind
|
|
of nkDotExpr:
|
|
# r.f = x
|
|
# --> `f=` (r, x)
|
|
let nOrig = n.copyTree
|
|
a = builtinFieldAccess(c, a, {efLValue})
|
|
if a == nil:
|
|
a = propertyWriteAccess(c, n, nOrig, n[0])
|
|
if a != nil: return a
|
|
# we try without the '='; proc that return 'var' or macros are still
|
|
# possible:
|
|
a = dotTransformation(c, n[0])
|
|
if a.kind == nkDotCall:
|
|
a.transitionSonsKind(nkCall)
|
|
a = semExprWithType(c, a, {efLValue})
|
|
of nkBracketExpr:
|
|
# a[i] = x
|
|
# --> `[]=`(a, i, x)
|
|
a = semSubscript(c, a, {efLValue})
|
|
if a == nil:
|
|
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "[]="))
|
|
result.add(n[1])
|
|
if mode == noOverloadedSubscript:
|
|
bracketNotFoundError(c, result)
|
|
return n
|
|
else:
|
|
result = semExprNoType(c, result)
|
|
return result
|
|
of nkCurlyExpr:
|
|
# a{i} = x --> `{}=`(a, i, x)
|
|
result = buildOverloadedSubscripts(n[0], getIdent(c.cache, "{}="))
|
|
result.add(n[1])
|
|
return semExprNoType(c, result)
|
|
of nkPar, nkTupleConstr:
|
|
if a.len >= 2:
|
|
# unfortunately we need to rewrite ``(x, y) = foo()`` already here so
|
|
# that overloading of the assignment operator still works. Usually we
|
|
# prefer to do these rewritings in transf.nim:
|
|
return semStmt(c, lowerTupleUnpackingForAsgn(c.graph, n, c.idgen, c.p.owner), {})
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
else:
|
|
a = semExprWithType(c, a, {efLValue})
|
|
n[0] = a
|
|
# a = b # both are vars, means: a[] = b[]
|
|
# a = b # b no 'var T' means: a = addr(b)
|
|
var le = a.typ
|
|
if le == nil:
|
|
localError(c.config, a.info, "expression has no type")
|
|
elif (skipTypes(le, {tyGenericInst, tyAlias, tySink}).kind notin {tyVar} and
|
|
isAssignable(c, a) in {arNone, arLentValue}) or (
|
|
skipTypes(le, abstractVar).kind in {tyOpenArray, tyVarargs} and views notin c.features):
|
|
# Direct assignment to a discriminant is allowed!
|
|
localError(c.config, a.info, errXCannotBeAssignedTo %
|
|
renderTree(a, {renderNoComments}))
|
|
else:
|
|
let
|
|
lhs = n[0]
|
|
lhsIsResult = lhs.kind == nkSym and lhs.sym.kind == skResult
|
|
var
|
|
rhs = semExprWithType(c, n[1],
|
|
if lhsIsResult: {efAllowDestructor} else: {})
|
|
if lhsIsResult:
|
|
n.typ = c.enforceVoidContext
|
|
if c.p.owner.kind != skMacro and resultTypeIsInferrable(lhs.sym.typ):
|
|
var rhsTyp = rhs.typ
|
|
if rhsTyp.kind in tyUserTypeClasses and rhsTyp.isResolvedUserTypeClass:
|
|
rhsTyp = rhsTyp.lastSon
|
|
if cmpTypes(c, lhs.typ, rhsTyp) in {isGeneric, isEqual}:
|
|
internalAssert c.config, c.p.resultSym != nil
|
|
# Make sure the type is valid for the result variable
|
|
typeAllowedCheck(c, n.info, rhsTyp, skResult)
|
|
lhs.typ = rhsTyp
|
|
c.p.resultSym.typ = rhsTyp
|
|
c.p.owner.typ[0] = rhsTyp
|
|
else:
|
|
typeMismatch(c.config, n.info, lhs.typ, rhsTyp, rhs)
|
|
borrowCheck(c, n, lhs, rhs)
|
|
|
|
n[1] = fitNode(c, le, rhs, goodLineInfo(n[1]))
|
|
when false: liftTypeBoundOps(c, lhs.typ, lhs.info)
|
|
|
|
fixAbstractType(c, n)
|
|
asgnToResultVar(c, n, n[0], n[1])
|
|
result = n
|
|
|
|
proc semReturn(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
if c.p.owner.kind in {skConverter, skMethod, skProc, skFunc, skMacro} or
|
|
(not c.p.owner.typ.isNil and isClosureIterator(c.p.owner.typ)):
|
|
if n[0].kind != nkEmpty:
|
|
if n[0].kind == nkAsgn and n[0][0].kind == nkSym and c.p.resultSym == n[0][0].sym:
|
|
discard "return is already transformed"
|
|
elif c.p.resultSym != nil:
|
|
# transform ``return expr`` to ``result = expr; return``
|
|
var a = newNodeI(nkAsgn, n[0].info)
|
|
a.add newSymNode(c.p.resultSym)
|
|
a.add n[0]
|
|
n[0] = a
|
|
else:
|
|
localError(c.config, n.info, errNoReturnTypeDeclared)
|
|
return
|
|
result[0] = semAsgn(c, n[0])
|
|
# optimize away ``result = result``:
|
|
if result[0][1].kind == nkSym and result[0][1].sym == c.p.resultSym:
|
|
result[0] = c.graph.emptyNode
|
|
else:
|
|
localError(c.config, n.info, "'return' not allowed here")
|
|
|
|
proc semProcBody(c: PContext, n: PNode): PNode =
|
|
openScope(c)
|
|
result = semExpr(c, n)
|
|
if c.p.resultSym != nil and not isEmptyType(result.typ):
|
|
if result.kind == nkNilLit:
|
|
# or ImplicitlyDiscardable(result):
|
|
# new semantic: 'result = x' triggers the void context
|
|
result.typ = nil
|
|
elif result.kind == nkStmtListExpr and result.typ.kind == tyNil:
|
|
# to keep backwards compatibility bodies like:
|
|
# nil
|
|
# # comment
|
|
# are not expressions:
|
|
fixNilType(c, result)
|
|
else:
|
|
var a = newNodeI(nkAsgn, n.info, 2)
|
|
a[0] = newSymNode(c.p.resultSym)
|
|
a[1] = result
|
|
result = semAsgn(c, a)
|
|
else:
|
|
discardCheck(c, result, {})
|
|
|
|
if c.p.owner.kind notin {skMacro, skTemplate} and
|
|
c.p.resultSym != nil and c.p.resultSym.typ.isMetaType:
|
|
if isEmptyType(result.typ):
|
|
# we inferred a 'void' return type:
|
|
c.p.resultSym.typ = errorType(c)
|
|
c.p.owner.typ[0] = nil
|
|
else:
|
|
localError(c.config, c.p.resultSym.info, errCannotInferReturnType %
|
|
c.p.owner.name.s)
|
|
if isInlineIterator(c.p.owner.typ) and c.p.owner.typ[0] != nil and
|
|
c.p.owner.typ[0].kind == tyUntyped:
|
|
localError(c.config, c.p.owner.info, errCannotInferReturnType %
|
|
c.p.owner.name.s)
|
|
closeScope(c)
|
|
|
|
proc semYieldVarResult(c: PContext, n: PNode, restype: PType) =
|
|
var t = skipTypes(restype, {tyGenericInst, tyAlias, tySink})
|
|
case t.kind
|
|
of tyVar, tyLent:
|
|
t.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
|
|
if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}:
|
|
n[0] = n[0][1]
|
|
n[0] = takeImplicitAddr(c, n[0], t.kind == tyLent)
|
|
of tyTuple:
|
|
for i in 0..<t.len:
|
|
let e = skipTypes(t[i], {tyGenericInst, tyAlias, tySink})
|
|
if e.kind in {tyVar, tyLent}:
|
|
e.flags.incl tfVarIsPtr # bugfix for #4048, #4910, #6892
|
|
let tupleConstr = if n[0].kind in {nkHiddenStdConv, nkHiddenSubConv}: n[0][1] else: n[0]
|
|
if tupleConstr.kind in {nkPar, nkTupleConstr}:
|
|
if tupleConstr[i].kind == nkExprColonExpr:
|
|
tupleConstr[i][1] = takeImplicitAddr(c, tupleConstr[i][1], e.kind == tyLent)
|
|
else:
|
|
tupleConstr[i] = takeImplicitAddr(c, tupleConstr[i], e.kind == tyLent)
|
|
else:
|
|
localError(c.config, n[0].info, errXExpected, "tuple constructor")
|
|
else:
|
|
when false:
|
|
# XXX investigate what we really need here.
|
|
if isViewType(t):
|
|
n[0] = takeImplicitAddr(c, n[0], false)
|
|
|
|
proc semYield(c: PContext, n: PNode): PNode =
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
if c.p.owner == nil or c.p.owner.kind != skIterator:
|
|
localError(c.config, n.info, errYieldNotAllowedHere)
|
|
elif n[0].kind != nkEmpty:
|
|
n[0] = semExprWithType(c, n[0]) # check for type compatibility:
|
|
var iterType = c.p.owner.typ
|
|
let restype = iterType[0]
|
|
if restype != nil:
|
|
if restype.kind != tyUntyped:
|
|
n[0] = fitNode(c, restype, n[0], n.info)
|
|
if n[0].typ == nil: internalError(c.config, n.info, "semYield")
|
|
|
|
if resultTypeIsInferrable(restype):
|
|
let inferred = n[0].typ
|
|
iterType[0] = inferred
|
|
if c.p.resultSym != nil:
|
|
c.p.resultSym.typ = inferred
|
|
|
|
semYieldVarResult(c, n, restype)
|
|
else:
|
|
localError(c.config, n.info, errCannotReturnExpr)
|
|
elif c.p.owner.typ[0] != nil:
|
|
localError(c.config, n.info, errGenerated, "yield statement must yield a value")
|
|
|
|
proc semDefined(c: PContext, n: PNode): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.intVal = ord isDefined(c.config, considerQuotedIdent(c, n[1], n).s)
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc lookUpForDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PSym =
|
|
case n.kind
|
|
of nkIdent, nkAccQuoted:
|
|
var amb = false
|
|
let ident = considerQuotedIdent(c, n)
|
|
result = if onlyCurrentScope:
|
|
localSearchInScope(c, ident)
|
|
else:
|
|
searchInScopes(c, ident, amb)
|
|
of nkDotExpr:
|
|
result = nil
|
|
if onlyCurrentScope: return
|
|
checkSonsLen(n, 2, c.config)
|
|
var m = lookUpForDeclared(c, n[0], onlyCurrentScope)
|
|
if m != nil and m.kind == skModule:
|
|
let ident = considerQuotedIdent(c, n[1], n)
|
|
if m == c.module:
|
|
result = strTableGet(c.topLevelScope.symbols, ident)
|
|
else:
|
|
result = someSym(c.graph, m, ident)
|
|
of nkSym:
|
|
result = n.sym
|
|
of nkOpenSymChoice, nkClosedSymChoice:
|
|
result = n[0].sym
|
|
else:
|
|
localError(c.config, n.info, "identifier expected, but got: " & renderTree(n))
|
|
result = nil
|
|
|
|
proc semDeclared(c: PContext, n: PNode, onlyCurrentScope: bool): PNode =
|
|
checkSonsLen(n, 2, c.config)
|
|
# we replace this node by a 'true' or 'false' node:
|
|
result = newIntNode(nkIntLit, 0)
|
|
result.intVal = ord lookUpForDeclared(c, n[1], onlyCurrentScope) != nil
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc expectMacroOrTemplateCall(c: PContext, n: PNode): PSym =
|
|
## The argument to the proc should be nkCall(...) or similar
|
|
## Returns the macro/template symbol
|
|
if isCallExpr(n):
|
|
var expandedSym = qualifiedLookUp(c, n[0], {checkUndeclared})
|
|
if expandedSym == nil:
|
|
errorUndeclaredIdentifier(c, n.info, n[0].renderTree)
|
|
return errorSym(c, n[0])
|
|
|
|
if expandedSym.kind notin {skMacro, skTemplate}:
|
|
localError(c.config, n.info, "'$1' is not a macro or template" % expandedSym.name.s)
|
|
return errorSym(c, n[0])
|
|
|
|
result = expandedSym
|
|
else:
|
|
localError(c.config, n.info, "'$1' is not a macro or template" % n.renderTree)
|
|
result = errorSym(c, n)
|
|
|
|
proc expectString(c: PContext, n: PNode): string =
|
|
var n = semConstExpr(c, n)
|
|
if n.kind in nkStrKinds:
|
|
return n.strVal
|
|
else:
|
|
localError(c.config, n.info, errStringLiteralExpected)
|
|
|
|
proc newAnonSym(c: PContext; kind: TSymKind, info: TLineInfo): PSym =
|
|
result = newSym(kind, c.cache.idAnon, nextSymId c.idgen, getCurrOwner(c), info)
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode): PNode =
|
|
let macroCall = n[1]
|
|
|
|
when false:
|
|
let expandedSym = expectMacroOrTemplateCall(c, macroCall)
|
|
if expandedSym.kind == skError: return n
|
|
|
|
macroCall[0] = newSymNode(expandedSym, macroCall.info)
|
|
markUsed(c, n.info, expandedSym)
|
|
onUse(n.info, expandedSym)
|
|
|
|
if isCallExpr(macroCall):
|
|
for i in 1..<macroCall.len:
|
|
#if macroCall[0].typ[i].kind != tyUntyped:
|
|
macroCall[i] = semExprWithType(c, macroCall[i], {})
|
|
# performing overloading resolution here produces too serious regressions:
|
|
let headSymbol = macroCall[0]
|
|
var cands = 0
|
|
var cand: PSym = nil
|
|
var o: TOverloadIter
|
|
var symx = initOverloadIter(o, c, headSymbol)
|
|
while symx != nil:
|
|
if symx.kind in {skTemplate, skMacro} and symx.typ.len == macroCall.len:
|
|
cand = symx
|
|
inc cands
|
|
symx = nextOverloadIter(o, c, headSymbol)
|
|
if cands == 0:
|
|
localError(c.config, n.info, "expected a template that takes " & $(macroCall.len-1) & " arguments")
|
|
elif cands >= 2:
|
|
localError(c.config, n.info, "ambiguous symbol in 'getAst' context: " & $macroCall)
|
|
else:
|
|
let info = macroCall[0].info
|
|
macroCall[0] = newSymNode(cand, info)
|
|
markUsed(c, info, cand)
|
|
onUse(info, cand)
|
|
|
|
# we just perform overloading resolution here:
|
|
#n[1] = semOverloadedCall(c, macroCall, macroCall, {skTemplate, skMacro})
|
|
else:
|
|
localError(c.config, n.info, "getAst takes a call, but got " & n.renderTree)
|
|
# Preserve the magic symbol in order to be handled in evals.nim
|
|
internalAssert c.config, n[0].sym.magic == mExpandToAst
|
|
#n.typ = getSysSym("NimNode").typ # expandedSym.getReturnType
|
|
if n.kind == nkStmtList and n.len == 1: result = n[0]
|
|
else: result = n
|
|
result.typ = sysTypeFromName(c.graph, n.info, "NimNode")
|
|
|
|
proc semExpandToAst(c: PContext, n: PNode, magicSym: PSym,
|
|
flags: TExprFlags = {}): PNode =
|
|
if n.len == 2:
|
|
n[0] = newSymNode(magicSym, n.info)
|
|
result = semExpandToAst(c, n)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc processQuotations(c: PContext; n: var PNode, op: string,
|
|
quotes: var seq[PNode],
|
|
ids: var seq[PNode]) =
|
|
template returnQuote(q) =
|
|
quotes.add q
|
|
n = newIdentNode(getIdent(c.cache, $quotes.len), n.info)
|
|
ids.add n
|
|
return
|
|
|
|
template handlePrefixOp(prefixed) =
|
|
if prefixed[0].kind == nkIdent:
|
|
let examinedOp = prefixed[0].ident.s
|
|
if examinedOp == op:
|
|
returnQuote prefixed[1]
|
|
elif examinedOp.startsWith(op):
|
|
prefixed[0] = newIdentNode(getIdent(c.cache, examinedOp.substr(op.len)), prefixed.info)
|
|
|
|
if n.kind == nkPrefix:
|
|
checkSonsLen(n, 2, c.config)
|
|
handlePrefixOp(n)
|
|
elif n.kind == nkAccQuoted:
|
|
if op == "``":
|
|
returnQuote n[0]
|
|
else: # [bug #7589](https://github.com/nim-lang/Nim/issues/7589)
|
|
if n.len == 2 and n[0].ident.s == op:
|
|
var tempNode = nkPrefix.newTree()
|
|
tempNode.newSons(2)
|
|
tempNode[0] = n[0]
|
|
tempNode[1] = n[1]
|
|
handlePrefixOp(tempNode)
|
|
elif n.kind == nkIdent:
|
|
if n.ident.s == "result":
|
|
n = ids[0]
|
|
|
|
for i in 0..<n.safeLen:
|
|
processQuotations(c, n[i], op, quotes, ids)
|
|
|
|
proc semQuoteAst(c: PContext, n: PNode): PNode =
|
|
if n.len != 2 and n.len != 3:
|
|
localError(c.config, n.info, "'quote' expects 1 or 2 arguments")
|
|
return n
|
|
# We transform the do block into a template with a param for
|
|
# each interpolation. We'll pass this template to getAst.
|
|
var
|
|
quotedBlock = n[^1]
|
|
op = if n.len == 3: expectString(c, n[1]) else: "``"
|
|
quotes = newSeq[PNode](2)
|
|
# the quotes will be added to a nkCall statement
|
|
# leave some room for the callee symbol and the result symbol
|
|
ids = newSeq[PNode](1)
|
|
# this will store the generated param names
|
|
# leave some room for the result symbol
|
|
|
|
if quotedBlock.kind != nkStmtList:
|
|
localError(c.config, n.info, errXExpected, "block")
|
|
|
|
# This adds a default first field to pass the result symbol
|
|
ids[0] = newAnonSym(c, skParam, n.info).newSymNode
|
|
processQuotations(c, quotedBlock, op, quotes, ids)
|
|
|
|
var dummyTemplate = newProcNode(
|
|
nkTemplateDef, quotedBlock.info, body = quotedBlock,
|
|
params = c.graph.emptyNode,
|
|
name = newAnonSym(c, skTemplate, n.info).newSymNode,
|
|
pattern = c.graph.emptyNode, genericParams = c.graph.emptyNode,
|
|
pragmas = c.graph.emptyNode, exceptions = c.graph.emptyNode)
|
|
|
|
if ids.len > 0:
|
|
dummyTemplate[paramsPos] = newNodeI(nkFormalParams, n.info)
|
|
dummyTemplate[paramsPos].add getSysSym(c.graph, n.info, "untyped").newSymNode # return type
|
|
ids.add getSysSym(c.graph, n.info, "untyped").newSymNode # params type
|
|
ids.add c.graph.emptyNode # no default value
|
|
dummyTemplate[paramsPos].add newTreeI(nkIdentDefs, n.info, ids)
|
|
|
|
var tmpl = semTemplateDef(c, dummyTemplate)
|
|
quotes[0] = tmpl[namePos]
|
|
# This adds a call to newIdentNode("result") as the first argument to the template call
|
|
let identNodeSym = getCompilerProc(c.graph, "newIdentNode")
|
|
# so that new Nim compilers can compile old macros.nim versions, we check for 'nil'
|
|
# here and provide the old fallback solution:
|
|
let identNode = if identNodeSym == nil:
|
|
newIdentNode(getIdent(c.cache, "newIdentNode"), n.info)
|
|
else:
|
|
identNodeSym.newSymNode
|
|
quotes[1] = newTreeI(nkCall, n.info, identNode, newStrNode(nkStrLit, "result"))
|
|
result = newTreeI(nkCall, n.info,
|
|
createMagic(c.graph, c.idgen, "getAst", mExpandToAst).newSymNode,
|
|
newTreeI(nkCall, n.info, quotes))
|
|
result = semExpandToAst(c, result)
|
|
|
|
proc tryExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
# watch out, hacks ahead:
|
|
when defined(nimsuggest):
|
|
# Remove the error hook so nimsuggest doesn't report errors there
|
|
let tempHook = c.graph.config.structuredErrorHook
|
|
c.graph.config.structuredErrorHook = nil
|
|
let oldErrorCount = c.config.errorCounter
|
|
let oldErrorMax = c.config.errorMax
|
|
let oldCompilesId = c.compilesContextId
|
|
# if this is a nested 'when compiles', do not increase the ID so that
|
|
# generic instantiations can still be cached for this level.
|
|
if c.compilesContextId == 0:
|
|
inc c.compilesContextIdGenerator
|
|
c.compilesContextId = c.compilesContextIdGenerator
|
|
c.config.errorMax = high(int) # `setErrorMaxHighMaybe` not appropriate here
|
|
|
|
# open a scope for temporary symbol inclusions:
|
|
let oldScope = c.currentScope
|
|
openScope(c)
|
|
let oldOwnerLen = c.graph.owners.len
|
|
let oldGenerics = c.generics
|
|
let oldErrorOutputs = c.config.m.errorOutputs
|
|
if efExplain notin flags: c.config.m.errorOutputs = {}
|
|
let oldContextLen = msgs.getInfoContextLen(c.config)
|
|
|
|
let oldInGenericContext = c.inGenericContext
|
|
let oldInUnrolledContext = c.inUnrolledContext
|
|
let oldInGenericInst = c.inGenericInst
|
|
let oldInStaticContext = c.inStaticContext
|
|
let oldProcCon = c.p
|
|
c.generics = @[]
|
|
var err: string
|
|
try:
|
|
result = semExpr(c, n, flags)
|
|
if result != nil and efNoSem2Check notin flags:
|
|
trackStmt(c, c.module, result, isTopLevel = false)
|
|
if c.config.errorCounter != oldErrorCount:
|
|
result = nil
|
|
except ERecoverableError:
|
|
discard
|
|
# undo symbol table changes (as far as it's possible):
|
|
c.compilesContextId = oldCompilesId
|
|
c.generics = oldGenerics
|
|
c.inGenericContext = oldInGenericContext
|
|
c.inUnrolledContext = oldInUnrolledContext
|
|
c.inGenericInst = oldInGenericInst
|
|
c.inStaticContext = oldInStaticContext
|
|
c.p = oldProcCon
|
|
msgs.setInfoContextLen(c.config, oldContextLen)
|
|
setLen(c.graph.owners, oldOwnerLen)
|
|
c.currentScope = oldScope
|
|
c.config.m.errorOutputs = oldErrorOutputs
|
|
c.config.errorCounter = oldErrorCount
|
|
c.config.errorMax = oldErrorMax
|
|
when defined(nimsuggest):
|
|
# Restore the error hook
|
|
c.graph.config.structuredErrorHook = tempHook
|
|
|
|
proc semCompiles(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
# we replace this node by a 'true' or 'false' node:
|
|
if n.len != 2: return semDirectOp(c, n, flags)
|
|
|
|
result = newIntNode(nkIntLit, ord(tryExpr(c, n[1], flags) != nil))
|
|
result.info = n.info
|
|
result.typ = getSysType(c.graph, n.info, tyBool)
|
|
|
|
proc semShallowCopy(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
if n.len == 3:
|
|
# XXX ugh this is really a hack: shallowCopy() can be overloaded only
|
|
# with procs that take not 2 parameters:
|
|
result = newNodeI(nkFastAsgn, n.info)
|
|
result.add(n[1])
|
|
result.add(n[2])
|
|
result = semAsgn(c, result)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc createFlowVar(c: PContext; t: PType; info: TLineInfo): PType =
|
|
result = newType(tyGenericInvocation, nextTypeId c.idgen, c.module)
|
|
addSonSkipIntLit(result, magicsys.getCompilerProc(c.graph, "FlowVar").typ, c.idgen)
|
|
addSonSkipIntLit(result, t, c.idgen)
|
|
result = instGenericContainer(c, info, result, allowMetaTypes = false)
|
|
|
|
proc instantiateCreateFlowVarCall(c: PContext; t: PType;
|
|
info: TLineInfo): PSym =
|
|
let sym = magicsys.getCompilerProc(c.graph, "nimCreateFlowVar")
|
|
if sym == nil:
|
|
localError(c.config, info, "system needs: nimCreateFlowVar")
|
|
var bindings: TIdTable
|
|
initIdTable(bindings)
|
|
bindings.idTablePut(sym.ast[genericParamsPos][0].typ, t)
|
|
result = c.semGenerateInstance(c, sym, bindings, info)
|
|
# since it's an instantiation, we unmark it as a compilerproc. Otherwise
|
|
# codegen would fail:
|
|
if sfCompilerProc in result.flags:
|
|
result.flags.excl {sfCompilerProc, sfExportc, sfImportc}
|
|
result.loc.r = nil
|
|
|
|
proc setMs(n: PNode, s: PSym): PNode =
|
|
result = n
|
|
n[0] = newSymNode(s)
|
|
n[0].info = n.info
|
|
|
|
proc semSizeof(c: PContext, n: PNode): PNode =
|
|
if n.len != 2:
|
|
localError(c.config, n.info, errXExpectsTypeOrValue % "sizeof")
|
|
else:
|
|
n[1] = semExprWithType(c, n[1], {efDetermineType})
|
|
#restoreOldStyleType(n[1])
|
|
n.typ = getSysType(c.graph, n.info, tyInt)
|
|
result = foldSizeOf(c.config, n, n)
|
|
|
|
proc semMagic(c: PContext, n: PNode, s: PSym, flags: TExprFlags): PNode =
|
|
# this is a hotspot in the compiler!
|
|
result = n
|
|
case s.magic # magics that need special treatment
|
|
of mAddr:
|
|
markUsed(c, n.info, s)
|
|
checkSonsLen(n, 2, c.config)
|
|
result[0] = newSymNode(s, n[0].info)
|
|
result[1] = semAddrArg(c, n[1], s.name.s == "unsafeAddr")
|
|
result.typ = makePtrType(c, result[1].typ)
|
|
of mTypeOf:
|
|
markUsed(c, n.info, s)
|
|
result = semTypeOf(c, n)
|
|
of mDefined:
|
|
markUsed(c, n.info, s)
|
|
result = semDefined(c, setMs(n, s))
|
|
of mDeclared:
|
|
markUsed(c, n.info, s)
|
|
result = semDeclared(c, setMs(n, s), false)
|
|
of mDeclaredInScope:
|
|
markUsed(c, n.info, s)
|
|
result = semDeclared(c, setMs(n, s), true)
|
|
of mCompiles:
|
|
markUsed(c, n.info, s)
|
|
result = semCompiles(c, setMs(n, s), flags)
|
|
of mIs:
|
|
markUsed(c, n.info, s)
|
|
result = semIs(c, setMs(n, s), flags)
|
|
of mShallowCopy:
|
|
markUsed(c, n.info, s)
|
|
result = semShallowCopy(c, n, flags)
|
|
of mExpandToAst:
|
|
markUsed(c, n.info, s)
|
|
result = semExpandToAst(c, n, s, flags)
|
|
of mQuoteAst:
|
|
markUsed(c, n.info, s)
|
|
result = semQuoteAst(c, n)
|
|
of mAstToStr:
|
|
markUsed(c, n.info, s)
|
|
checkSonsLen(n, 2, c.config)
|
|
result = newStrNodeT(renderTree(n[1], {renderNoComments}), n, c.graph)
|
|
result.typ = getSysType(c.graph, n.info, tyString)
|
|
of mParallel:
|
|
markUsed(c, n.info, s)
|
|
if parallel notin c.features:
|
|
localError(c.config, n.info, "use the {.experimental.} pragma to enable 'parallel'")
|
|
result = setMs(n, s)
|
|
var x = n.lastSon
|
|
if x.kind == nkDo: x = x[bodyPos]
|
|
inc c.inParallelStmt
|
|
result[1] = semStmt(c, x, {})
|
|
dec c.inParallelStmt
|
|
of mSpawn:
|
|
markUsed(c, n.info, s)
|
|
when defined(leanCompiler):
|
|
result = localErrorNode(c, n, "compiler was built without 'spawn' support")
|
|
else:
|
|
result = setMs(n, s)
|
|
for i in 1..<n.len:
|
|
result[i] = semExpr(c, n[i])
|
|
|
|
if n.len > 1 and n[1].kind notin nkCallKinds:
|
|
return localErrorNode(c, n, n[1].info, "'spawn' takes a call expression; got: " & $n[1])
|
|
|
|
let typ = result[^1].typ
|
|
if not typ.isEmptyType:
|
|
if spawnResult(typ, c.inParallelStmt > 0) == srFlowVar:
|
|
result.typ = createFlowVar(c, typ, n.info)
|
|
else:
|
|
result.typ = typ
|
|
result.add instantiateCreateFlowVarCall(c, typ, n.info).newSymNode
|
|
else:
|
|
result.add c.graph.emptyNode
|
|
of mProcCall:
|
|
markUsed(c, n.info, s)
|
|
result = setMs(n, s)
|
|
result[1] = semExpr(c, n[1])
|
|
result.typ = n[1].typ
|
|
of mPlugin:
|
|
markUsed(c, n.info, s)
|
|
# semDirectOp with conditional 'afterCallActions':
|
|
let nOrig = n.copyTree
|
|
#semLazyOpAux(c, n)
|
|
result = semOverloadedCallAnalyseEffects(c, n, nOrig, flags)
|
|
if result == nil:
|
|
result = errorNode(c, n)
|
|
else:
|
|
let callee = result[0].sym
|
|
if callee.magic == mNone:
|
|
semFinishOperands(c, result)
|
|
activate(c, result)
|
|
fixAbstractType(c, result)
|
|
analyseIfAddressTakenInCall(c, result)
|
|
if callee.magic != mNone:
|
|
result = magicsAfterOverloadResolution(c, result, flags)
|
|
of mRunnableExamples:
|
|
markUsed(c, n.info, s)
|
|
if c.config.cmd in cmdDocLike and n.len >= 2 and n.lastSon.kind == nkStmtList:
|
|
when false:
|
|
# some of this dead code was moved to `prepareExamples`
|
|
if sfMainModule in c.module.flags:
|
|
let inp = toFullPath(c.config, c.module.info)
|
|
if c.runnableExamples == nil:
|
|
c.runnableExamples = newTree(nkStmtList,
|
|
newTree(nkImportStmt, newStrNode(nkStrLit, expandFilename(inp))))
|
|
let imports = newTree(nkStmtList)
|
|
var savedLastSon = copyTree n.lastSon
|
|
extractImports(savedLastSon, imports)
|
|
for imp in imports: c.runnableExamples.add imp
|
|
c.runnableExamples.add newTree(nkBlockStmt, c.graph.emptyNode, copyTree savedLastSon)
|
|
result = setMs(n, s)
|
|
else:
|
|
result = c.graph.emptyNode
|
|
of mSizeOf:
|
|
markUsed(c, n.info, s)
|
|
result = semSizeof(c, setMs(n, s))
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
|
|
proc semWhen(c: PContext, n: PNode, semCheck = true): PNode =
|
|
# If semCheck is set to false, ``when`` will return the verbatim AST of
|
|
# the correct branch. Otherwise the AST will be passed through semStmt.
|
|
result = nil
|
|
|
|
template setResult(e: untyped) =
|
|
if semCheck: result = semExpr(c, e) # do not open a new scope!
|
|
else: result = e
|
|
|
|
# Check if the node is "when nimvm"
|
|
# when nimvm:
|
|
# ...
|
|
# else:
|
|
# ...
|
|
var whenNimvm = false
|
|
var typ = commonTypeBegin
|
|
if n.len == 2 and n[0].kind == nkElifBranch and
|
|
n[1].kind == nkElse:
|
|
let exprNode = n[0][0]
|
|
if exprNode.kind == nkIdent:
|
|
whenNimvm = lookUp(c, exprNode).magic == mNimvm
|
|
elif exprNode.kind == nkSym:
|
|
whenNimvm = exprNode.sym.magic == mNimvm
|
|
if whenNimvm: n.flags.incl nfLL
|
|
|
|
for i in 0..<n.len:
|
|
var it = n[i]
|
|
case it.kind
|
|
of nkElifBranch, nkElifExpr:
|
|
checkSonsLen(it, 2, c.config)
|
|
if whenNimvm:
|
|
if semCheck:
|
|
it[1] = semExpr(c, it[1])
|
|
typ = commonType(c, typ, it[1].typ)
|
|
result = n # when nimvm is not elimited until codegen
|
|
else:
|
|
let e = forceBool(c, semConstExpr(c, it[0]))
|
|
if e.kind != nkIntLit:
|
|
# can happen for cascading errors, assume false
|
|
# InternalError(n.info, "semWhen")
|
|
discard
|
|
elif e.intVal != 0 and result == nil:
|
|
setResult(it[1])
|
|
return # we're not in nimvm and we already have a result
|
|
of nkElse, nkElseExpr:
|
|
checkSonsLen(it, 1, c.config)
|
|
if result == nil or whenNimvm:
|
|
if semCheck:
|
|
it[0] = semExpr(c, it[0])
|
|
typ = commonType(c, typ, it[0].typ)
|
|
if result == nil:
|
|
result = it[0]
|
|
else: illFormedAst(n, c.config)
|
|
if result == nil:
|
|
result = newNodeI(nkEmpty, n.info)
|
|
if whenNimvm: result.typ = typ
|
|
|
|
proc semSetConstr(c: PContext, n: PNode): PNode =
|
|
result = newNodeI(nkCurly, n.info)
|
|
result.typ = newTypeS(tySet, c)
|
|
if n.len == 0:
|
|
rawAddSon(result.typ, newTypeS(tyEmpty, c))
|
|
else:
|
|
# only semantic checking for all elements, later type checking:
|
|
var typ: PType = nil
|
|
for i in 0..<n.len:
|
|
if isRange(n[i]):
|
|
checkSonsLen(n[i], 3, c.config)
|
|
n[i][1] = semExprWithType(c, n[i][1])
|
|
n[i][2] = semExprWithType(c, n[i][2])
|
|
if typ == nil:
|
|
typ = skipTypes(n[i][1].typ,
|
|
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
n[i].typ = n[i][2].typ # range node needs type too
|
|
elif n[i].kind == nkRange:
|
|
# already semchecked
|
|
if typ == nil:
|
|
typ = skipTypes(n[i][0].typ,
|
|
{tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
else:
|
|
n[i] = semExprWithType(c, n[i])
|
|
if typ == nil:
|
|
typ = skipTypes(n[i].typ, {tyGenericInst, tyVar, tyLent, tyOrdinal, tyAlias, tySink})
|
|
if not isOrdinalType(typ, allowEnumWithHoles=true):
|
|
localError(c.config, n.info, errOrdinalTypeExpected)
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
elif lengthOrd(c.config, typ) > MaxSetElements:
|
|
typ = makeRangeType(c, 0, MaxSetElements-1, n.info)
|
|
addSonSkipIntLit(result.typ, typ, c.idgen)
|
|
for i in 0..<n.len:
|
|
var m: PNode
|
|
let info = n[i].info
|
|
if isRange(n[i]):
|
|
m = newNodeI(nkRange, info)
|
|
m.add fitNode(c, typ, n[i][1], info)
|
|
m.add fitNode(c, typ, n[i][2], info)
|
|
elif n[i].kind == nkRange: m = n[i] # already semchecked
|
|
else:
|
|
m = fitNode(c, typ, n[i], info)
|
|
result.add m
|
|
|
|
proc semTableConstr(c: PContext, n: PNode): PNode =
|
|
# we simply transform ``{key: value, key2, key3: value}`` to
|
|
# ``[(key, value), (key2, value2), (key3, value2)]``
|
|
result = newNodeI(nkBracket, n.info)
|
|
var lastKey = 0
|
|
for i in 0..<n.len:
|
|
var x = n[i]
|
|
if x.kind == nkExprColonExpr and x.len == 2:
|
|
for j in lastKey..<i:
|
|
var pair = newNodeI(nkTupleConstr, x.info)
|
|
pair.add(n[j])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
var pair = newNodeI(nkTupleConstr, x.info)
|
|
pair.add(x[0])
|
|
pair.add(x[1])
|
|
result.add(pair)
|
|
|
|
lastKey = i+1
|
|
|
|
if lastKey != n.len: illFormedAst(n, c.config)
|
|
result = semExpr(c, result)
|
|
|
|
type
|
|
TParKind = enum
|
|
paNone, paSingle, paTupleFields, paTuplePositions
|
|
|
|
proc checkPar(c: PContext; n: PNode): TParKind =
|
|
if n.len == 0:
|
|
result = paTuplePositions # ()
|
|
elif n.len == 1:
|
|
if n[0].kind == nkExprColonExpr: result = paTupleFields
|
|
elif n.kind == nkTupleConstr: result = paTuplePositions
|
|
else: result = paSingle # (expr)
|
|
else:
|
|
if n[0].kind == nkExprColonExpr: result = paTupleFields
|
|
else: result = paTuplePositions
|
|
for i in 0..<n.len:
|
|
if result == paTupleFields:
|
|
if (n[i].kind != nkExprColonExpr) or
|
|
n[i][0].kind notin {nkSym, nkIdent, nkAccQuoted}:
|
|
localError(c.config, n[i].info, errNamedExprExpected)
|
|
return paNone
|
|
else:
|
|
if n[i].kind == nkExprColonExpr:
|
|
localError(c.config, n[i].info, errNamedExprNotAllowed)
|
|
return paNone
|
|
|
|
proc semTupleFieldsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = newNodeI(nkTupleConstr, n.info)
|
|
var typ = newTypeS(tyTuple, c)
|
|
typ.n = newNodeI(nkRecList, n.info) # nkIdentDefs
|
|
var ids = initIntSet()
|
|
for i in 0..<n.len:
|
|
if n[i].kind != nkExprColonExpr:
|
|
illFormedAst(n[i], c.config)
|
|
let id = considerQuotedIdent(c, n[i][0])
|
|
if containsOrIncl(ids, id.id):
|
|
localError(c.config, n[i].info, errFieldInitTwice % id.s)
|
|
n[i][1] = semExprWithType(c, n[i][1],
|
|
flags*{efAllowDestructor})
|
|
|
|
if n[i][1].typ.kind == tyTypeDesc:
|
|
localError(c.config, n[i][1].info, "typedesc not allowed as tuple field.")
|
|
n[i][1].typ = errorType(c)
|
|
|
|
var f = newSymS(skField, n[i][0], c)
|
|
f.typ = skipIntLit(n[i][1].typ, c.idgen)
|
|
f.position = i
|
|
rawAddSon(typ, f.typ)
|
|
typ.n.add newSymNode(f)
|
|
n[i][0] = newSymNode(f)
|
|
result.add n[i]
|
|
result.typ = typ
|
|
|
|
proc semTuplePositionsConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
result = n # we don't modify n, but compute the type:
|
|
result.transitionSonsKind(nkTupleConstr)
|
|
var typ = newTypeS(tyTuple, c) # leave typ.n nil!
|
|
for i in 0..<n.len:
|
|
n[i] = semExprWithType(c, n[i], flags*{efAllowDestructor})
|
|
addSonSkipIntLit(typ, n[i].typ, c.idgen)
|
|
result.typ = typ
|
|
|
|
include semobjconstr
|
|
|
|
proc semBlock(c: PContext, n: PNode; flags: TExprFlags): PNode =
|
|
result = n
|
|
inc(c.p.nestedBlockCounter)
|
|
checkSonsLen(n, 2, c.config)
|
|
openScope(c) # BUGFIX: label is in the scope of block!
|
|
if n[0].kind != nkEmpty:
|
|
var labl = newSymG(skLabel, n[0], c)
|
|
if sfGenSym notin labl.flags:
|
|
addDecl(c, labl)
|
|
elif labl.owner == nil:
|
|
labl.owner = c.p.owner
|
|
n[0] = newSymNode(labl, n[0].info)
|
|
suggestSym(c.graph, n[0].info, labl, c.graph.usageSym)
|
|
styleCheckDef(c.config, labl)
|
|
onDef(n[0].info, labl)
|
|
n[1] = semExpr(c, n[1], flags)
|
|
n.typ = n[1].typ
|
|
if isEmptyType(n.typ): n.transitionSonsKind(nkBlockStmt)
|
|
else: n.transitionSonsKind(nkBlockExpr)
|
|
closeScope(c)
|
|
dec(c.p.nestedBlockCounter)
|
|
|
|
proc semExportExcept(c: PContext, n: PNode): PNode =
|
|
let moduleName = semExpr(c, n[0])
|
|
if moduleName.kind != nkSym or moduleName.sym.kind != skModule:
|
|
localError(c.config, n.info, "The export/except syntax expects a module name")
|
|
return n
|
|
let exceptSet = readExceptSet(c, n)
|
|
let exported = moduleName.sym
|
|
result = newNodeI(nkExportStmt, n.info)
|
|
reexportSym(c, exported)
|
|
for s in allSyms(c.graph, exported):
|
|
if s.kind in ExportableSymKinds+{skModule} and
|
|
s.name.id notin exceptSet and sfError notin s.flags:
|
|
reexportSym(c, s)
|
|
result.add newSymNode(s, n.info)
|
|
markUsed(c, n.info, exported)
|
|
|
|
proc semExport(c: PContext, n: PNode): PNode =
|
|
proc specialSyms(c: PContext; s: PSym) {.inline.} =
|
|
if s.kind == skConverter: addConverter(c, LazySym(sym: s))
|
|
elif s.kind == skType and s.typ != nil and s.typ.kind == tyEnum and sfPure in s.flags:
|
|
addPureEnum(c, LazySym(sym: s))
|
|
|
|
result = newNodeI(nkExportStmt, n.info)
|
|
for i in 0..<n.len:
|
|
let a = n[i]
|
|
var o: TOverloadIter
|
|
var s = initOverloadIter(o, c, a)
|
|
if s == nil:
|
|
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a))
|
|
elif s.kind == skModule:
|
|
# forward everything from that module:
|
|
reexportSym(c, s)
|
|
for it in allSyms(c.graph, s):
|
|
if it.kind in ExportableSymKinds+{skModule}:
|
|
reexportSym(c, it)
|
|
result.add newSymNode(it, a.info)
|
|
specialSyms(c, it)
|
|
markUsed(c, n.info, s)
|
|
else:
|
|
while s != nil:
|
|
if s.kind == skEnumField:
|
|
localError(c.config, a.info, errGenerated, "cannot export: " & renderTree(a) &
|
|
"; enum field cannot be exported individually")
|
|
if s.kind in ExportableSymKinds+{skModule} and sfError notin s.flags:
|
|
result.add(newSymNode(s, a.info))
|
|
reexportSym(c, s)
|
|
markUsed(c, n.info, s)
|
|
specialSyms(c, s)
|
|
if s.kind == skType and sfPure notin s.flags:
|
|
var etyp = s.typ
|
|
if etyp.kind in {tyBool, tyEnum}:
|
|
for j in 0..<etyp.n.len:
|
|
var e = etyp.n[j].sym
|
|
if e.kind != skEnumField:
|
|
internalError(c.config, s.info, "rawImportSymbol")
|
|
reexportSym(c, e)
|
|
|
|
s = nextOverloadIter(o, c, a)
|
|
|
|
proc semTupleConstr(c: PContext, n: PNode, flags: TExprFlags): PNode =
|
|
var tupexp = semTuplePositionsConstr(c, n, flags)
|
|
var isTupleType: bool
|
|
if tupexp.len > 0: # don't interpret () as type
|
|
isTupleType = tupexp[0].typ.kind == tyTypeDesc
|
|
# check if either everything or nothing is tyTypeDesc
|
|
for i in 1..<tupexp.len:
|
|
if isTupleType != (tupexp[i].typ.kind == tyTypeDesc):
|
|
return localErrorNode(c, n, tupexp[i].info, "Mixing types and values in tuples is not allowed.")
|
|
if isTupleType: # expressions as ``(int, string)`` are reinterpret as type expressions
|
|
result = n
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
else:
|
|
result = tupexp
|
|
|
|
proc shouldBeBracketExpr(n: PNode): bool =
|
|
assert n.kind in nkCallKinds
|
|
let a = n[0]
|
|
if a.kind in nkCallKinds:
|
|
let b = a[0]
|
|
if b.kind in nkSymChoices:
|
|
for i in 0..<b.len:
|
|
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
|
|
let be = newNodeI(nkBracketExpr, n.info)
|
|
for i in 1..<a.len: be.add(a[i])
|
|
n[0] = be
|
|
return true
|
|
|
|
proc asBracketExpr(c: PContext; n: PNode): PNode =
|
|
proc isGeneric(c: PContext; n: PNode): bool =
|
|
if n.kind in {nkIdent, nkAccQuoted}:
|
|
let s = qualifiedLookUp(c, n, {})
|
|
result = s != nil and isGenericRoutineStrict(s)
|
|
|
|
assert n.kind in nkCallKinds
|
|
if n.len > 1 and isGeneric(c, n[1]):
|
|
let b = n[0]
|
|
if b.kind in nkSymChoices:
|
|
for i in 0..<b.len:
|
|
if b[i].kind == nkSym and b[i].sym.magic == mArrGet:
|
|
result = newNodeI(nkBracketExpr, n.info)
|
|
for i in 1..<n.len: result.add(n[i])
|
|
return result
|
|
return nil
|
|
|
|
proc hoistParamsUsedInDefault(c: PContext, call, letSection, defExpr: var PNode) =
|
|
# This takes care of complicated signatures such as:
|
|
# proc foo(a: int, b = a)
|
|
# proc bar(a: int, b: int, c = a + b)
|
|
#
|
|
# The recursion may confuse you. It performs two duties:
|
|
#
|
|
# 1) extracting all referenced params from default expressions
|
|
# into a let section preceding the call
|
|
#
|
|
# 2) replacing the "references" within the default expression
|
|
# with these extracted skLet symbols.
|
|
#
|
|
# The first duty is carried out directly in the code here, while the second
|
|
# duty is activated by returning a non-nil value. The caller is responsible
|
|
# for replacing the input to the function with the returned non-nil value.
|
|
# (which is the hoisted symbol)
|
|
if defExpr.kind == nkSym and defExpr.sym.kind == skParam and defExpr.sym.owner == call[0].sym:
|
|
let paramPos = defExpr.sym.position + 1
|
|
|
|
if call[paramPos].kind != nkSym:
|
|
let hoistedVarSym = newSym(skLet, getIdent(c.graph.cache, genPrefix), nextSymId c.idgen,
|
|
c.p.owner, letSection.info, c.p.owner.options)
|
|
hoistedVarSym.typ = call[paramPos].typ
|
|
|
|
letSection.add newTreeI(nkIdentDefs, letSection.info,
|
|
newSymNode(hoistedVarSym),
|
|
newNodeI(nkEmpty, letSection.info),
|
|
call[paramPos])
|
|
|
|
call[paramPos] = newSymNode(hoistedVarSym) # Refer the original arg to its hoisted sym
|
|
|
|
# arg we refer to is a sym, wether introduced by hoisting or not doesn't matter, we simply reuse it
|
|
defExpr = call[paramPos]
|
|
else:
|
|
for i in 0..<defExpr.safeLen:
|
|
hoistParamsUsedInDefault(c, call, letSection, defExpr[i])
|
|
|
|
proc getNilType(c: PContext): PType =
|
|
result = c.nilTypeCache
|
|
if result == nil:
|
|
result = newTypeS(tyNil, c)
|
|
result.size = c.config.target.ptrSize
|
|
result.align = c.config.target.ptrSize.int16
|
|
c.nilTypeCache = result
|
|
|
|
proc semExpr(c: PContext, n: PNode, flags: TExprFlags = {}): PNode =
|
|
when defined(nimCompilerStacktraceHints):
|
|
setFrameMsg c.config$n.info & " " & $n.kind
|
|
when false: # see `tdebugutils`
|
|
if isCompilerDebug():
|
|
echo (">", c.config$n.info, n, flags, n.kind)
|
|
defer:
|
|
if isCompilerDebug():
|
|
echo ("<", c.config$n.info, n, ?.result.typ)
|
|
|
|
result = n
|
|
if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
|
|
if nfSem in n.flags: return
|
|
case n.kind
|
|
of nkIdent, nkAccQuoted:
|
|
let checks = if efNoEvaluateGeneric in flags:
|
|
{checkUndeclared, checkPureEnumFields}
|
|
elif efInCall in flags:
|
|
{checkUndeclared, checkModule, checkPureEnumFields}
|
|
else:
|
|
{checkUndeclared, checkModule, checkAmbiguity, checkPureEnumFields}
|
|
var s = qualifiedLookUp(c, n, checks)
|
|
if c.matchedConcept == nil: semCaptureSym(s, c.p.owner)
|
|
if s.kind in {skProc, skFunc, skMethod, skConverter, skIterator}:
|
|
#performProcvarCheck(c, n, s)
|
|
result = symChoice(c, n, s, scClosed)
|
|
if result.kind == nkSym:
|
|
markIndirect(c, result.sym)
|
|
# if isGenericRoutine(result.sym):
|
|
# localError(c.config, n.info, errInstantiateXExplicitly, s.name.s)
|
|
# "procs literals" are 'owned'
|
|
if optOwnedRefs in c.config.globalOptions:
|
|
result.typ = makeVarType(c, result.typ, tyOwned)
|
|
else:
|
|
result = semSym(c, n, s, flags)
|
|
of nkSym:
|
|
# because of the changed symbol binding, this does not mean that we
|
|
# don't have to check the symbol for semantics here again!
|
|
result = semSym(c, n, n.sym, flags)
|
|
of nkEmpty, nkNone, nkCommentStmt, nkType:
|
|
discard
|
|
of nkNilLit:
|
|
if result.typ == nil: result.typ = getNilType(c)
|
|
of nkIntLit:
|
|
if result.typ == nil: setIntLitType(c, result)
|
|
of nkInt8Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt8)
|
|
of nkInt16Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt16)
|
|
of nkInt32Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt32)
|
|
of nkInt64Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyInt64)
|
|
of nkUIntLit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt)
|
|
of nkUInt8Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt8)
|
|
of nkUInt16Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt16)
|
|
of nkUInt32Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt32)
|
|
of nkUInt64Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyUInt64)
|
|
#of nkFloatLit:
|
|
# if result.typ == nil: result.typ = getFloatLitType(result)
|
|
of nkFloat32Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat32)
|
|
of nkFloat64Lit, nkFloatLit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat64)
|
|
of nkFloat128Lit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyFloat128)
|
|
of nkStrLit..nkTripleStrLit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyString)
|
|
of nkCharLit:
|
|
if result.typ == nil: result.typ = getSysType(c.graph, n.info, tyChar)
|
|
of nkDotExpr:
|
|
result = semFieldAccess(c, n, flags)
|
|
if result.kind == nkDotCall:
|
|
result.transitionSonsKind(nkCall)
|
|
result = semExpr(c, result, flags)
|
|
of nkBind:
|
|
message(c.config, n.info, warnDeprecated, "bind is deprecated")
|
|
result = semExpr(c, n[0], flags)
|
|
of nkTypeOfExpr, nkTupleTy, nkTupleClassTy, nkRefTy..nkEnumTy, nkStaticTy:
|
|
if c.matchedConcept != nil and n.len == 1:
|
|
let modifier = n.modifierTypeKindOfNode
|
|
if modifier != tyNone:
|
|
var baseType = semExpr(c, n[0]).typ.skipTypes({tyTypeDesc})
|
|
result.typ = c.makeTypeDesc(c.newTypeWithSons(modifier, @[baseType]))
|
|
return
|
|
var typ = semTypeNode(c, n, nil).skipTypes({tyTypeDesc})
|
|
result.typ = makeTypeDesc(c, typ)
|
|
of nkStmtListType:
|
|
let typ = semTypeNode(c, n, nil)
|
|
result.typ = makeTypeDesc(c, typ)
|
|
of nkCall, nkInfix, nkPrefix, nkPostfix, nkCommand, nkCallStrLit:
|
|
# check if it is an expression macro:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
#when defined(nimsuggest):
|
|
# if gIdeCmd == ideCon and c.config.m.trackPos == n.info: suggestExprNoCheck(c, n)
|
|
let mode = if nfDotField in n.flags: {} else: {checkUndeclared}
|
|
c.isAmbiguous = false
|
|
var s = qualifiedLookUp(c, n[0], mode)
|
|
if s != nil:
|
|
#if c.config.cmd == cmdNimfix and n[0].kind == nkDotExpr:
|
|
# pretty.checkUse(n[0][1].info, s)
|
|
case s.kind
|
|
of skMacro, skTemplate:
|
|
result = semDirectOp(c, n, flags)
|
|
of skType:
|
|
# XXX think about this more (``set`` procs)
|
|
let ambig = c.isAmbiguous
|
|
if not (n[0].kind in {nkClosedSymChoice, nkOpenSymChoice, nkIdent} and ambig) and n.len == 2:
|
|
result = semConv(c, n)
|
|
elif ambig and n.len == 1:
|
|
errorUseQualifier(c, n.info, s)
|
|
elif n.len == 1:
|
|
result = semObjConstr(c, n, flags)
|
|
elif s.magic == mNone: result = semDirectOp(c, n, flags)
|
|
else: result = semMagic(c, n, s, flags)
|
|
of skProc, skFunc, skMethod, skConverter, skIterator:
|
|
if s.magic == mNone: result = semDirectOp(c, n, flags)
|
|
else: result = semMagic(c, n, s, flags)
|
|
else:
|
|
#liMessage(n.info, warnUser, renderTree(n));
|
|
result = semIndirectOp(c, n, flags)
|
|
elif (n[0].kind == nkBracketExpr or shouldBeBracketExpr(n)) and
|
|
isSymChoice(n[0][0]):
|
|
# indirectOp can deal with explicit instantiations; the fixes
|
|
# the 'newSeq[T](x)' bug
|
|
setGenericParams(c, n[0])
|
|
result = semDirectOp(c, n, flags)
|
|
elif nfDotField in n.flags:
|
|
result = semDirectOp(c, n, flags)
|
|
elif isSymChoice(n[0]):
|
|
let b = asBracketExpr(c, n)
|
|
if b != nil:
|
|
result = semExpr(c, b, flags)
|
|
else:
|
|
result = semDirectOp(c, n, flags)
|
|
else:
|
|
result = semIndirectOp(c, n, flags)
|
|
|
|
if nfDefaultRefsParam in result.flags:
|
|
result = result.copyTree #XXX: Figure out what causes default param nodes to be shared.. (sigmatch bug?)
|
|
# We've found a default value that references another param.
|
|
# See the notes in `hoistParamsUsedInDefault` for more details.
|
|
var hoistedParams = newNodeI(nkLetSection, result.info)
|
|
for i in 1..<result.len:
|
|
hoistParamsUsedInDefault(c, result, hoistedParams, result[i])
|
|
result = newTreeIT(nkStmtListExpr, result.info, result.typ, hoistedParams, result)
|
|
of nkWhen:
|
|
if efWantStmt in flags:
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semWhen(c, n, false)
|
|
if result == n:
|
|
# This is a "when nimvm" stmt.
|
|
result = semWhen(c, n, true)
|
|
else:
|
|
result = semExpr(c, result, flags)
|
|
of nkBracketExpr:
|
|
checkMinSonsLen(n, 1, c.config)
|
|
result = semArrayAccess(c, n, flags)
|
|
of nkCurlyExpr:
|
|
result = semExpr(c, buildOverloadedSubscripts(n, getIdent(c.cache, "{}")), flags)
|
|
of nkPragmaExpr:
|
|
var
|
|
pragma = n[1]
|
|
pragmaName = considerQuotedIdent(c, pragma[0])
|
|
flags = flags
|
|
finalNodeFlags: TNodeFlags = {}
|
|
|
|
case whichKeyword(pragmaName)
|
|
of wExplain:
|
|
flags.incl efExplain
|
|
of wExecuteOnReload:
|
|
finalNodeFlags.incl nfExecuteOnReload
|
|
else:
|
|
# what other pragmas are allowed for expressions? `likely`, `unlikely`
|
|
invalidPragma(c, n)
|
|
|
|
result = semExpr(c, n[0], flags)
|
|
result.flags.incl finalNodeFlags
|
|
of nkPar, nkTupleConstr:
|
|
case checkPar(c, n)
|
|
of paNone: result = errorNode(c, n)
|
|
of paTuplePositions: result = semTupleConstr(c, n, flags)
|
|
of paTupleFields: result = semTupleFieldsConstr(c, n, flags)
|
|
of paSingle: result = semExpr(c, n[0], flags)
|
|
of nkCurly: result = semSetConstr(c, n)
|
|
of nkBracket: result = semArrayConstr(c, n, flags)
|
|
of nkObjConstr: result = semObjConstr(c, n, flags)
|
|
of nkLambdaKinds: result = semProcAux(c, n, skProc, lambdaPragmas, flags)
|
|
of nkDerefExpr: result = semDeref(c, n)
|
|
of nkAddr:
|
|
result = n
|
|
checkSonsLen(n, 1, c.config)
|
|
result[0] = semAddrArg(c, n[0])
|
|
result.typ = makePtrType(c, result[0].typ)
|
|
of nkHiddenAddr, nkHiddenDeref:
|
|
checkSonsLen(n, 1, c.config)
|
|
n[0] = semExpr(c, n[0], flags)
|
|
of nkCast: result = semCast(c, n)
|
|
of nkIfExpr, nkIfStmt: result = semIf(c, n, flags)
|
|
of nkHiddenStdConv, nkHiddenSubConv, nkConv, nkHiddenCallConv:
|
|
checkSonsLen(n, 2, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkStringToCString, nkCStringToString, nkObjDownConv, nkObjUpConv:
|
|
checkSonsLen(n, 1, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkChckRangeF, nkChckRange64, nkChckRange:
|
|
checkSonsLen(n, 3, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkCheckedFieldExpr:
|
|
checkMinSonsLen(n, 2, c.config)
|
|
considerGenSyms(c, n)
|
|
of nkTableConstr:
|
|
result = semTableConstr(c, n)
|
|
of nkClosedSymChoice, nkOpenSymChoice:
|
|
# handling of sym choices is context dependent
|
|
# the node is left intact for now
|
|
discard
|
|
of nkStaticExpr: result = semStaticExpr(c, n[0])
|
|
of nkAsgn: result = semAsgn(c, n)
|
|
of nkBlockStmt, nkBlockExpr: result = semBlock(c, n, flags)
|
|
of nkStmtList, nkStmtListExpr: result = semStmtList(c, n, flags)
|
|
of nkRaiseStmt: result = semRaise(c, n)
|
|
of nkVarSection: result = semVarOrLet(c, n, skVar)
|
|
of nkLetSection: result = semVarOrLet(c, n, skLet)
|
|
of nkConstSection: result = semConst(c, n)
|
|
of nkTypeSection: result = semTypeSection(c, n)
|
|
of nkDiscardStmt: result = semDiscard(c, n)
|
|
of nkWhileStmt: result = semWhile(c, n, flags)
|
|
of nkTryStmt, nkHiddenTryStmt: result = semTry(c, n, flags)
|
|
of nkBreakStmt, nkContinueStmt: result = semBreakOrContinue(c, n)
|
|
of nkForStmt, nkParForStmt: result = semFor(c, n, flags)
|
|
of nkCaseStmt: result = semCase(c, n, flags)
|
|
of nkReturnStmt: result = semReturn(c, n)
|
|
of nkUsingStmt: result = semUsing(c, n)
|
|
of nkAsmStmt: result = semAsm(c, n)
|
|
of nkYieldStmt: result = semYield(c, n)
|
|
of nkPragma: pragma(c, c.p.owner, n, stmtPragmas, true)
|
|
of nkIteratorDef: result = semIterator(c, n)
|
|
of nkProcDef: result = semProc(c, n)
|
|
of nkFuncDef: result = semFunc(c, n)
|
|
of nkMethodDef: result = semMethod(c, n)
|
|
of nkConverterDef: result = semConverterDef(c, n)
|
|
of nkMacroDef: result = semMacroDef(c, n)
|
|
of nkTemplateDef: result = semTemplateDef(c, n)
|
|
of nkImportStmt:
|
|
# this particular way allows 'import' in a 'compiles' context so that
|
|
# template canImport(x): bool =
|
|
# compiles:
|
|
# import x
|
|
#
|
|
# works:
|
|
if c.currentScope.depthLevel > 2 + c.compilesContextId:
|
|
localError(c.config, n.info, errXOnlyAtModuleScope % "import")
|
|
result = evalImport(c, n)
|
|
of nkImportExceptStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "import")
|
|
result = evalImportExcept(c, n)
|
|
of nkFromStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "from")
|
|
result = evalFrom(c, n)
|
|
of nkIncludeStmt:
|
|
#if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "include")
|
|
result = evalInclude(c, n)
|
|
of nkExportStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
|
|
result = semExport(c, n)
|
|
of nkExportExceptStmt:
|
|
if not isTopLevel(c): localError(c.config, n.info, errXOnlyAtModuleScope % "export")
|
|
result = semExportExcept(c, n)
|
|
of nkPragmaBlock:
|
|
result = semPragmaBlock(c, n)
|
|
of nkStaticStmt:
|
|
result = semStaticStmt(c, n)
|
|
of nkDefer:
|
|
if c.currentScope == c.topLevelScope:
|
|
localError(c.config, n.info, "defer statement not supported at top level")
|
|
n[0] = semExpr(c, n[0])
|
|
if not n[0].typ.isEmptyType and not implicitlyDiscardable(n[0]):
|
|
localError(c.config, n.info, "'defer' takes a 'void' expression")
|
|
#localError(c.config, n.info, errGenerated, "'defer' not allowed in this context")
|
|
of nkGotoState, nkState:
|
|
if n.len != 1 and n.len != 2: illFormedAst(n, c.config)
|
|
for i in 0..<n.len:
|
|
n[i] = semExpr(c, n[i])
|
|
of nkComesFrom: discard "ignore the comes from information for now"
|
|
of nkMixinStmt: discard
|
|
of nkBindStmt:
|
|
if c.p != nil:
|
|
if n.len > 0 and n[0].kind == nkSym:
|
|
c.p.localBindStmts.add n
|
|
else:
|
|
localError(c.config, n.info, "invalid context for 'bind' statement: " &
|
|
renderTree(n, {renderNoComments}))
|
|
else:
|
|
localError(c.config, n.info, "invalid expression: " &
|
|
renderTree(n, {renderNoComments}))
|
|
if result != nil: incl(result.flags, nfSem)
|