Files
Nim/lib/system.nim
Emery Hemingway 9258672cee balance Genode CPU pinning, deadlock at Genode exit (#6317)
* Genode: balance thread CPU affinities
Genode threads are pinned by defaut to the same CPU as the initial
component entrypoint thread. Thread affinities are also permanent. This
patch pins new threads to CPUs in a round-robin manner. Arbitrary CPU
pinning is not exposed and the 'nimPinToCpu' has no effect.

* Genode: guarantee that 'quit' will not return
On Genode exits are handled by whatever component is acting as parent.
The caller has no guarentee that the parent implementation will halt the
caller's threads, so explicitly deadlock the 'quit' procedure.
2017-09-16 08:02:59 +02:00

3899 lines
152 KiB
Nim

#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## The compiler depends on the System module to work properly and the System
## module depends on the compiler. Most of the routines listed here use
## special compiler magic.
## Each module implicitly imports the System module; it must not be listed
## explicitly. Because of this there cannot be a user-defined module named
## ``system``.
##
## Module system
## =============
##
# That lonesome header above is to prevent :idx: entries from being mentioned
# in the global index as part of the previous header (Exception hierarchy).
type
int* {.magic: Int.} ## default integer type; bitwidth depends on
## architecture, but is always the same as a pointer
int8* {.magic: Int8.} ## signed 8 bit integer type
int16* {.magic: Int16.} ## signed 16 bit integer type
int32* {.magic: Int32.} ## signed 32 bit integer type
int64* {.magic: Int64.} ## signed 64 bit integer type
uint* {.magic: UInt.} ## unsigned default integer type
uint8* {.magic: UInt8.} ## unsigned 8 bit integer type
uint16* {.magic: UInt16.} ## unsigned 16 bit integer type
uint32* {.magic: UInt32.} ## unsigned 32 bit integer type
uint64* {.magic: UInt64.} ## unsigned 64 bit integer type
float* {.magic: Float.} ## default floating point type
float32* {.magic: Float32.} ## 32 bit floating point type
float64* {.magic: Float.} ## 64 bit floating point type
# 'float64' is now an alias to 'float'; this solves many problems
type # we need to start a new type section here, so that ``0`` can have a type
bool* {.magic: Bool.} = enum ## built-in boolean type
false = 0, true = 1
type
char* {.magic: Char.} ## built-in 8 bit character type (unsigned)
string* {.magic: String.} ## built-in string type
cstring* {.magic: Cstring.} ## built-in cstring (*compatible string*) type
pointer* {.magic: Pointer.} ## built-in pointer type, use the ``addr``
## operator to get a pointer to a variable
typedesc* {.magic: TypeDesc.} ## meta type to denote a type description
const
on* = true ## alias for ``true``
off* = false ## alias for ``false``
{.push warning[GcMem]: off, warning[Uninit]: off.}
{.push hints: off.}
proc `or` *(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `or` meta class
proc `and` *(a, b: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `and` meta class
proc `not` *(a: typedesc): typedesc {.magic: "TypeTrait", noSideEffect.}
## Constructs an `not` meta class
type
Ordinal* {.magic: Ordinal.}[T] ## Generic ordinal type. Includes integer,
## bool, character, and enumeration types
## as well as their subtypes. Note `uint`
## and `uint64` are not ordinal types for
## implementation reasons
`ptr`* {.magic: Pointer.}[T] ## built-in generic untraced pointer type
`ref`* {.magic: Pointer.}[T] ## built-in generic traced pointer type
`nil` {.magic: "Nil".}
expr* {.magic: Expr, deprecated.} ## meta type to denote an expression (for templates)
## **Deprecated** since version 0.15. Use ``untyped`` instead.
stmt* {.magic: Stmt, deprecated.} ## meta type to denote a statement (for templates)
## **Deprecated** since version 0.15. Use ``typed`` instead.
void* {.magic: "VoidType".} ## meta type to denote the absence of any type
auto* {.magic: Expr.} ## meta type for automatic type determination
any* = distinct auto ## meta type for any supported type
untyped* {.magic: Expr.} ## meta type to denote an expression that
## is not resolved (for templates)
typed* {.magic: Stmt.} ## meta type to denote an expression that
## is resolved (for templates)
SomeSignedInt* = int|int8|int16|int32|int64
## type class matching all signed integer types
SomeUnsignedInt* = uint|uint8|uint16|uint32|uint64
## type class matching all unsigned integer types
SomeInteger* = SomeSignedInt|SomeUnsignedInt
## type class matching all integer types
SomeOrdinal* = int|int8|int16|int32|int64|bool|enum|uint8|uint16|uint32
## type class matching all ordinal types; however this includes enums with
## holes.
SomeReal* = float|float32|float64
## type class matching all floating point number types
SomeNumber* = SomeInteger|SomeReal
## type class matching all number types
proc defined*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## defined.
## `x` is an external symbol introduced through the compiler's
## `-d:x switch <nimc.html#compile-time-symbols>`_ to enable build time
## conditionals:
##
## .. code-block:: Nim
## when not defined(release):
## # Do here programmer friendly expensive sanity checks.
## # Put here the normal code
when defined(nimalias):
{.deprecated: [
TSignedInt: SomeSignedInt,
TUnsignedInt: SomeUnsignedInt,
TInteger: SomeInteger,
TReal: SomeReal,
TNumber: SomeNumber,
TOrdinal: SomeOrdinal].}
proc declared*(x: untyped): bool {.magic: "Defined", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared. `x` has to be an identifier or a qualified identifier.
## This can be used to check whether a library provides a certain
## feature or not:
##
## .. code-block:: Nim
## when not declared(strutils.toUpper):
## # provide our own toUpper proc here, because strutils is
## # missing it.
when defined(useNimRtl):
{.deadCodeElim: on.}
proc definedInScope*(x: untyped): bool {.
magic: "DefinedInScope", noSideEffect, deprecated, compileTime.}
## **Deprecated since version 0.9.6**: Use ``declaredInScope`` instead.
proc declaredInScope*(x: untyped): bool {.
magic: "DefinedInScope", noSideEffect, compileTime.}
## Special compile-time procedure that checks whether `x` is
## declared in the current scope. `x` has to be an identifier.
proc `addr`*[T](x: var T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin 'addr' operator for taking the address of a memory location.
## Cannot be overloaded.
##
## .. code-block:: nim
## var
## buf: seq[char] = @['a','b','c']
## p: pointer = buf[1].addr
## echo cast[ptr char](p)[] # b
discard
proc unsafeAddr*[T](x: T): ptr T {.magic: "Addr", noSideEffect.} =
## Builtin 'addr' operator for taking the address of a memory
## location. This works even for ``let`` variables or parameters
## for better interop with C and so it is considered even more
## unsafe than the ordinary ``addr``. When you use it to write a
## wrapper for a C library, you should always check that the
## original library does never write to data behind the pointer that
## is returned from this procedure.
## Cannot be overloaded.
discard
proc `type`*(x: untyped): typeDesc {.magic: "TypeOf", noSideEffect, compileTime.} =
## Builtin 'type' operator for accessing the type of an expression.
## Cannot be overloaded.
discard
proc `not` *(x: bool): bool {.magic: "Not", noSideEffect.}
## Boolean not; returns true iff ``x == false``.
proc `and`*(x, y: bool): bool {.magic: "And", noSideEffect.}
## Boolean ``and``; returns true iff ``x == y == true``.
## Evaluation is lazy: if ``x`` is false,
## ``y`` will not even be evaluated.
proc `or`*(x, y: bool): bool {.magic: "Or", noSideEffect.}
## Boolean ``or``; returns true iff ``not (not x and not y)``.
## Evaluation is lazy: if ``x`` is true,
## ``y`` will not even be evaluated.
proc `xor`*(x, y: bool): bool {.magic: "Xor", noSideEffect.}
## Boolean `exclusive or`; returns true iff ``x != y``.
proc new*[T](a: var ref T) {.magic: "New", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``.
proc new*(T: typedesc): auto =
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it as result value.
##
## When ``T`` is a ref type then the resulting type will be ``T``,
## otherwise it will be ``ref T``.
when (T is ref):
var r: T
else:
var r: ref T
new(r)
return r
proc internalNew*[T](a: var ref T) {.magic: "New", noSideEffect.}
## leaked implementation detail. Do not use.
proc new*[T](a: var ref T, finalizer: proc (x: ref T) {.nimcall.}) {.
magic: "NewFinalize", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``. When the garbage collector frees the object,
## `finalizer` is called. The `finalizer` may not keep a reference to the
## object pointed to by `x`. The `finalizer` cannot prevent the GC from
## freeing the object. Note: The `finalizer` refers to the type `T`, not to
## the object! This means that for each object of type `T` the finalizer
## will be called!
proc reset*[T](obj: var T) {.magic: "Reset", noSideEffect.}
## resets an object `obj` to its initial (binary zero) value. This needs to
## be called before any possible `object branch transition`:idx:.
type
range*{.magic: "Range".}[T] ## Generic type to construct range types.
array*{.magic: "Array".}[I, T] ## Generic type to construct
## fixed-length arrays.
openArray*{.magic: "OpenArray".}[T] ## Generic type to construct open arrays.
## Open arrays are implemented as a
## pointer to the array data and a
## length field.
varargs*{.magic: "Varargs".}[T] ## Generic type to construct a varargs type.
seq*{.magic: "Seq".}[T] ## Generic type to construct sequences.
set*{.magic: "Set".}[T] ## Generic type to construct bit sets.
UncheckedArray* {.unchecked.}[T] = array[0, T]
## Array with no bounds checking
proc high*[T: Ordinal](x: T): T {.magic: "High", noSideEffect.}
## returns the highest possible index of an array, a sequence, a string or
## the highest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
## ``high(int)`` is Nim's way of writing `INT_MAX`:idx: or `MAX_INT`:idx:.
##
## .. code-block:: nim
## var arr = [1,2,3,4,5,6,7]
## high(arr) #=> 6
## high(2) #=> 9223372036854775807
## high(int) #=> 9223372036854775807
proc high*[T: Ordinal](x: typeDesc[T]): T {.magic: "High", noSideEffect.}
proc high*[T](x: openArray[T]): int {.magic: "High", noSideEffect.}
proc high*[I, T](x: array[I, T]): I {.magic: "High", noSideEffect.}
proc high*[I, T](x: typeDesc[array[I, T]]): I {.magic: "High", noSideEffect.}
proc high*(x: cstring): int {.magic: "High", noSideEffect.}
proc high*(x: string): int {.magic: "High", noSideEffect.}
proc low*[T: Ordinal](x: typeDesc[T]): T {.magic: "Low", noSideEffect.}
proc low*[T](x: openArray[T]): int {.magic: "Low", noSideEffect.}
proc low*[I, T](x: array[I, T]): I {.magic: "Low", noSideEffect.}
proc low*[T](x: T): T {.magic: "Low", noSideEffect.}
proc low*[I, T](x: typeDesc[array[I, T]]): I {.magic: "Low", noSideEffect.}
proc low*(x: cstring): int {.magic: "Low", noSideEffect.}
proc low*(x: string): int {.magic: "Low", noSideEffect.}
## returns the lowest possible index of an array, a sequence, a string or
## the lowest possible value of an ordinal value `x`. As a special
## semantic rule, `x` may also be a type identifier.
##
## .. code-block:: nim
## var arr = [1,2,3,4,5,6,7]
## low(arr) #=> 0
## low(2) #=> -9223372036854775808
## low(int) #=> -9223372036854775808
when defined(nimArrIdx):
# :array|openarray|string|seq|cstring|tuple
proc `[]`*[I: Ordinal;T](a: T; i: I): T {.
noSideEffect, magic: "ArrGet".}
proc `[]=`*[I: Ordinal;T,S](a: T; i: I;
x: S) {.noSideEffect, magic: "ArrPut".}
proc `=`*[T](dest: var T; src: T) {.noSideEffect, magic: "Asgn".}
type
Slice*[T] = object ## builtin slice type
a*, b*: T ## the bounds
when defined(nimalias):
{.deprecated: [TSlice: Slice].}
proc `..`*[T](a, b: T): Slice[T] {.noSideEffect, inline, magic: "DotDot".} =
## `slice`:idx: operator that constructs an interval ``[a, b]``, both `a`
## and `b` are inclusive. Slices can also be used in the set constructor
## and in ordinal case statements, but then they are special-cased by the
## compiler.
result.a = a
result.b = b
proc `..`*[T](b: T): Slice[T] {.noSideEffect, inline, magic: "DotDot".} =
## `slice`:idx: operator that constructs an interval ``[default(T), b]``
result.b = b
when not defined(niminheritable):
{.pragma: inheritable.}
when not defined(nimunion):
{.pragma: unchecked.}
# comparison operators:
proc `==` *[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.}
## Checks whether values within the *same enum* have the same underlying value
##
## .. code-block:: nim
## type
## Enum1 = enum
## Field1 = 3, Field2
## Enum2 = enum
## Place1, Place2 = 3
## var
## e1 = Field1
## e2 = Enum1(Place2)
## echo (e1 == e2) # true
## echo (e1 == Place2) # raises error
proc `==` *(x, y: pointer): bool {.magic: "EqRef", noSideEffect.}
## .. code-block:: nim
## var # this is a wildly dangerous example
## a = cast[pointer](0)
## b = cast[pointer](nil)
## echo (a == b) # true due to the special meaning of `nil`/0 as a pointer
proc `==` *(x, y: string): bool {.magic: "EqStr", noSideEffect.}
## Checks for equality between two `string` variables
proc `==` *(x, y: char): bool {.magic: "EqCh", noSideEffect.}
## Checks for equality between two `char` variables
proc `==` *(x, y: bool): bool {.magic: "EqB", noSideEffect.}
## Checks for equality between two `bool` variables
proc `==` *[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.}
## Checks for equality between two variables of type `set`
##
## .. code-block:: nim
## var a = {1, 2, 2, 3} # duplication in sets is ignored
## var b = {1, 2, 3}
## echo (a == b) # true
proc `==` *[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ref` variables refer to the same item
proc `==` *[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ptr` variables refer to the same item
proc `==` *[T: proc](x, y: T): bool {.magic: "EqProc", noSideEffect.}
## Checks that two `proc` variables refer to the same procedure
proc `<=` *[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=` *(x, y: string): bool {.magic: "LeStr", noSideEffect.}
proc `<=` *(x, y: char): bool {.magic: "LeCh", noSideEffect.}
proc `<=` *[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.}
proc `<=` *(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=` *[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=` *(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
proc `<` *[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<` *(x, y: string): bool {.magic: "LtStr", noSideEffect.}
proc `<` *(x, y: char): bool {.magic: "LtCh", noSideEffect.}
proc `<` *[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.}
proc `<` *(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<` *[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<` *(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
template `!=` * (x, y: untyped): untyped =
## unequals operator. This is a shorthand for ``not (x == y)``.
not (x == y)
template `>=` * (x, y: untyped): untyped =
## "is greater or equals" operator. This is the same as ``y <= x``.
y <= x
template `>` * (x, y: untyped): untyped =
## "is greater" operator. This is the same as ``y < x``.
y < x
const
appType* {.magic: "AppType"}: string = ""
## a string that describes the application type. Possible values:
## "console", "gui", "lib".
include "system/inclrtl"
const NoFakeVars* = defined(nimscript) ## true if the backend doesn't support \
## "fake variables" like 'var EBADF {.importc.}: cint'.
when not defined(JS):
type
TGenericSeq {.compilerproc, pure, inheritable.} = object
len, reserved: int
when defined(gogc):
elemSize: int
PGenericSeq {.exportc.} = ptr TGenericSeq
# len and space without counting the terminating zero:
NimStringDesc {.compilerproc, final.} = object of TGenericSeq
data: UncheckedArray[char]
NimString = ptr NimStringDesc
when not defined(JS) and not defined(nimscript):
template space(s: PGenericSeq): int {.dirty.} =
s.reserved and not seqShallowFlag
include "system/hti"
type
byte* = uint8 ## this is an alias for ``uint8``, that is an unsigned
## int 8 bits wide.
Natural* = range[0..high(int)]
## is an int type ranging from zero to the maximum value
## of an int. This type is often useful for documentation and debugging.
Positive* = range[1..high(int)]
## is an int type ranging from one to the maximum value
## of an int. This type is often useful for documentation and debugging.
RootObj* {.compilerProc, inheritable.} =
object ## the root of Nim's object hierarchy. Objects should
## inherit from RootObj or one of its descendants. However,
## objects that have no ancestor are allowed.
RootRef* = ref RootObj ## reference to RootObj
RootEffect* {.compilerproc.} = object of RootObj ## \
## base effect class; each effect should
## inherit from `RootEffect` unless you know what
## you doing.
TimeEffect* = object of RootEffect ## Time effect.
IOEffect* = object of RootEffect ## IO effect.
ReadIOEffect* = object of IOEffect ## Effect describing a read IO operation.
WriteIOEffect* = object of IOEffect ## Effect describing a write IO operation.
ExecIOEffect* = object of IOEffect ## Effect describing an executing IO operation.
Exception* {.compilerproc.} = object of RootObj ## \
## Base exception class.
##
## Each exception has to inherit from `Exception`. See the full `exception
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
parent*: ref Exception ## parent exception (can be used as a stack)
name*: cstring ## The exception's name is its Nim identifier.
## This field is filled automatically in the
## ``raise`` statement.
msg* {.exportc: "message".}: string ## the exception's message. Not
## providing an exception message
## is bad style.
trace: string
up: ref Exception # used for stacking exceptions. Not exported!
SystemError* = object of Exception ## \
## Abstract class for exceptions that the runtime system raises.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
IOError* = object of SystemError ## \
## Raised if an IO error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
EOFError* = object of IOError ## \
## Raised if an IO "end of file" error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OSError* = object of SystemError ## \
## Raised if an operating system service failed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
errorCode*: int32 ## OS-defined error code describing this error.
LibraryError* = object of OSError ## \
## Raised if a dynamic library could not be loaded.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ResourceExhaustedError* = object of SystemError ## \
## Raised if a resource request could not be fulfilled.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ArithmeticError* = object of Exception ## \
## Raised if any kind of arithmetic error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
DivByZeroError* = object of ArithmeticError ## \
## Raised for runtime integer divide-by-zero errors.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OverflowError* = object of ArithmeticError ## \
## Raised for runtime integer overflows.
##
## This happens for calculations whose results are too large to fit in the
## provided bits. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
AccessViolationError* = object of Exception ## \
## Raised for invalid memory access errors
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
AssertionError* = object of Exception ## \
## Raised when assertion is proved wrong.
##
## Usually the result of using the `assert() template <#assert>`_. See the
## full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ValueError* = object of Exception ## \
## Raised for string and object conversion errors.
KeyError* = object of ValueError ## \
## Raised if a key cannot be found in a table.
##
## Mostly used by the `tables <tables.html>`_ module, it can also be raised
## by other collection modules like `sets <sets.html>`_ or `strtabs
## <strtabs.html>`_. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
OutOfMemError* = object of SystemError ## \
## Raised for unsuccessful attempts to allocate memory.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
IndexError* = object of Exception ## \
## Raised if an array index is out of bounds.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FieldError* = object of Exception ## \
## Raised if a record field is not accessible because its dicriminant's
## value does not fit.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
RangeError* = object of Exception ## \
## Raised if a range check error occurred.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
StackOverflowError* = object of SystemError ## \
## Raised if the hardware stack used for subroutine calls overflowed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ReraiseError* = object of Exception ## \
## Raised if there is no exception to reraise.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ObjectAssignmentError* = object of Exception ## \
## Raised if an object gets assigned to its parent's object.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
ObjectConversionError* = object of Exception ## \
## Raised if an object is converted to an incompatible object type.
## You can use ``of`` operator to check if conversion will succeed.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatingPointError* = object of Exception ## \
## Base class for floating point exceptions.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatInvalidOpError* = object of FloatingPointError ## \
## Raised by invalid operations according to IEEE.
##
## Raised by ``0.0/0.0``, for example. See the full `exception
## hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatDivByZeroError* = object of FloatingPointError ## \
## Raised by division by zero.
##
## Divisor is zero and dividend is a finite nonzero number. See the full
## `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatOverflowError* = object of FloatingPointError ## \
## Raised for overflows.
##
## The operation produced a result that exceeds the range of the exponent.
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatUnderflowError* = object of FloatingPointError ## \
## Raised for underflows.
##
## The operation produced a result that is too small to be represented as a
## normal number. See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
FloatInexactError* = object of FloatingPointError ## \
## Raised for inexact results.
##
## The operation produced a result that cannot be represented with infinite
## precision -- for example: ``2.0 / 3.0, log(1.1)``
##
## **NOTE**: Nim currently does not detect these! See the full
## `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
DeadThreadError* = object of Exception ## \
## Raised if it is attempted to send a message to a dead thread.
##
## See the full `exception hierarchy <manual.html#exception-handling-exception-hierarchy>`_.
NilAccessError* = object of SystemError ## \
## Raised on dereferences of ``nil`` pointers.
##
## This is only raised if the ``segfaults.nim`` module was imported!
{.deprecated: [TObject: RootObj, PObject: RootRef, TEffect: RootEffect,
FTime: TimeEffect, FIO: IOEffect, FReadIO: ReadIOEffect,
FWriteIO: WriteIOEffect, FExecIO: ExecIOEffect,
E_Base: Exception, ESystem: SystemError, EIO: IOError,
EOS: OSError, EInvalidLibrary: LibraryError,
EResourceExhausted: ResourceExhaustedError,
EArithmetic: ArithmeticError, EDivByZero: DivByZeroError,
EOverflow: OverflowError, EAccessViolation: AccessViolationError,
EAssertionFailed: AssertionError, EInvalidValue: ValueError,
EInvalidKey: KeyError, EOutOfMemory: OutOfMemError,
EInvalidIndex: IndexError, EInvalidField: FieldError,
EOutOfRange: RangeError, EStackOverflow: StackOverflowError,
ENoExceptionToReraise: ReraiseError,
EInvalidObjectAssignment: ObjectAssignmentError,
EInvalidObjectConversion: ObjectConversionError,
EDeadThread: DeadThreadError,
EFloatInexact: FloatInexactError,
EFloatUnderflow: FloatUnderflowError,
EFloatingPoint: FloatingPointError,
EFloatInvalidOp: FloatInvalidOpError,
EFloatDivByZero: FloatDivByZeroError,
EFloatOverflow: FloatOverflowError,
ESynch: Exception
].}
proc unsafeNew*[T](a: var ref T, size: Natural) {.magic: "New", noSideEffect.}
## creates a new object of type ``T`` and returns a safe (traced)
## reference to it in ``a``. This is **unsafe** as it allocates an object
## of the passed ``size``. This should only be used for optimization
## purposes when you know what you're doing!
proc sizeof*[T](x: T): int {.magic: "SizeOf", noSideEffect.}
## returns the size of ``x`` in bytes. Since this is a low-level proc,
## its usage is discouraged - using ``new`` for the most cases suffices
## that one never needs to know ``x``'s size. As a special semantic rule,
## ``x`` may also be a type identifier (``sizeof(int)`` is valid).
##
## Limitations: If used within nim VM context ``sizeof`` will only work
## for simple types.
##
## .. code-block:: nim
## sizeof('A') #=> 1
## sizeof(2) #=> 8
when defined(nimtypedescfixed):
proc sizeof*(x: typedesc): int {.magic: "SizeOf", noSideEffect.}
proc `<`*[T](x: Ordinal[T]): T {.magic: "UnaryLt", noSideEffect.}
## unary ``<`` that can be used for nice looking excluding ranges:
##
## .. code-block:: nim
## for i in 0 .. <10: echo i #=> 0 1 2 3 4 5 6 7 8 9
##
## Semantically this is the same as ``pred``.
proc succ*[T](x: Ordinal[T], y = 1): T {.magic: "Succ", noSideEffect.}
## returns the ``y``-th successor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc pred*[T](x: Ordinal[T], y = 1): T {.magic: "Pred", noSideEffect.}
## returns the ``y``-th predecessor of the value ``x``. ``T`` has to be
## an ordinal type. If such a value does not exist, ``EOutOfRange`` is raised
## or a compile time error occurs.
proc inc*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
## increments the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = succ(x, y)``.
##
## .. code-block:: nim
## var i = 2
## inc(i) #=> 3
## inc(i, 3) #=> 6
proc dec*[T: Ordinal|uint|uint64](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
## decrements the ordinal ``x`` by ``y``. If such a value does not
## exist, ``EOutOfRange`` is raised or a compile time error occurs. This is a
## short notation for: ``x = pred(x, y)``.
##
## .. code-block:: nim
## var i = 2
## dec(i) #=> 1
## dec(i, 3) #=> -2
proc newSeq*[T](s: var seq[T], len: Natural) {.magic: "NewSeq", noSideEffect.}
## creates a new sequence of type ``seq[T]`` with length ``len``.
## This is equivalent to ``s = @[]; setlen(s, len)``, but more
## efficient since no reallocation is needed.
##
## Note that the sequence will be filled with zeroed entries, which can be a
## problem for sequences containing strings since their value will be
## ``nil``. After the creation of the sequence you should assign entries to
## the sequence instead of adding them. Example:
##
## .. code-block:: nim
## var inputStrings : seq[string]
## newSeq(inputStrings, 3)
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
proc newSeq*[T](len = 0.Natural): seq[T] =
## creates a new sequence of type ``seq[T]`` with length ``len``.
##
## Note that the sequence will be filled with zeroed entries, which can be a
## problem for sequences containing strings since their value will be
## ``nil``. After the creation of the sequence you should assign entries to
## the sequence instead of adding them. Example:
##
## .. code-block:: nim
## var inputStrings = newSeq[string](3)
## inputStrings[0] = "The fourth"
## inputStrings[1] = "assignment"
## inputStrings[2] = "would crash"
## #inputStrings[3] = "out of bounds"
newSeq(result, len)
proc newSeqOfCap*[T](cap: Natural): seq[T] {.
magic: "NewSeqOfCap", noSideEffect.} =
## creates a new sequence of type ``seq[T]`` with length 0 and capacity
## ``cap``.
discard
proc len*[TOpenArray: openArray|varargs](x: TOpenArray): int {.
magic: "LengthOpenArray", noSideEffect.}
proc len*(x: string): int {.magic: "LengthStr", noSideEffect.}
proc len*(x: cstring): int {.magic: "LengthStr", noSideEffect.}
proc len*[I, T](x: array[I, T]): int {.magic: "LengthArray", noSideEffect.}
proc len*[T](x: seq[T]): int {.magic: "LengthSeq", noSideEffect.}
## returns the length of an array, an openarray, a sequence or a string.
## This is roughly the same as ``high(T)-low(T)+1``, but its resulting type is
## always an int.
##
## .. code-block:: nim
## var arr = [1,1,1,1,1]
## len(arr) #=> 5
## for i in 0..<arr.len:
## echo arr[i] #=> 1,1,1,1,1
# set routines:
proc incl*[T](x: var set[T], y: T) {.magic: "Incl", noSideEffect.}
## includes element ``y`` to the set ``x``. This is the same as
## ``x = x + {y}``, but it might be more efficient.
##
## .. code-block:: nim
## var a = initSet[int](4)
## a.incl(2) #=> {2}
## a.incl(3) #=> {2, 3}
template incl*[T](s: var set[T], flags: set[T]) =
## includes the set of flags to the set ``x``.
s = s + flags
proc excl*[T](x: var set[T], y: T) {.magic: "Excl", noSideEffect.}
## excludes element ``y`` to the set ``x``. This is the same as
## ``x = x - {y}``, but it might be more efficient.
##
## .. code-block:: nim
## var b = {2,3,5,6,12,545}
## b.excl(5) #=> {2,3,6,12,545}
template excl*[T](s: var set[T], flags: set[T]) =
## excludes the set of flags to ``x``.
s = s - flags
proc card*[T](x: set[T]): int {.magic: "Card", noSideEffect.}
## returns the cardinality of the set ``x``, i.e. the number of elements
## in the set.
##
## .. code-block:: nim
## var i = {1,2,3,4}
## card(i) #=> 4
proc ord*[T](x: T): int {.magic: "Ord", noSideEffect.}
## returns the internal int value of an ordinal value ``x``.
##
## .. code-block:: nim
## ord('A') #=> 65
proc chr*(u: range[0..255]): char {.magic: "Chr", noSideEffect.}
## converts an int in the range 0..255 to a character.
##
## .. code-block:: nim
## chr(65) #=> A
# --------------------------------------------------------------------------
# built-in operators
when not defined(JS):
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## unsigned.
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## (This is the case on 64 bit processors.)
proc toU8*(x: int): int8 {.magic: "ToU8", noSideEffect.}
## treats `x` as unsigned and converts it to a byte by taking the last 8 bits
## from `x`.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## 16 bits from `x`.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect.}
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## last 32 bits from `x`.
# integer calculations:
proc `+` *(x: int): int {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int8): int8 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int16): int16 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int32): int32 {.magic: "UnaryPlusI", noSideEffect.}
proc `+` *(x: int64): int64 {.magic: "UnaryPlusI", noSideEffect.}
## Unary `+` operator for an integer. Has no effect.
proc `-` *(x: int): int {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int8): int8 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-` *(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
## Unary `-` operator for an integer. Negates `x`.
proc `not` *(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not` *(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
## computes the `bitwise complement` of the integer `x`.
when defined(nimnomagic64):
proc `not` *(x: int64): int64 {.magic: "BitnotI", noSideEffect.}
else:
proc `not` *(x: int64): int64 {.magic: "BitnotI64", noSideEffect.}
proc `+` *(x, y: int): int {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int8): int8 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int16): int16 {.magic: "AddI", noSideEffect.}
proc `+` *(x, y: int32): int32 {.magic: "AddI", noSideEffect.}
## Binary `+` operator for an integer.
when defined(nimnomagic64):
proc `+` *(x, y: int64): int64 {.magic: "AddI", noSideEffect.}
else:
proc `+` *(x, y: int64): int64 {.magic: "AddI64", noSideEffect.}
proc `-` *(x, y: int): int {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int8): int8 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int16): int16 {.magic: "SubI", noSideEffect.}
proc `-` *(x, y: int32): int32 {.magic: "SubI", noSideEffect.}
## Binary `-` operator for an integer.
when defined(nimnomagic64):
proc `-` *(x, y: int64): int64 {.magic: "SubI", noSideEffect.}
else:
proc `-` *(x, y: int64): int64 {.magic: "SubI64", noSideEffect.}
proc `*` *(x, y: int): int {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int8): int8 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*` *(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
## Binary `*` operator for an integer.
when defined(nimnomagic64):
proc `*` *(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
else:
proc `*` *(x, y: int64): int64 {.magic: "MulI64", noSideEffect.}
proc `div` *(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div` *(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
## computes the integer division. This is roughly the same as
## ``floor(x/y)``.
##
## .. code-block:: Nim
## 1 div 2 == 0
## 2 div 2 == 1
## 3 div 2 == 1
## 7 div 5 == 1
when defined(nimnomagic64):
proc `div` *(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
else:
proc `div` *(x, y: int64): int64 {.magic: "DivI64", noSideEffect.}
proc `mod` *(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod` *(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
## computes the integer modulo operation (remainder).
## This is the same as
## ``x - (x div y) * y``.
##
## .. code-block:: Nim
## (7 mod 5) == 2
when defined(nimnomagic64):
proc `mod` *(x, y: int64): int64 {.magic: "ModI", noSideEffect.}
else:
proc `mod` *(x, y: int64): int64 {.magic: "ModI64", noSideEffect.}
when defined(nimNewShiftOps):
proc `shr` *(x: int, y: SomeInteger): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int8, y: SomeInteger): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int16, y: SomeInteger): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`, filling
## vacant bit positions with zeros.
##
## .. code-block:: Nim
## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
## 0b1000_0000'i8 shr 8 == 0b0000_0000'i8
## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
proc `shl` *(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
##
## .. code-block:: Nim
## 1'i32 shl 4 == 0x0000_0010
## 1'i64 shl 4 == 0x0000_0000_0000_0010
else:
proc `shr` *(x, y: int): int {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int8): int8 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int16): int16 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int32): int32 {.magic: "ShrI", noSideEffect.}
proc `shr` *(x, y: int64): int64 {.magic: "ShrI", noSideEffect.}
proc `shl` *(x, y: int): int {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int8): int8 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int16): int16 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int32): int32 {.magic: "ShlI", noSideEffect.}
proc `shl` *(x, y: int64): int64 {.magic: "ShlI", noSideEffect.}
proc `and` *(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and` *(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
## computes the `bitwise and` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0xffff'i16 and 0x0010'i16) == 0x0010
proc `or` *(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or` *(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
## computes the `bitwise or` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0x0005'i16 or 0x0010'i16) == 0x0015
proc `xor` *(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}
proc `xor` *(x, y: int64): int64 {.magic: "BitxorI", noSideEffect.}
## computes the `bitwise xor` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0x1011'i16 xor 0x0101'i16) == 0x1110
proc `==` *(x, y: int): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==` *(x, y: int64): bool {.magic: "EqI", noSideEffect.}
## Compares two integers for equality.
proc `<=` *(x, y: int): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=` *(x, y: int64): bool {.magic: "LeI", noSideEffect.}
## Returns true iff `x` is less than or equal to `y`.
proc `<` *(x, y: int): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<` *(x, y: int64): bool {.magic: "LtI", noSideEffect.}
## Returns true iff `x` is less than `y`.
type
IntMax32 = int|int8|int16|int32
proc `+%` *(x, y: IntMax32): IntMax32 {.magic: "AddU", noSideEffect.}
proc `+%` *(x, y: int64): int64 {.magic: "AddU", noSideEffect.}
## treats `x` and `y` as unsigned and adds them. The result is truncated to
## fit into the result. This implements modulo arithmetic. No overflow
## errors are possible.
proc `-%` *(x, y: IntMax32): IntMax32 {.magic: "SubU", noSideEffect.}
proc `-%` *(x, y: int64): int64 {.magic: "SubU", noSideEffect.}
## treats `x` and `y` as unsigned and subtracts them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `*%` *(x, y: IntMax32): IntMax32 {.magic: "MulU", noSideEffect.}
proc `*%` *(x, y: int64): int64 {.magic: "MulU", noSideEffect.}
## treats `x` and `y` as unsigned and multiplies them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `/%` *(x, y: IntMax32): IntMax32 {.magic: "DivU", noSideEffect.}
proc `/%` *(x, y: int64): int64 {.magic: "DivU", noSideEffect.}
## treats `x` and `y` as unsigned and divides them. The result is
## truncated to fit into the result. This implements modulo arithmetic.
## No overflow errors are possible.
proc `%%` *(x, y: IntMax32): IntMax32 {.magic: "ModU", noSideEffect.}
proc `%%` *(x, y: int64): int64 {.magic: "ModU", noSideEffect.}
## treats `x` and `y` as unsigned and compute the modulo of `x` and `y`.
## The result is truncated to fit into the result.
## This implements modulo arithmetic.
## No overflow errors are possible.
proc `<=%` *(x, y: IntMax32): bool {.magic: "LeU", noSideEffect.}
proc `<=%` *(x, y: int64): bool {.magic: "LeU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) <= unsigned(y)``.
proc `<%` *(x, y: IntMax32): bool {.magic: "LtU", noSideEffect.}
proc `<%` *(x, y: int64): bool {.magic: "LtU64", noSideEffect.}
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) < unsigned(y)``.
# unsigned integer operations:
proc `not`*[T: SomeUnsignedInt](x: T): T {.magic: "BitnotI", noSideEffect.}
## computes the `bitwise complement` of the integer `x`.
when defined(nimNewShiftOps):
proc `shr`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x: T, y: SomeInteger): T {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
else:
proc `shr`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShrI", noSideEffect.}
## computes the `shift right` operation of `x` and `y`.
proc `shl`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ShlI", noSideEffect.}
## computes the `shift left` operation of `x` and `y`.
proc `and`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitandI", noSideEffect.}
## computes the `bitwise and` of numbers `x` and `y`.
proc `or`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitorI", noSideEffect.}
## computes the `bitwise or` of numbers `x` and `y`.
proc `xor`*[T: SomeUnsignedInt](x, y: T): T {.magic: "BitxorI", noSideEffect.}
## computes the `bitwise xor` of numbers `x` and `y`.
proc `==`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "EqI", noSideEffect.}
## Compares two unsigned integers for equality.
proc `+`*[T: SomeUnsignedInt](x, y: T): T {.magic: "AddU", noSideEffect.}
## Binary `+` operator for unsigned integers.
proc `-`*[T: SomeUnsignedInt](x, y: T): T {.magic: "SubU", noSideEffect.}
## Binary `-` operator for unsigned integers.
proc `*`*[T: SomeUnsignedInt](x, y: T): T {.magic: "MulU", noSideEffect.}
## Binary `*` operator for unsigned integers.
proc `div`*[T: SomeUnsignedInt](x, y: T): T {.magic: "DivU", noSideEffect.}
## computes the integer division. This is roughly the same as
## ``floor(x/y)``.
##
## .. code-block:: Nim
## (7 div 5) == 1
proc `mod`*[T: SomeUnsignedInt](x, y: T): T {.magic: "ModU", noSideEffect.}
## computes the integer modulo operation (remainder).
## This is the same as
## ``x - (x div y) * y``.
##
## .. code-block:: Nim
## (7 mod 5) == 2
proc `<=`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LeU", noSideEffect.}
## Returns true iff ``x <= y``.
proc `<`*[T: SomeUnsignedInt](x, y: T): bool {.magic: "LtU", noSideEffect.}
## Returns true iff ``unsigned(x) < unsigned(y)``.
# floating point operations:
proc `+` *(x: float32): float32 {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float32): float32 {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float32): float32 {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float32): float32 {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float32): float32 {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float32): float32 {.magic: "DivF64", noSideEffect.}
proc `+` *(x: float): float {.magic: "UnaryPlusF64", noSideEffect.}
proc `-` *(x: float): float {.magic: "UnaryMinusF64", noSideEffect.}
proc `+` *(x, y: float): float {.magic: "AddF64", noSideEffect.}
proc `-` *(x, y: float): float {.magic: "SubF64", noSideEffect.}
proc `*` *(x, y: float): float {.magic: "MulF64", noSideEffect.}
proc `/` *(x, y: float): float {.magic: "DivF64", noSideEffect.}
## computes the floating point division
proc `==` *(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
proc `==` *(x, y: float): bool {.magic: "EqF64", noSideEffect.}
proc `<=` *(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<` *(x, y: float): bool {.magic: "LtF64", noSideEffect.}
# set operators
proc `*` *[T](x, y: set[T]): set[T] {.magic: "MulSet", noSideEffect.}
## This operator computes the intersection of two sets.
proc `+` *[T](x, y: set[T]): set[T] {.magic: "PlusSet", noSideEffect.}
## This operator computes the union of two sets.
proc `-` *[T](x, y: set[T]): set[T] {.magic: "MinusSet", noSideEffect.}
## This operator computes the difference of two sets.
proc contains*[T](x: set[T], y: T): bool {.magic: "InSet", noSideEffect.}
## One should overload this proc if one wants to overload the ``in`` operator.
## The parameters are in reverse order! ``a in b`` is a template for
## ``contains(b, a)``.
## This is because the unification algorithm that Nim uses for overload
## resolution works from left to right.
## But for the ``in`` operator that would be the wrong direction for this
## piece of code:
##
## .. code-block:: Nim
## var s: set[range['a'..'z']] = {'a'..'c'}
## writeLine(stdout, 'b' in s)
##
## If ``in`` had been declared as ``[T](elem: T, s: set[T])`` then ``T`` would
## have been bound to ``char``. But ``s`` is not compatible to type
## ``set[char]``! The solution is to bind ``T`` to ``range['a'..'z']``. This
## is achieved by reversing the parameters for ``contains``; ``in`` then
## passes its arguments in reverse order.
proc contains*[T](s: Slice[T], value: T): bool {.noSideEffect, inline.} =
## Checks if `value` is within the range of `s`; returns true iff
## `value >= s.a and value <= s.b`
##
## .. code-block:: Nim
## assert((1..3).contains(1) == true)
## assert((1..3).contains(2) == true)
## assert((1..3).contains(4) == false)
result = s.a <= value and value <= s.b
template `in` * (x, y: untyped): untyped {.dirty.} = contains(y, x)
## Sugar for contains
##
## .. code-block:: Nim
## assert(1 in (1..3) == true)
## assert(5 in (1..3) == false)
template `notin` * (x, y: untyped): untyped {.dirty.} = not contains(y, x)
## Sugar for not containing
##
## .. code-block:: Nim
## assert(1 notin (1..3) == false)
## assert(5 notin (1..3) == true)
proc `is` *[T, S](x: T, y: S): bool {.magic: "Is", noSideEffect.}
## Checks if T is of the same type as S
##
## .. code-block:: Nim
## proc test[T](a: T): int =
## when (T is int):
## return a
## else:
## return 0
##
## assert(test[int](3) == 3)
## assert(test[string]("xyz") == 0)
template `isnot` *(x, y: untyped): untyped = not (x is y)
## Negated version of `is`. Equivalent to ``not(x is y)``.
proc `of` *[T, S](x: typeDesc[T], y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of` *[T, S](x: T, y: typeDesc[S]): bool {.magic: "Of", noSideEffect.}
proc `of` *[T, S](x: T, y: S): bool {.magic: "Of", noSideEffect.}
## Checks if `x` has a type of `y`
##
## .. code-block:: Nim
## assert(FloatingPointError of Exception)
## assert(DivByZeroError of Exception)
proc cmp*[T](x, y: T): int {.procvar.} =
## Generic compare proc. Returns a value < 0 iff x < y, a value > 0 iff x > y
## and 0 iff x == y. This is useful for writing generic algorithms without
## performance loss. This generic implementation uses the `==` and `<`
## operators.
##
## .. code-block:: Nim
## import algorithm
## echo sorted(@[4,2,6,5,8,7], cmp[int])
if x == y: return 0
if x < y: return -1
return 1
proc cmp*(x, y: string): int {.noSideEffect, procvar.}
## Compare proc for strings. More efficient than the generic version.
proc `@` * [IDX, T](a: array[IDX, T]): seq[T] {.
magic: "ArrToSeq", nosideeffect.}
## turns an array into a sequence. This most often useful for constructing
## sequences with the array constructor: ``@[1, 2, 3]`` has the type
## ``seq[int]``, while ``[1, 2, 3]`` has the type ``array[0..2, int]``.
proc setLen*[T](s: var seq[T], newlen: Natural) {.
magic: "SetLengthSeq", noSideEffect.}
## sets the length of `s` to `newlen`.
## ``T`` may be any sequence type.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a sequence with
## a size, use ``newSeq`` instead.
proc setLen*(s: var string, newlen: Natural) {.
magic: "SetLengthStr", noSideEffect.}
## sets the length of `s` to `newlen`.
## If the current length is greater than the new length,
## ``s`` will be truncated. `s` cannot be nil! To initialize a string with
## a size, use ``newString`` instead.
##
## .. code-block:: Nim
## var myS = "Nim is great!!"
## myS.setLen(3)
## echo myS, " is fantastic!!"
proc newString*(len: Natural): string {.
magic: "NewString", importc: "mnewString", noSideEffect.}
## returns a new string of length ``len`` but with uninitialized
## content. One needs to fill the string character after character
## with the index operator ``s[i]``. This procedure exists only for
## optimization purposes; the same effect can be achieved with the
## ``&`` operator or with ``add``.
proc newStringOfCap*(cap: Natural): string {.
magic: "NewStringOfCap", importc: "rawNewString", noSideEffect.}
## returns a new string of length ``0`` but with capacity `cap`.This
## procedure exists only for optimization purposes; the same effect can
## be achieved with the ``&`` operator or with ``add``.
proc `&` * (x: string, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`
##
## .. code-block:: Nim
## assert("ab" & 'c' == "abc")
proc `&` * (x, y: char): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` and `y` into a string
##
## .. code-block:: Nim
## assert('a' & 'b' == "ab")
proc `&` * (x, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` and `y`
##
## .. code-block:: Nim
## assert("ab" & "cd" == "abcd")
proc `&` * (x: char, y: string): string {.
magic: "ConStrStr", noSideEffect, merge.}
## Concatenates `x` with `y`
##
## .. code-block:: Nim
## assert('a' & "bc" == "abc")
# implementation note: These must all have the same magic value "ConStrStr" so
# that the merge optimization works properly.
proc add*(x: var string, y: char) {.magic: "AppendStrCh", noSideEffect.}
## Appends `y` to `x` in place
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add('a')
## tmp.add('b')
## assert(tmp == "ab")
proc add*(x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
## Concatenates `x` and `y` in place
##
## .. code-block:: Nim
## var tmp = ""
## tmp.add("ab")
## tmp.add("cd")
## assert(tmp == "abcd")
type
Endianness* = enum ## is a type describing the endianness of a processor.
littleEndian, bigEndian
const
isMainModule* {.magic: "IsMainModule".}: bool = false
## is true only when accessed in the main module. This works thanks to
## compiler magic. It is useful to embed testing code in a module.
CompileDate* {.magic: "CompileDate"}: string = "0000-00-00"
## is the date of compilation as a string of the form
## ``YYYY-MM-DD``. This works thanks to compiler magic.
CompileTime* {.magic: "CompileTime"}: string = "00:00:00"
## is the time of compilation as a string of the form
## ``HH:MM:SS``. This works thanks to compiler magic.
cpuEndian* {.magic: "CpuEndian"}: Endianness = littleEndian
## is the endianness of the target CPU. This is a valuable piece of
## information for low-level code only. This works thanks to compiler
## magic.
hostOS* {.magic: "HostOS".}: string = ""
## a string that describes the host operating system. Possible values:
## "windows", "macosx", "linux", "netbsd", "freebsd", "openbsd", "solaris",
## "aix", "standalone".
hostCPU* {.magic: "HostCPU".}: string = ""
## a string that describes the host CPU. Possible values:
## "i386", "alpha", "powerpc", "powerpc64", "powerpc64el", "sparc",
## "amd64", "mips", "mipsel", "arm", "arm64", "mips64", "mips64el".
seqShallowFlag = low(int)
{.push profiler: off.}
when defined(nimKnowsNimvm):
let nimvm* {.magic: "Nimvm".}: bool = false
## may be used only in "when" expression.
## It is true in Nim VM context and false otherwise
else:
const nimvm*: bool = false
{.pop.}
proc compileOption*(option: string): bool {.
magic: "CompileOption", noSideEffect.}
## can be used to determine an on|off compile-time option. Example:
##
## .. code-block:: nim
## when compileOption("floatchecks"):
## echo "compiled with floating point NaN and Inf checks"
proc compileOption*(option, arg: string): bool {.
magic: "CompileOptionArg", noSideEffect.}
## can be used to determine an enum compile-time option. Example:
##
## .. code-block:: nim
## when compileOption("opt", "size") and compileOption("gc", "boehm"):
## echo "compiled with optimization for size and uses Boehm's GC"
const
hasThreadSupport = compileOption("threads") and not defined(nimscript)
hasSharedHeap = defined(boehmgc) or defined(gogc) # don't share heaps; every thread has its own
taintMode = compileOption("taintmode")
nimEnableCovariance* = defined(nimEnableCovariance) # or true
when hasThreadSupport and defined(tcc) and not compileOption("tlsEmulation"):
# tcc doesn't support TLS
{.error: "``--tlsEmulation:on`` must be used when using threads with tcc backend".}
when defined(boehmgc):
when defined(windows):
const boehmLib = "boehmgc.dll"
elif defined(macosx):
const boehmLib = "libgc.dylib"
else:
const boehmLib = "libgc.so.1"
{.pragma: boehmGC, noconv, dynlib: boehmLib.}
when taintMode:
type TaintedString* = distinct string ## a distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
proc len*(s: TaintedString): int {.borrow.}
else:
type TaintedString* = string ## a distinct string type that
## is `tainted`:idx:, see `taint mode
## <manual.html#taint-mode>`_ for
## details. It is an alias for
## ``string`` if the taint mode is not
## turned on.
when defined(profiler):
proc nimProfile() {.compilerProc, noinline.}
when hasThreadSupport:
{.pragma: rtlThreadVar, threadvar.}
else:
{.pragma: rtlThreadVar.}
const
QuitSuccess* = 0
## is the value that should be passed to `quit <#quit>`_ to indicate
## success.
QuitFailure* = 1
## is the value that should be passed to `quit <#quit>`_ to indicate
## failure.
var programResult* {.exportc: "nim_program_result".}: int
## modify this variable to specify the exit code of the program
## under normal circumstances. When the program is terminated
## prematurely using ``quit``, this value is ignored.
when defined(nimdoc):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn.}
## Stops the program immediately with an exit code.
##
## Before stopping the program the "quit procedures" are called in the
## opposite order they were added with `addQuitProc <#addQuitProc>`_.
## ``quit`` never returns and ignores any exception that may have been raised
## by the quit procedures. It does *not* call the garbage collector to free
## all the memory, unless a quit procedure calls `GC_fullCollect
## <#GC_fullCollect>`_.
##
## The proc ``quit(QuitSuccess)`` is called implicitly when your nim
## program finishes without incident. A raised unhandled exception is
## equivalent to calling ``quit(QuitFailure)``.
##
## Note that this is a *runtime* call and using ``quit`` inside a macro won't
## have any compile time effect. If you need to stop the compiler inside a
## macro, use the `error <manual.html#error-pragma>`_ or `fatal
## <manual.html#fatal-pragma>`_ pragmas.
elif defined(genode):
proc quit*(errorcode: int = QuitSuccess) {.magic: "Exit", noreturn,
importcpp: "genodeEnv->parent().exit(@); Genode::sleep_forever()",
header: "<base/sleep.h>".}
else:
proc quit*(errorcode: int = QuitSuccess) {.
magic: "Exit", importc: "exit", header: "<stdlib.h>", noreturn.}
template sysAssert(cond: bool, msg: string) =
when defined(useSysAssert):
if not cond:
echo "[SYSASSERT] ", msg
quit 1
const hasAlloc = (hostOS != "standalone" or not defined(nogc)) and not defined(nimscript)
when not defined(JS) and not defined(nimscript) and hostOS != "standalone":
include "system/cgprocs"
when not defined(JS) and not defined(nimscript) and hasAlloc:
proc setStackBottom(theStackBottom: pointer) {.compilerRtl, noinline, benign.}
proc addChar(s: NimString, c: char): NimString {.compilerProc, benign.}
proc add *[T](x: var seq[T], y: T) {.magic: "AppendSeqElem", noSideEffect.}
proc add *[T](x: var seq[T], y: openArray[T]) {.noSideEffect.} =
## Generic proc for adding a data item `y` to a container `x`.
## For containers that have an order, `add` means *append*. New generic
## containers should also call their adding proc `add` for consistency.
## Generic code becomes much easier to write if the Nim naming scheme is
## respected.
##
## .. code-block:: nim
## var s: seq[string] = @["test2","test2"]
## s.add("test") #=> @[test2, test2, test]
let xl = x.len
setLen(x, xl + y.len)
for i in 0..high(y): x[xl+i] = y[i]
proc shallowCopy*[T](x: var T, y: T) {.noSideEffect, magic: "ShallowCopy".}
## use this instead of `=` for a `shallow copy`:idx:. The shallow copy
## only changes the semantics for sequences and strings (and types which
## contain those). Be careful with the changed semantics though! There
## is a reason why the default assignment does a deep copy of sequences
## and strings.
proc del*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## deletes the item at index `i` by putting ``x[high(x)]`` into position `i`.
## This is an O(1) operation.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.del(2) #=> @[1, 2, 5, 4]
let xl = x.len - 1
shallowCopy(x[i], x[xl])
setLen(x, xl)
proc delete*[T](x: var seq[T], i: Natural) {.noSideEffect.} =
## deletes the item at index `i` by moving ``x[i+1..]`` by one position.
## This is an O(n) operation.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.delete(2) #=> @[1, 2, 4, 5]
template defaultImpl =
let xl = x.len
for j in i..xl-2: shallowCopy(x[j], x[j+1])
setLen(x, xl-1)
when nimvm:
defaultImpl()
else:
when defined(js):
{.emit: "`x`[`x`_Idx].splice(`i`, 1);".}
else:
defaultImpl()
proc insert*[T](x: var seq[T], item: T, i = 0.Natural) {.noSideEffect.} =
## inserts `item` into `x` at position `i`.
##
## .. code-block:: nim
## var i = @[1, 2, 3, 4, 5]
## i.insert(2, 4) #=> @[1, 2, 3, 4, 2, 5]
template defaultImpl =
let xl = x.len
setLen(x, xl+1)
var j = xl-1
while j >= i:
shallowCopy(x[j+1], x[j])
dec(j)
when nimvm:
defaultImpl()
else:
when defined(js):
var it : T
{.emit: "`x`[`x`_Idx].splice(`i`, 0, `it`);".}
else:
defaultImpl()
x[i] = item
proc repr*[T](x: T): string {.magic: "Repr", noSideEffect.}
## takes any Nim variable and returns its string representation. It
## works even for complex data graphs with cycles. This is a great
## debugging tool.
##
## .. code-block:: nim
## var s: seq[string] = @["test2", "test2"]
## var i = @[1, 2, 3, 4, 5]
## repr(s) #=> 0x1055eb050[0x1055ec050"test2", 0x1055ec078"test2"]
## repr(i) #=> 0x1055ed050[1, 2, 3, 4, 5]
type
ByteAddress* = int
## is the signed integer type that should be used for converting
## pointers to integer addresses for readability.
BiggestInt* = int64
## is an alias for the biggest signed integer type the Nim compiler
## supports. Currently this is ``int64``, but it is platform-dependant
## in general.
BiggestFloat* = float64
## is an alias for the biggest floating point type the Nim
## compiler supports. Currently this is ``float64``, but it is
## platform-dependant in general.
when defined(JS):
type BiggestUInt* = uint32
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
else:
type BiggestUInt* = uint64
## is an alias for the biggest unsigned integer type the Nim compiler
## supports. Currently this is ``uint32`` for JS and ``uint64`` for other
## targets.
{.deprecated: [TAddress: ByteAddress].}
when defined(windows):
type
clong* {.importc: "long", nodecl.} = int32
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint32
## This is the same as the type ``unsigned long`` in *C*.
else:
type
clong* {.importc: "long", nodecl.} = int
## This is the same as the type ``long`` in *C*.
culong* {.importc: "unsigned long", nodecl.} = uint
## This is the same as the type ``unsigned long`` in *C*.
type # these work for most platforms:
cchar* {.importc: "char", nodecl.} = char
## This is the same as the type ``char`` in *C*.
cschar* {.importc: "signed char", nodecl.} = int8
## This is the same as the type ``signed char`` in *C*.
cshort* {.importc: "short", nodecl.} = int16
## This is the same as the type ``short`` in *C*.
cint* {.importc: "int", nodecl.} = int32
## This is the same as the type ``int`` in *C*.
csize* {.importc: "size_t", nodecl.} = int
## This is the same as the type ``size_t`` in *C*.
clonglong* {.importc: "long long", nodecl.} = int64
## This is the same as the type ``long long`` in *C*.
cfloat* {.importc: "float", nodecl.} = float32
## This is the same as the type ``float`` in *C*.
cdouble* {.importc: "double", nodecl.} = float64
## This is the same as the type ``double`` in *C*.
clongdouble* {.importc: "long double", nodecl.} = BiggestFloat
## This is the same as the type ``long double`` in *C*.
## This C type is not supported by Nim's code generator.
cuchar* {.importc: "unsigned char", nodecl.} = char
## This is the same as the type ``unsigned char`` in *C*.
cushort* {.importc: "unsigned short", nodecl.} = uint16
## This is the same as the type ``unsigned short`` in *C*.
cuint* {.importc: "unsigned int", nodecl.} = uint32
## This is the same as the type ``unsigned int`` in *C*.
culonglong* {.importc: "unsigned long long", nodecl.} = uint64
## This is the same as the type ``unsigned long long`` in *C*.
cstringArray* {.importc: "char**", nodecl.} = ptr UncheckedArray[cstring]
## This is binary compatible to the type ``char**`` in *C*. The array's
## high value is large enough to disable bounds checking in practice.
## Use `cstringArrayToSeq` to convert it into a ``seq[string]``.
PFloat32* = ptr float32 ## an alias for ``ptr float32``
PFloat64* = ptr float64 ## an alias for ``ptr float64``
PInt64* = ptr int64 ## an alias for ``ptr int64``
PInt32* = ptr int32 ## an alias for ``ptr int32``
proc toFloat*(i: int): float {.
magic: "ToFloat", noSideEffect, importc: "toFloat".}
## converts an integer `i` into a ``float``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toBiggestFloat*(i: BiggestInt): BiggestFloat {.
magic: "ToBiggestFloat", noSideEffect, importc: "toBiggestFloat".}
## converts an biggestint `i` into a ``biggestfloat``. If the conversion
## fails, `EInvalidValue` is raised. However, on most platforms the
## conversion cannot fail.
proc toInt*(f: float): int {.
magic: "ToInt", noSideEffect, importc: "toInt".}
## converts a floating point number `f` into an ``int``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc toBiggestInt*(f: BiggestFloat): BiggestInt {.
magic: "ToBiggestInt", noSideEffect, importc: "toBiggestInt".}
## converts a biggestfloat `f` into a ``biggestint``. Conversion
## rounds `f` if it does not contain an integer value. If the conversion
## fails (because `f` is infinite for example), `EInvalidValue` is raised.
proc addQuitProc*(QuitProc: proc() {.noconv.}) {.
importc: "atexit", header: "<stdlib.h>".}
## Adds/registers a quit procedure.
##
## Each call to ``addQuitProc`` registers another quit procedure. Up to 30
## procedures can be registered. They are executed on a last-in, first-out
## basis (that is, the last function registered is the first to be executed).
## ``addQuitProc`` raises an EOutOfIndex exception if ``QuitProc`` cannot be
## registered.
# Support for addQuitProc() is done by Ansi C's facilities here.
# In case of an unhandled exeption the exit handlers should
# not be called explicitly! The user may decide to do this manually though.
proc copy*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect, deprecated.}
proc copy*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect,
deprecated.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``.
## **Deprecated since version 0.8.12**: Use ``substr`` instead.
proc substr*(s: string, first = 0): string {.
magic: "CopyStr", importc: "copyStr", noSideEffect.}
proc substr*(s: string, first, last: int): string {.
magic: "CopyStrLast", importc: "copyStrLast", noSideEffect.}
## copies a slice of `s` into a new string and returns this new
## string. The bounds `first` and `last` denote the indices of
## the first and last characters that shall be copied. If ``last``
## is omitted, it is treated as ``high(s)``. If ``last >= s.len``, ``s.len``
## is used instead: This means ``substr`` can also be used to `cut`:idx:
## or `limit`:idx: a string's length.
when not defined(nimscript) and not defined(JS):
proc zeroMem*(p: pointer, size: Natural) {.inline, benign.}
## overwrites the contents of the memory at ``p`` with the value 0.
## Exactly ``size`` bytes will be overwritten. Like any procedure
## dealing with raw memory this is *unsafe*.
proc copyMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may not overlap. Like any procedure dealing with raw
## memory this is *unsafe*.
proc moveMem*(dest, source: pointer, size: Natural) {.inline, benign,
tags: [], locks: 0.}
## copies the contents from the memory at ``source`` to the memory
## at ``dest``. Exactly ``size`` bytes will be copied. The memory
## regions may overlap, ``moveMem`` handles this case appropriately
## and is thus somewhat more safe than ``copyMem``. Like any procedure
## dealing with raw memory this is still *unsafe*, though.
proc equalMem*(a, b: pointer, size: Natural): bool {.inline, noSideEffect, tags: [], locks: 0.}
## compares the memory blocks ``a`` and ``b``. ``size`` bytes will
## be compared. If the blocks are equal, true is returned, false
## otherwise. Like any procedure dealing with raw memory this is
## *unsafe*.
when not defined(nimscript):
when hasAlloc:
proc alloc*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
## The allocated memory belongs to its allocating thread!
## Use `allocShared` to allocate from a shared heap.
proc createU*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
## allocates a new memory block with at least ``T.sizeof * size``
## bytes. The block has to be freed with ``resize(block, 0)`` or
## ``free(block)``. The block is not initialized, so reading
## from it before writing to it is undefined behaviour!
## The allocated memory belongs to its allocating thread!
## Use `createSharedU` to allocate from a shared heap.
cast[ptr T](alloc(T.sizeof * size))
proc alloc0*(size: Natural): pointer {.noconv, rtl, tags: [], benign.}
## allocates a new memory block with at least ``size`` bytes. The
## block has to be freed with ``realloc(block, 0)`` or
## ``dealloc(block)``. The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``alloc``.
## The allocated memory belongs to its allocating thread!
## Use `allocShared0` to allocate from a shared heap.
proc create*(T: typedesc, size = 1.Positive): ptr T {.inline, benign.} =
## allocates a new memory block with at least ``T.sizeof * size``
## bytes. The block has to be freed with ``resize(block, 0)`` or
## ``free(block)``. The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``createU``.
## The allocated memory belongs to its allocating thread!
## Use `createShared` to allocate from a shared heap.
cast[ptr T](alloc0(sizeof(T) * size))
proc realloc*(p: pointer, newSize: Natural): pointer {.noconv, rtl, tags: [],
benign.}
## grows or shrinks a given memory block. If p is **nil** then a new
## memory block is returned. In either way the block has at least
## ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
## ``realloc`` calls ``dealloc(p)``. In other cases the block has to
## be freed with ``dealloc``.
## The allocated memory belongs to its allocating thread!
## Use `reallocShared` to reallocate from a shared heap.
proc resize*[T](p: ptr T, newSize: Natural): ptr T {.inline, benign.} =
## grows or shrinks a given memory block. If p is **nil** then a new
## memory block is returned. In either way the block has at least
## ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is not
## **nil** ``resize`` calls ``free(p)``. In other cases the block
## has to be freed with ``free``. The allocated memory belongs to
## its allocating thread!
## Use `resizeShared` to reallocate from a shared heap.
cast[ptr T](realloc(p, T.sizeof * newSize))
proc dealloc*(p: pointer) {.noconv, rtl, tags: [], benign.}
## frees the memory allocated with ``alloc``, ``alloc0`` or
## ``realloc``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
## The freed memory must belong to its allocating thread!
## Use `deallocShared` to deallocate from a shared heap.
proc allocShared*(size: Natural): pointer {.noconv, rtl, benign.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``. The block
## is not initialized, so reading from it before writing to it is
## undefined behaviour!
proc createSharedU*(T: typedesc, size = 1.Positive): ptr T {.inline,
benign.} =
## allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes. The block has to be freed with
## ``resizeShared(block, 0)`` or ``freeShared(block)``. The block
## is not initialized, so reading from it before writing to it is
## undefined behaviour!
cast[ptr T](allocShared(T.sizeof * size))
proc allocShared0*(size: Natural): pointer {.noconv, rtl, benign.}
## allocates a new memory block on the shared heap with at
## least ``size`` bytes. The block has to be freed with
## ``reallocShared(block, 0)`` or ``deallocShared(block)``.
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``allocShared``.
proc createShared*(T: typedesc, size = 1.Positive): ptr T {.inline.} =
## allocates a new memory block on the shared heap with at
## least ``T.sizeof * size`` bytes. The block has to be freed with
## ``resizeShared(block, 0)`` or ``freeShared(block)``.
## The block is initialized with all bytes
## containing zero, so it is somewhat safer than ``createSharedU``.
cast[ptr T](allocShared0(T.sizeof * size))
proc reallocShared*(p: pointer, newSize: Natural): pointer {.noconv, rtl,
benign.}
## grows or shrinks a given memory block on the heap. If p is **nil**
## then a new memory block is returned. In either way the block has at
## least ``newSize`` bytes. If ``newSize == 0`` and p is not **nil**
## ``reallocShared`` calls ``deallocShared(p)``. In other cases the
## block has to be freed with ``deallocShared``.
proc resizeShared*[T](p: ptr T, newSize: Natural): ptr T {.inline.} =
## grows or shrinks a given memory block on the heap. If p is **nil**
## then a new memory block is returned. In either way the block has at
## least ``T.sizeof * newSize`` bytes. If ``newSize == 0`` and p is
## not **nil** ``resizeShared`` calls ``freeShared(p)``. In other
## cases the block has to be freed with ``freeShared``.
cast[ptr T](reallocShared(p, T.sizeof * newSize))
proc deallocShared*(p: pointer) {.noconv, rtl, benign.}
## frees the memory allocated with ``allocShared``, ``allocShared0`` or
## ``reallocShared``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
proc freeShared*[T](p: ptr T) {.inline, benign.} =
## frees the memory allocated with ``createShared``, ``createSharedU`` or
## ``resizeShared``. This procedure is dangerous! If one forgets to
## free the memory a leak occurs; if one tries to access freed
## memory (or just freeing it twice!) a core dump may happen
## or other memory may be corrupted.
deallocShared(p)
proc swap*[T](a, b: var T) {.magic: "Swap", noSideEffect.}
## swaps the values `a` and `b`. This is often more efficient than
## ``tmp = a; a = b; b = tmp``. Particularly useful for sorting algorithms.
when not defined(js) and not defined(booting) and defined(nimTrMacros):
template swapRefsInArray*{swap(arr[a], arr[b])}(arr: openarray[ref], a, b: int) =
# Optimize swapping of array elements if they are refs. Default swap
# implementation will cause unsureAsgnRef to be emitted which causes
# unnecessary slow down in this case.
swap(cast[ptr pointer](addr arr[a])[], cast[ptr pointer](addr arr[b])[])
template `>=%` *(x, y: untyped): untyped = y <=% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) >= unsigned(y)``.
template `>%` *(x, y: untyped): untyped = y <% x
## treats `x` and `y` as unsigned and compares them.
## Returns true iff ``unsigned(x) > unsigned(y)``.
proc `$`*(x: int): string {.magic: "IntToStr", noSideEffect.}
## The stringify operator for an integer argument. Returns `x`
## converted to a decimal string. ``$`` is Nim's general way of
## spelling `toString`:idx:.
proc `$`*(x: int64): string {.magic: "Int64ToStr", noSideEffect.}
## The stringify operator for an integer argument. Returns `x`
## converted to a decimal string.
when not defined(nimscript):
when not defined(JS) and hasAlloc:
proc `$` *(x: uint64): string {.noSideEffect.}
## The stringify operator for an unsigned integer argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: float): string {.magic: "FloatToStr", noSideEffect.}
## The stringify operator for a float argument. Returns `x`
## converted to a decimal string.
proc `$` *(x: bool): string {.magic: "BoolToStr", noSideEffect.}
## The stringify operator for a boolean argument. Returns `x`
## converted to the string "false" or "true".
proc `$` *(x: char): string {.magic: "CharToStr", noSideEffect.}
## The stringify operator for a character argument. Returns `x`
## converted to a string.
proc `$` *(x: cstring): string {.magic: "CStrToStr", noSideEffect.}
## The stringify operator for a CString argument. Returns `x`
## converted to a string.
proc `$` *(x: string): string {.magic: "StrToStr", noSideEffect.}
## The stringify operator for a string argument. Returns `x`
## as it is. This operator is useful for generic code, so
## that ``$expr`` also works if ``expr`` is already a string.
proc `$` *[Enum: enum](x: Enum): string {.magic: "EnumToStr", noSideEffect.}
## The stringify operator for an enumeration argument. This works for
## any enumeration type thanks to compiler magic. If
## a ``$`` operator for a concrete enumeration is provided, this is
## used instead. (In other words: *Overwriting* is possible.)
# undocumented:
proc getRefcount*[T](x: ref T): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*(x: string): int {.importc: "getRefcount", noSideEffect.}
proc getRefcount*[T](x: seq[T]): int {.importc: "getRefcount", noSideEffect.}
## retrieves the reference count of an heap-allocated object. The
## value is implementation-dependent.
const
Inf* {.magic: "Inf".} = 1.0 / 0.0
## contains the IEEE floating point value of positive infinity.
NegInf* {.magic: "NegInf".} = -Inf
## contains the IEEE floating point value of negative infinity.
NaN* {.magic: "NaN".} = 0.0 / 0.0
## contains an IEEE floating point value of *Not A Number*. Note
## that you cannot compare a floating point value to this value
## and expect a reasonable result - use the `classify` procedure
## in the module ``math`` for checking for NaN.
NimMajor*: int = 0
## is the major number of Nim's version.
NimMinor*: int = 17
## is the minor number of Nim's version.
NimPatch*: int = 2
## is the patch number of Nim's version.
NimVersion*: string = $NimMajor & "." & $NimMinor & "." & $NimPatch
## is the version of Nim as a string.
# GC interface:
when not defined(nimscript) and hasAlloc:
proc getOccupiedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process and hold data.
proc getFreeMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process, but do not
## hold any meaningful data.
proc getTotalMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process.
when hasThreadSupport:
proc getOccupiedSharedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the process
## on the shared heap and hold data. This is only available when
## threads are enabled.
proc getFreeSharedMem*(): int {.rtl.}
## returns the number of bytes that are owned by the
## process on the shared heap, but do not hold any meaningful data.
## This is only available when threads are enabled.
proc getTotalSharedMem*(): int {.rtl.}
## returns the number of bytes on the shared heap that are owned by the
## process. This is only available when threads are enabled.
when sizeof(int) <= 2:
type IntLikeForCount = int|int8|int16|char|bool|uint8|enum
else:
type IntLikeForCount = int|int8|int16|int32|char|bool|uint8|uint16|enum
iterator countdown*[T](a, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` down to `b` (inclusive) with the given
## step count. `T` may be any ordinal type, `step` may only
## be positive. **Note**: This fails to count to ``low(int)`` if T = int for
## efficiency reasons.
when T is IntLikeForCount:
var res = int(a)
while res >= int(b):
yield T(res)
dec(res, step)
else:
var res = a
while res >= b:
yield res
dec(res, step)
iterator countup*[S, T](a: S, b: T, step = 1): T {.inline.} =
## Counts from ordinal value `a` up to `b` (inclusive) with the given
## step count. `S`, `T` may be any ordinal type, `step` may only
## be positive. **Note**: This fails to count to ``high(int)`` if T = int for
## efficiency reasons.
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res, step)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res, step)
iterator `..`*[S, T](a: S, b: T): T {.inline.} =
## An alias for `countup`.
when T is IntLikeForCount:
var res = int(a)
while res <= int(b):
yield T(res)
inc(res)
else:
var res: T = T(a)
while res <= b:
yield res
inc(res)
iterator `||`*[S, T](a: S, b: T, annotation=""): T {.
inline, magic: "OmpParFor", sideEffect.} =
## parallel loop iterator. Same as `..` but the loop may run in parallel.
## `annotation` is an additional annotation for the code generator to use.
## Note that the compiler maps that to
## the ``#pragma omp parallel for`` construct of `OpenMP`:idx: and as
## such isn't aware of the parallelism in your code! Be careful! Later
## versions of ``||`` will get proper support by Nim's code generator
## and GC.
discard
{.push stackTrace:off.}
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
## The minimum value of two integers.
if x <= y: x else: y
proc min*[T](x: openArray[T]): T =
## The minimum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if x[i] < result: result = x[i]
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
## The maximum value of two integers.
if y <= x: x else: y
proc max*[T](x: openArray[T]): T =
## The maximum value of `x`. ``T`` needs to have a ``<`` operator.
result = x[0]
for i in 1..high(x):
if result < x[i]: result = x[i]
proc abs*(x: float): float {.magic: "AbsF64", noSideEffect.} =
if x < 0.0: -x else: x
proc min*(x, y: float): float {.magic: "MinF64", noSideEffect.} =
if x <= y: x else: y
proc max*(x, y: float): float {.magic: "MaxF64", noSideEffect.} =
if y <= x: x else: y
proc min*[T](x, y: T): T =
if x <= y: x else: y
proc max*[T](x, y: T): T =
if y <= x: x else: y
{.pop.}
proc clamp*[T](x, a, b: T): T =
## limits the value ``x`` within the interval [a, b]
##
## .. code-block:: Nim
## assert((1.4).clamp(0.0, 1.0) == 1.0)
## assert((0.5).clamp(0.0, 1.0) == 0.5)
if x < a: return a
if x > b: return b
return x
proc len*[T: Ordinal](x: Slice[T]): int {.noSideEffect, inline.} =
## length of ordinal slice, when x.b < x.a returns zero length
##
## .. code-block:: Nim
## assert((0..5).len == 6)
## assert((5..2).len == 0)
result = max(0, ord(x.b) - ord(x.a) + 1)
iterator items*[T](a: openArray[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator mitems*[T](a: var openArray[T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
while i < len(a):
yield a[i]
inc(i)
iterator items*[IX, T](a: array[IX, T]): T {.inline.} =
## iterates over each item of `a`.
var i = low(IX)
if i <= high(IX):
while true:
yield a[i]
if i >= high(IX): break
inc(i)
iterator mitems*[IX, T](a: var array[IX, T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = low(IX)
if i <= high(IX):
while true:
yield a[i]
if i >= high(IX): break
inc(i)
iterator items*[T](a: set[T]): T {.inline.} =
## iterates over each element of `a`. `items` iterates only over the
## elements that are really in the set (and not over the ones the set is
## able to hold).
var i = low(T).int
while i <= high(T).int:
if T(i) in a: yield T(i)
inc(i)
iterator items*(a: cstring): char {.inline.} =
## iterates over each item of `a`.
var i = 0
while a[i] != '\0':
yield a[i]
inc(i)
iterator mitems*(a: var cstring): var char {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
while a[i] != '\0':
yield a[i]
inc(i)
iterator items*(E: typedesc[enum]): E =
## iterates over the values of the enum ``E``.
for v in low(E)..high(E):
yield v
iterator items*[T](s: Slice[T]): T =
## iterates over the slice `s`, yielding each value between `s.a` and `s.b`
## (inclusively).
for x in s.a..s.b:
yield x
iterator pairs*[T](a: openArray[T]): tuple[key: int, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*[T](a: var openArray[T]): tuple[key:int, val:var T]{.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*[IX, T](a: array[IX, T]): tuple[key: IX, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = low(IX)
if i <= high(IX):
while true:
yield (i, a[i])
if i >= high(IX): break
inc(i)
iterator mpairs*[IX, T](a:var array[IX, T]):tuple[key:IX,val:var T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = low(IX)
if i <= high(IX):
while true:
yield (i, a[i])
if i >= high(IX): break
inc(i)
iterator pairs*[T](a: seq[T]): tuple[key: int, val: T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*[T](a: var seq[T]): tuple[key: int, val: var T] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*(a: string): tuple[key: int, val: char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator mpairs*(a: var string): tuple[key: int, val: var char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while i < len(a):
yield (i, a[i])
inc(i)
iterator pairs*(a: cstring): tuple[key: int, val: char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
var i = 0
while a[i] != '\0':
yield (i, a[i])
inc(i)
iterator mpairs*(a: var cstring): tuple[key: int, val: var char] {.inline.} =
## iterates over each item of `a`. Yields ``(index, a[index])`` pairs.
## ``a[index]`` can be modified.
var i = 0
while a[i] != '\0':
yield (i, a[i])
inc(i)
proc isNil*[T](x: seq[T]): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ref T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: string): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T](x: ptr T): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: pointer): bool {.noSideEffect, magic: "IsNil".}
proc isNil*(x: cstring): bool {.noSideEffect, magic: "IsNil".}
proc isNil*[T: proc](x: T): bool {.noSideEffect, magic: "IsNil".}
## Fast check whether `x` is nil. This is sometimes more efficient than
## ``== nil``.
proc `==` *[I, T](x, y: array[I, T]): bool =
for f in low(x)..high(x):
if x[f] != y[f]:
return
result = true
proc `@`*[T](a: openArray[T]): seq[T] =
## turns an openarray into a sequence. This is not as efficient as turning
## a fixed length array into a sequence as it always copies every element
## of `a`.
newSeq(result, a.len)
for i in 0..a.len-1: result[i] = a[i]
proc `&` *[T](x, y: seq[T]): seq[T] {.noSideEffect.} =
## Concatenates two sequences.
## Requires copying of the sequences.
##
## .. code-block:: Nim
## assert(@[1, 2, 3, 4] & @[5, 6] == @[1, 2, 3, 4, 5, 6])
newSeq(result, x.len + y.len)
for i in 0..x.len-1:
result[i] = x[i]
for i in 0..y.len-1:
result[i+x.len] = y[i]
proc `&` *[T](x: seq[T], y: T): seq[T] {.noSideEffect.} =
## Appends element y to the end of the sequence.
## Requires copying of the sequence
##
## .. code-block:: Nim
## assert(@[1, 2, 3] & 4 == @[1, 2, 3, 4])
newSeq(result, x.len + 1)
for i in 0..x.len-1:
result[i] = x[i]
result[x.len] = y
proc `&` *[T](x: T, y: seq[T]): seq[T] {.noSideEffect.} =
## Prepends the element x to the beginning of the sequence.
## Requires copying of the sequence
##
## .. code-block:: Nim
## assert(1 & @[2, 3, 4] == @[1, 2, 3, 4])
newSeq(result, y.len + 1)
result[0] = x
for i in 0..y.len-1:
result[i+1] = y[i]
proc `==` *[T](x, y: seq[T]): bool {.noSideEffect.} =
## Generic equals operator for sequences: relies on a equals operator for
## the element type `T`.
when nimvm:
if x.isNil and y.isNil:
return true
else:
when not defined(JS) or defined(nimphp):
proc seqToPtr[T](x: seq[T]): pointer {.inline, nosideeffect.} =
result = cast[pointer](x)
else:
proc seqToPtr[T](x: seq[T]): pointer {.asmNoStackFrame, nosideeffect.} =
asm """return `x`"""
if seqToPtr(x) == seqToPtr(y):
return true
if x.isNil or y.isNil:
return false
if x.len != y.len:
return false
for i in 0..x.len-1:
if x[i] != y[i]:
return false
return true
proc find*[T, S](a: T, item: S): int {.inline.}=
## Returns the first index of `item` in `a` or -1 if not found. This requires
## appropriate `items` and `==` operations to work.
for i in items(a):
if i == item: return
inc(result)
result = -1
proc contains*[T](a: openArray[T], item: T): bool {.inline.}=
## Returns true if `item` is in `a` or false if not found. This is a shortcut
## for ``find(a, item) >= 0``.
return find(a, item) >= 0
proc pop*[T](s: var seq[T]): T {.inline, noSideEffect.} =
## returns the last item of `s` and decreases ``s.len`` by one. This treats
## `s` as a stack and implements the common *pop* operation.
var L = s.len-1
result = s[L]
setLen(s, L)
iterator fields*[T: tuple|object](x: T): RootObj {.
magic: "Fields", noSideEffect.}
## iterates over every field of `x`. Warning: This really transforms
## the 'for' and unrolls the loop. The current implementation also has a bug
## that affects symbol binding in the loop body.
iterator fields*[S:tuple|object, T:tuple|object](x: S, y: T): tuple[a,b: untyped] {.
magic: "Fields", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This is really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
iterator fieldPairs*[T: tuple|object](x: T): RootObj {.
magic: "FieldPairs", noSideEffect.}
## Iterates over every field of `x` returning their name and value.
##
## When you iterate over objects with different field types you have to use
## the compile time ``when`` instead of a runtime ``if`` to select the code
## you want to run for each type. To perform the comparison use the `is
## operator <manual.html#is-operator>`_. Example:
##
## .. code-block:: Nim
##
## type
## Custom = object
## foo: string
## bar: bool
##
## proc `$`(x: Custom): string =
## result = "Custom:"
## for name, value in x.fieldPairs:
## when value is bool:
## result.add("\n\t" & name & " is " & $value)
## else:
## if value.isNil:
## result.add("\n\t" & name & " (nil)")
## else:
## result.add("\n\t" & name & " '" & value & "'")
##
## Another way to do the same without ``when`` is to leave the task of
## picking the appropriate code to a secondary proc which you overload for
## each field type and pass the `value` to.
##
## Warning: This really transforms the 'for' and unrolls the loop. The
## current implementation also has a bug that affects symbol binding in the
## loop body.
iterator fieldPairs*[S: tuple|object, T: tuple|object](x: S, y: T): tuple[
a, b: untyped] {.
magic: "FieldPairs", noSideEffect.}
## iterates over every field of `x` and `y`.
## Warning: This really transforms the 'for' and unrolls the loop.
## The current implementation also has a bug that affects symbol binding
## in the loop body.
proc `==`*[T: tuple|object](x, y: T): bool =
## generic ``==`` operator for tuples that is lifted from the components
## of `x` and `y`.
for a, b in fields(x, y):
if a != b: return false
return true
proc `<=`*[T: tuple](x, y: T): bool =
## generic ``<=`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return true
proc `<`*[T: tuple](x, y: T): bool =
## generic ``<`` operator for tuples that is lifted from the components
## of `x` and `y`. This implementation uses `cmp`.
for a, b in fields(x, y):
var c = cmp(a, b)
if c < 0: return true
if c > 0: return false
return false
proc `$`*[T: tuple|object](x: T): string =
## generic ``$`` operator for tuples that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## $(23, 45) == "(23, 45)"
## $() == "()"
result = "("
var firstElement = true
for name, value in fieldPairs(x):
if not firstElement: result.add(", ")
result.add(name)
result.add(": ")
when compiles($value):
when compiles(value.isNil):
if value.isNil: result.add "nil"
else: result.add($value)
else:
result.add($value)
firstElement = false
else:
result.add("...")
result.add(")")
proc collectionToString[T: set | seq](x: T, b, e: string): string =
when x is seq:
if x.isNil: return "nil"
result = b
var firstElement = true
for value in items(x):
if not firstElement: result.add(", ")
when compiles(value.isNil):
if value.isNil: result.add "nil"
else: result.add($value)
else:
result.add($value)
firstElement = false
result.add(e)
proc `$`*[T](x: set[T]): string =
## generic ``$`` operator for sets that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## ${23, 45} == "{23, 45}"
collectionToString(x, "{", "}")
proc `$`*[T](x: seq[T]): string =
## generic ``$`` operator for seqs that is lifted from the components
## of `x`. Example:
##
## .. code-block:: nim
## $(@[23, 45]) == "@[23, 45]"
collectionToString(x, "@[", "]")
when false:
# causes bootstrapping to fail as we use array of chars and cstring should
# match better ...
proc `$`*[T, IDX](x: array[IDX, T]): string =
collectionToString(x, "[", "]")
# ----------------- GC interface ---------------------------------------------
when not defined(nimscript) and hasAlloc:
type
GC_Strategy* = enum ## the strategy the GC should use for the application
gcThroughput, ## optimize for throughput
gcResponsiveness, ## optimize for responsiveness (default)
gcOptimizeTime, ## optimize for speed
gcOptimizeSpace ## optimize for memory footprint
{.deprecated: [TGC_Strategy: GC_Strategy].}
when not defined(JS):
proc GC_disable*() {.rtl, inl, benign.}
## disables the GC. If called n-times, n calls to `GC_enable` are needed to
## reactivate the GC. Note that in most circumstances one should only disable
## the mark and sweep phase with `GC_disableMarkAndSweep`.
proc GC_enable*() {.rtl, inl, benign.}
## enables the GC again.
proc GC_fullCollect*() {.rtl, benign.}
## forces a full garbage collection pass.
## Ordinary code does not need to call this (and should not).
proc GC_setStrategy*(strategy: GC_Strategy) {.rtl, deprecated, benign.}
## tells the GC the desired strategy for the application.
## **Deprecated** since version 0.8.14. This has always been a nop.
proc GC_enableMarkAndSweep*() {.rtl, benign.}
proc GC_disableMarkAndSweep*() {.rtl, benign.}
## the current implementation uses a reference counting garbage collector
## with a seldomly run mark and sweep phase to free cycles. The mark and
## sweep phase may take a long time and is not needed if the application
## does not create cycles. Thus the mark and sweep phase can be deactivated
## and activated separately from the rest of the GC.
proc GC_getStatistics*(): string {.rtl, benign.}
## returns an informative string about the GC's activity. This may be useful
## for tweaking.
proc GC_ref*[T](x: ref T) {.magic: "GCref", benign.}
proc GC_ref*[T](x: seq[T]) {.magic: "GCref", benign.}
proc GC_ref*(x: string) {.magic: "GCref", benign.}
## marks the object `x` as referenced, so that it will not be freed until
## it is unmarked via `GC_unref`. If called n-times for the same object `x`,
## n calls to `GC_unref` are needed to unmark `x`.
proc GC_unref*[T](x: ref T) {.magic: "GCunref", benign.}
proc GC_unref*[T](x: seq[T]) {.magic: "GCunref", benign.}
proc GC_unref*(x: string) {.magic: "GCunref", benign.}
## see the documentation of `GC_ref`.
else:
template GC_disable* =
{.warning: "GC_disable is a no-op in JavaScript".}
template GC_enable* =
{.warning: "GC_enable is a no-op in JavaScript".}
template GC_fullCollect* =
{.warning: "GC_fullCollect is a no-op in JavaScript".}
template GC_setStrategy* =
{.warning: "GC_setStrategy is a no-op in JavaScript".}
template GC_enableMarkAndSweep* =
{.warning: "GC_enableMarkAndSweep is a no-op in JavaScript".}
template GC_disableMarkAndSweep* =
{.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}
template GC_ref*[T](x: ref T) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_ref*[T](x: seq[T]) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_ref*(x: string) =
{.warning: "GC_ref is a no-op in JavaScript".}
template GC_unref*[T](x: ref T) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_unref*[T](x: seq[T]) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_unref*(x: string) =
{.warning: "GC_unref is a no-op in JavaScript".}
template GC_getStatistics*(): string =
{.warning: "GC_disableMarkAndSweep is a no-op in JavaScript".}
""
template accumulateResult*(iter: untyped) =
## helps to convert an iterator to a proc.
result = @[]
for x in iter: add(result, x)
# we have to compute this here before turning it off in except.nim anyway ...
const NimStackTrace = compileOption("stacktrace")
template coroutinesSupportedPlatform(): bool =
when defined(sparc) or defined(ELATE) or compileOption("gc", "v2") or
defined(boehmgc) or defined(gogc) or defined(nogc) or defined(gcRegions) or
defined(gcMarkAndSweep):
false
else:
true
when defined(nimCoroutines):
# Explicit opt-in.
when not coroutinesSupportedPlatform():
{.error: "Coroutines are not supported on this architecture and/or garbage collector.".}
const nimCoroutines* = true
elif defined(noNimCoroutines):
# Explicit opt-out.
const nimCoroutines* = false
else:
# Autodetect coroutine support.
const nimCoroutines* = false
{.push checks: off.}
# obviously we cannot generate checking operations here :-)
# because it would yield into an endless recursion
# however, stack-traces are available for most parts
# of the code
var
globalRaiseHook*: proc (e: ref Exception): bool {.nimcall, benign.}
## with this hook you can influence exception handling on a global level.
## If not nil, every 'raise' statement ends up calling this hook. Ordinary
## application code should never set this hook! You better know what you
## do when setting this. If ``globalRaiseHook`` returns false, the
## exception is caught and does not propagate further through the call
## stack.
localRaiseHook* {.threadvar.}: proc (e: ref Exception): bool {.nimcall, benign.}
## with this hook you can influence exception handling on a
## thread local level.
## If not nil, every 'raise' statement ends up calling this hook. Ordinary
## application code should never set this hook! You better know what you
## do when setting this. If ``localRaiseHook`` returns false, the exception
## is caught and does not propagate further through the call stack.
outOfMemHook*: proc () {.nimcall, tags: [], benign.}
## set this variable to provide a procedure that should be called
## in case of an `out of memory`:idx: event. The standard handler
## writes an error message and terminates the program. `outOfMemHook` can
## be used to raise an exception in case of OOM like so:
##
## .. code-block:: nim
##
## var gOutOfMem: ref EOutOfMemory
## new(gOutOfMem) # need to be allocated *before* OOM really happened!
## gOutOfMem.msg = "out of memory"
##
## proc handleOOM() =
## raise gOutOfMem
##
## system.outOfMemHook = handleOOM
##
## If the handler does not raise an exception, ordinary control flow
## continues and the program is terminated.
type
PFrame* = ptr TFrame ## represents a runtime frame of the call stack;
## part of the debugger API.
TFrame* {.importc, nodecl, final.} = object ## the frame itself
prev*: PFrame ## previous frame; used for chaining the call stack
procname*: cstring ## name of the proc that is currently executing
line*: int ## line number of the proc that is currently executing
filename*: cstring ## filename of the proc that is currently executing
len*: int16 ## length of the inspectable slots
calldepth*: int16 ## used for max call depth checking
#{.deprecated: [TFrame: Frame].}
when defined(JS):
proc add*(x: var string, y: cstring) {.asmNoStackFrame.} =
when defined(nimphp):
asm """`x` .= `y`;"""
else:
asm """
var len = `x`[0].length-1;
for (var i = 0; i < `y`.length; ++i) {
`x`[0][len] = `y`.charCodeAt(i);
++len;
}
`x`[0][len] = 0
"""
proc add*(x: var cstring, y: cstring) {.magic: "AppendStrStr".}
elif hasAlloc:
{.push stack_trace:off, profiler:off.}
proc add*(x: var string, y: cstring) =
var i = 0
while y[i] != '\0':
add(x, y[i])
inc(i)
{.pop.}
when defined(nimvarargstyped):
proc echo*(x: varargs[typed, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
## Writes and flushes the parameters to the standard output.
##
## Special built-in that takes a variable number of arguments. Each argument
## is converted to a string via ``$``, so it works for user-defined
## types that have an overloaded ``$`` operator.
## It is roughly equivalent to ``writeLine(stdout, x); flushFile(stdout)``, but
## available for the JavaScript target too.
##
## Unlike other IO operations this is guaranteed to be thread-safe as
## ``echo`` is very often used for debugging convenience. If you want to use
## ``echo`` inside a `proc without side effects
## <manual.html#pragmas-nosideeffect-pragma>`_ you can use `debugEcho <#debugEcho>`_
## instead.
proc debugEcho*(x: varargs[typed, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
## Same as `echo <#echo>`_, but as a special semantic rule, ``debugEcho``
## pretends to be free of side effects, so that it can be used for debugging
## routines marked as `noSideEffect <manual.html#pragmas-nosideeffect-pragma>`_.
else:
proc echo*(x: varargs[expr, `$`]) {.magic: "Echo", tags: [WriteIOEffect],
benign, sideEffect.}
proc debugEcho*(x: varargs[expr, `$`]) {.magic: "Echo", noSideEffect,
tags: [], raises: [].}
template newException*(exceptn: typedesc, message: string;
parentException: ref Exception = nil): untyped =
## creates an exception object of type ``exceptn`` and sets its ``msg`` field
## to `message`. Returns the new exception object.
var
e: ref exceptn
new(e)
e.msg = message
e.parent = parentException
e
when hostOS == "standalone":
include "$projectpath/panicoverride"
when not declared(sysFatal):
{.push profiler: off.}
when hostOS == "standalone":
proc sysFatal(exceptn: typedesc, message: string) {.inline.} =
panic(message)
proc sysFatal(exceptn: typedesc, message, arg: string) {.inline.} =
rawoutput(message)
panic(arg)
else:
proc sysFatal(exceptn: typedesc, message: string) {.inline, noReturn.} =
var e: ref exceptn
new(e)
e.msg = message
raise e
proc sysFatal(exceptn: typedesc, message, arg: string) {.inline, noReturn.} =
var e: ref exceptn
new(e)
e.msg = message & arg
raise e
{.pop.}
proc getTypeInfo*[T](x: T): pointer {.magic: "GetTypeInfo", benign.}
## get type information for `x`. Ordinary code should not use this, but
## the `typeinfo` module instead.
{.push stackTrace: off.}
proc abs*(x: int): int {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int8): int8 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int16): int16 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
proc abs*(x: int32): int32 {.magic: "AbsI", noSideEffect.} =
if x < 0: -x else: x
when defined(nimnomagic64):
proc abs*(x: int64): int64 {.magic: "AbsI", noSideEffect.} =
## returns the absolute value of `x`. If `x` is ``low(x)`` (that
## is -MININT for its type), an overflow exception is thrown (if overflow
## checking is turned on).
if x < 0: -x else: x
else:
proc abs*(x: int64): int64 {.magic: "AbsI64", noSideEffect.} =
## returns the absolute value of `x`. If `x` is ``low(x)`` (that
## is -MININT for its type), an overflow exception is thrown (if overflow
## checking is turned on).
if x < 0: -x else: x
{.pop.}
type
FileSeekPos* = enum ## Position relative to which seek should happen
# The values are ordered so that they match with stdio
# SEEK_SET, SEEK_CUR and SEEK_END respectively.
fspSet ## Seek to absolute value
fspCur ## Seek relative to current position
fspEnd ## Seek relative to end
when not defined(JS): #and not defined(nimscript):
{.push stack_trace: off, profiler:off.}
when hasAlloc:
when not defined(gcRegions):
proc initGC() {.gcsafe.}
when not defined(boehmgc) and not defined(useMalloc) and
not defined(gogc) and not defined(gcRegions):
proc initAllocator() {.inline.}
proc initStackBottom() {.inline, compilerproc.} =
# WARNING: This is very fragile! An array size of 8 does not work on my
# Linux 64bit system. -- That's because the stack direction is the other
# way round.
when declared(setStackBottom):
var locals {.volatile.}: pointer
locals = addr(locals)
setStackBottom(locals)
proc initStackBottomWith(locals: pointer) {.inline, compilerproc.} =
# We need to keep initStackBottom around for now to avoid
# bootstrapping problems.
when declared(setStackBottom):
setStackBottom(locals)
{.push profiler: off.}
var
strDesc = TNimType(size: sizeof(string), kind: tyString, flags: {ntfAcyclic})
{.pop.}
# ----------------- IO Part ------------------------------------------------
type
CFile {.importc: "FILE", header: "<stdio.h>",
final, incompletestruct.} = object
File* = ptr CFile ## The type representing a file handle.
FileMode* = enum ## The file mode when opening a file.
fmRead, ## Open the file for read access only.
fmWrite, ## Open the file for write access only.
## If the file does not exist, it will be
## created.
fmReadWrite, ## Open the file for read and write access.
## If the file does not exist, it will be
## created. Existing files will be cleared!
fmReadWriteExisting, ## Open the file for read and write access.
## If the file does not exist, it will not be
## created. The existing file will not be cleared.
fmAppend ## Open the file for writing only; append data
## at the end.
FileHandle* = cint ## type that represents an OS file handle; this is
## useful for low-level file access
{.deprecated: [TFile: File, TFileHandle: FileHandle, TFileMode: FileMode].}
include "system/ansi_c"
proc cmp(x, y: string): int =
when nimvm:
if x < y: result = -1
elif x > y: result = 1
else: result = 0
else:
result = int(c_strcmp(x, y))
when defined(nimscript):
proc readFile*(filename: string): string {.tags: [ReadIOEffect], benign.}
## Opens a file named `filename` for reading, calls `readAll
## <#readAll>`_ and closes the file afterwards. Returns the string.
## Raises an IO exception in case of an error. If # you need to call
## this inside a compile time macro you can use `staticRead
## <#staticRead>`_.
proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
## Opens a file named `filename` for writing. Then writes the
## `content` completely to the file and closes the file afterwards.
## Raises an IO exception in case of an error.
when not defined(nimscript) and hostOS != "standalone":
# text file handling:
var
stdin* {.importc: "stdin", header: "<stdio.h>".}: File
## The standard input stream.
stdout* {.importc: "stdout", header: "<stdio.h>".}: File
## The standard output stream.
stderr* {.importc: "stderr", header: "<stdio.h>".}: File
## The standard error stream.
when defined(windows):
# work-around C's sucking abstraction:
# BUGFIX: stdin and stdout should be binary files!
proc c_setmode(handle, mode: cint) {.
importc: when defined(bcc): "setmode" else: "_setmode",
header: "<io.h>".}
var
O_BINARY {.importc: "O_BINARY", nodecl.}: cint
# we use binary mode on Windows:
c_setmode(c_fileno(stdin), O_BINARY)
c_setmode(c_fileno(stdout), O_BINARY)
c_setmode(c_fileno(stderr), O_BINARY)
when defined(endb):
proc endbStep()
when defined(useStdoutAsStdmsg):
template stdmsg*: File = stdout
else:
template stdmsg*: File = stderr
## Template which expands to either stdout or stderr depending on
## `useStdoutAsStdmsg` compile-time switch.
proc open*(f: var File, filename: string,
mode: FileMode = fmRead, bufSize: int = -1): bool {.tags: [],
benign.}
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
## This throws no exception if the file could not be opened.
proc open*(f: var File, filehandle: FileHandle,
mode: FileMode = fmRead): bool {.tags: [], benign.}
## Creates a ``File`` from a `filehandle` with given `mode`.
##
## Default mode is readonly. Returns true iff the file could be opened.
proc open*(filename: string,
mode: FileMode = fmRead, bufSize: int = -1): File =
## Opens a file named `filename` with given `mode`.
##
## Default mode is readonly. Raises an ``IO`` exception if the file
## could not be opened.
if not open(result, filename, mode, bufSize):
sysFatal(IOError, "cannot open: ", filename)
proc reopen*(f: File, filename: string, mode: FileMode = fmRead): bool {.
tags: [], benign.}
## reopens the file `f` with given `filename` and `mode`. This
## is often used to redirect the `stdin`, `stdout` or `stderr`
## file variables.
##
## Default mode is readonly. Returns true iff the file could be reopened.
proc setStdIoUnbuffered*() {.tags: [], benign.}
## Configures `stdin`, `stdout` and `stderr` to be unbuffered.
proc close*(f: File) {.tags: [], gcsafe.}
## Closes the file.
proc endOfFile*(f: File): bool {.tags: [], benign.}
## Returns true iff `f` is at the end.
proc readChar*(f: File): char {.tags: [ReadIOEffect], deprecated.}
## Reads a single character from the stream `f`. **Deprecated** since
## version 0.16.2. Use some variant of ``readBuffer`` instead.
proc flushFile*(f: File) {.tags: [WriteIOEffect].}
## Flushes `f`'s buffer.
proc readAll*(file: File): TaintedString {.tags: [ReadIOEffect], benign.}
## Reads all data from the stream `file`.
##
## Raises an IO exception in case of an error. It is an error if the
## current file position is not at the beginning of the file.
proc readFile*(filename: string): TaintedString {.tags: [ReadIOEffect], benign.}
## Opens a file named `filename` for reading.
##
## Then calls `readAll <#readAll>`_ and closes the file afterwards.
## Returns the string. Raises an IO exception in case of an error. If
## you need to call this inside a compile time macro you can use
## `staticRead <#staticRead>`_.
proc writeFile*(filename, content: string) {.tags: [WriteIOEffect], benign.}
## Opens a file named `filename` for writing. Then writes the
## `content` completely to the file and closes the file afterwards.
## Raises an IO exception in case of an error.
proc write*(f: File, r: float32) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, i: int) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, i: BiggestInt) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, r: BiggestFloat) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, s: string) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, b: bool) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, c: char) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, c: cstring) {.tags: [WriteIOEffect], benign.}
proc write*(f: File, a: varargs[string, `$`]) {.tags: [WriteIOEffect], benign.}
## Writes a value to the file `f`. May throw an IO exception.
proc readLine*(f: File): TaintedString {.tags: [ReadIOEffect], benign.}
## reads a line of text from the file `f`. May throw an IO exception.
## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
## character(s) are not part of the returned string.
proc readLine*(f: File, line: var TaintedString): bool {.tags: [ReadIOEffect],
benign.}
## reads a line of text from the file `f` into `line`. `line` must not be
## ``nil``! May throw an IO exception.
## A line of text may be delimited by ``LF`` or ``CRLF``. The newline
## character(s) are not part of the returned string. Returns ``false``
## if the end of the file has been reached, ``true`` otherwise. If
## ``false`` is returned `line` contains no new data.
proc writeLn*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
tags: [WriteIOEffect], benign, deprecated.}
## **Deprecated since version 0.11.4:** Use **writeLine** instead.
proc writeLine*[Ty](f: File, x: varargs[Ty, `$`]) {.inline,
tags: [WriteIOEffect], benign.}
## writes the values `x` to `f` and then writes "\\n".
## May throw an IO exception.
proc getFileSize*(f: File): int64 {.tags: [ReadIOEffect], benign.}
## retrieves the file size (in bytes) of `f`.
proc readBytes*(f: File, a: var openArray[int8|uint8], start, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc readChars*(f: File, a: var openArray[char], start, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer `a` starting at ``a[start]``. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
##
## **Warning:** The buffer `a` must be pre-allocated. This can be done
## using, for example, ``newString``.
proc readBuffer*(f: File, buffer: pointer, len: Natural): int {.
tags: [ReadIOEffect], benign.}
## reads `len` bytes into the buffer pointed to by `buffer`. Returns
## the actual number of bytes that have been read which may be less than
## `len` (if not as many bytes are remaining), but not greater.
proc writeBytes*(f: File, a: openArray[int8|uint8], start, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeChars*(f: File, a: openArray[char], start, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of ``a[start..start+len-1]`` to the file `f`. Returns
## the number of actual written bytes, which may be less than `len` in case
## of an error.
proc writeBuffer*(f: File, buffer: pointer, len: Natural): int {.
tags: [WriteIOEffect], benign.}
## writes the bytes of buffer pointed to by the parameter `buffer` to the
## file `f`. Returns the number of actual written bytes, which may be less
## than `len` in case of an error.
proc setFilePos*(f: File, pos: int64, relativeTo: FileSeekPos = fspSet) {.benign.}
## sets the position of the file pointer that is used for read/write
## operations. The file's first byte has the index zero.
proc getFilePos*(f: File): int64 {.benign.}
## retrieves the current position of the file pointer that is used to
## read from the file `f`. The file's first byte has the index zero.
proc getFileHandle*(f: File): FileHandle
## returns the OS file handle of the file ``f``. This is only useful for
## platform specific programming.
when not defined(nimfix):
{.deprecated: [fileHandle: getFileHandle].}
when declared(newSeq):
proc cstringArrayToSeq*(a: cstringArray, len: Natural): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## of length ``len``.
newSeq(result, len)
for i in 0..len-1: result[i] = $a[i]
proc cstringArrayToSeq*(a: cstringArray): seq[string] =
## converts a ``cstringArray`` to a ``seq[string]``. `a` is supposed to be
## terminated by ``nil``.
var L = 0
while a[L] != nil: inc(L)
result = cstringArrayToSeq(a, L)
# -------------------------------------------------------------------------
when declared(alloc0) and declared(dealloc):
proc allocCStringArray*(a: openArray[string]): cstringArray =
## creates a NULL terminated cstringArray from `a`. The result has to
## be freed with `deallocCStringArray` after it's not needed anymore.
result = cast[cstringArray](alloc0((a.len+1) * sizeof(cstring)))
let x = cast[ptr UncheckedArray[string]](a)
for i in 0 .. a.high:
result[i] = cast[cstring](alloc0(x[i].len+1))
copyMem(result[i], addr(x[i][0]), x[i].len)
proc deallocCStringArray*(a: cstringArray) =
## frees a NULL terminated cstringArray.
var i = 0
while a[i] != nil:
dealloc(a[i])
inc(i)
dealloc(a)
when not defined(nimscript):
proc atomicInc*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## atomic increment of `memLoc`. Returns the value after the operation.
proc atomicDec*(memLoc: var int, x: int = 1): int {.inline,
discardable, benign.}
## atomic decrement of `memLoc`. Returns the value after the operation.
include "system/atomics"
type
PSafePoint = ptr TSafePoint
TSafePoint {.compilerproc, final.} = object
prev: PSafePoint # points to next safe point ON THE STACK
status: int
context: C_JmpBuf
hasRaiseAction: bool
raiseAction: proc (e: ref Exception): bool {.closure.}
SafePoint = TSafePoint
# {.deprecated: [TSafePoint: SafePoint].}
when declared(initAllocator):
initAllocator()
when hasThreadSupport:
const insideRLocksModule = false
include "system/syslocks"
when hostOS != "standalone": include "system/threads"
elif not defined(nogc) and not defined(nimscript):
when not defined(useNimRtl) and not defined(createNimRtl): initStackBottom()
when declared(initGC): initGC()
when not defined(nimscript):
proc setControlCHook*(hook: proc () {.noconv.} not nil)
## allows you to override the behaviour of your application when CTRL+C
## is pressed. Only one such hook is supported.
proc writeStackTrace*() {.tags: [WriteIOEffect], gcsafe.}
## writes the current stack trace to ``stderr``. This is only works
## for debug builds.
when hostOS != "standalone":
proc getStackTrace*(): string {.gcsafe.}
## gets the current stack trace. This only works for debug builds.
proc getStackTrace*(e: ref Exception): string {.gcsafe.}
## gets the stack trace associated with `e`, which is the stack that
## lead to the ``raise`` statement. This only works for debug builds.
{.push stack_trace: off, profiler:off.}
when defined(memtracker):
include "system/memtracker"
when not defined(nimscript):
proc zeroMem(p: pointer, size: Natural) =
c_memset(p, 0, size)
when declared(memTrackerOp):
memTrackerOp("zeroMem", p, size)
proc copyMem(dest, source: pointer, size: Natural) =
c_memcpy(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("copyMem", dest, size)
proc moveMem(dest, source: pointer, size: Natural) =
c_memmove(dest, source, size)
when declared(memTrackerOp):
memTrackerOp("moveMem", dest, size)
proc equalMem(a, b: pointer, size: Natural): bool =
c_memcmp(a, b, size) == 0
when hostOS == "standalone":
include "system/embedded"
else:
include "system/excpt"
include "system/chcks"
# we cannot compile this with stack tracing on
# as it would recurse endlessly!
include "system/arithm"
{.pop.} # stack trace
{.pop.} # stack trace
when hostOS != "standalone" and not defined(nimscript):
include "system/dyncalls"
when not defined(nimscript):
include "system/sets"
when defined(gogc):
const GenericSeqSize = (3 * sizeof(int))
else:
const GenericSeqSize = (2 * sizeof(int))
proc getDiscriminant(aa: pointer, n: ptr TNimNode): int =
sysAssert(n.kind == nkCase, "getDiscriminant: node != nkCase")
var d: int
var a = cast[ByteAddress](aa)
case n.typ.size
of 1: d = ze(cast[ptr int8](a +% n.offset)[])
of 2: d = ze(cast[ptr int16](a +% n.offset)[])
of 4: d = int(cast[ptr int32](a +% n.offset)[])
else: sysAssert(false, "getDiscriminant: invalid n.typ.size")
return d
proc selectBranch(aa: pointer, n: ptr TNimNode): ptr TNimNode =
var discr = getDiscriminant(aa, n)
if discr <% n.len:
result = n.sons[discr]
if result == nil: result = n.sons[n.len]
# n.sons[n.len] contains the ``else`` part (but may be nil)
else:
result = n.sons[n.len]
{.push profiler:off.}
when hasAlloc: include "system/mmdisp"
{.pop.}
{.push stack_trace: off, profiler:off.}
when hasAlloc: include "system/sysstr"
{.pop.}
when hostOS != "standalone": include "system/sysio"
when hasThreadSupport:
when hostOS != "standalone": include "system/channels"
else:
include "system/sysio"
when not defined(nimscript) and hostOS != "standalone":
iterator lines*(filename: string): TaintedString {.tags: [ReadIOEffect].} =
## Iterates over any line in the file named `filename`.
##
## If the file does not exist `EIO` is raised. The trailing newline
## character(s) are removed from the iterated lines. Example:
##
## .. code-block:: nim
## import strutils
##
## proc transformLetters(filename: string) =
## var buffer = ""
## for line in filename.lines:
## buffer.add(line.replace("a", "0") & '\x0A')
## writeFile(filename, buffer)
var f = open(filename, bufSize=8000)
defer: close(f)
var res = TaintedString(newStringOfCap(80))
while f.readLine(res): yield res
iterator lines*(f: File): TaintedString {.tags: [ReadIOEffect].} =
## Iterate over any line in the file `f`.
##
## The trailing newline character(s) are removed from the iterated lines.
## Example:
##
## .. code-block:: nim
## proc countZeros(filename: File): tuple[lines, zeros: int] =
## for line in filename.lines:
## for letter in line:
## if letter == '0':
## result.zeros += 1
## result.lines += 1
var res = TaintedString(newStringOfCap(80))
while f.readLine(res): yield res
when not defined(nimscript) and hasAlloc:
include "system/assign"
include "system/repr"
when hostOS != "standalone" and not defined(nimscript):
proc getCurrentException*(): ref Exception {.compilerRtl, inl, benign.} =
## retrieves the current exception; if there is none, nil is returned.
result = currException
proc getCurrentExceptionMsg*(): string {.inline, benign.} =
## retrieves the error message that was attached to the current
## exception; if there is none, "" is returned.
var e = getCurrentException()
return if e == nil: "" else: e.msg
proc onRaise*(action: proc(e: ref Exception): bool{.closure.}) =
## can be used in a ``try`` statement to setup a Lisp-like
## `condition system`:idx:\: This prevents the 'raise' statement to
## raise an exception but instead calls ``action``.
## If ``action`` returns false, the exception has been handled and
## does not propagate further through the call stack.
if not isNil(excHandler):
excHandler.hasRaiseAction = true
excHandler.raiseAction = action
proc setCurrentException*(exc: ref Exception) {.inline, benign.} =
## sets the current exception.
##
## **Warning**: Only use this if you know what you are doing.
currException = exc
{.push stack_trace: off, profiler:off.}
when defined(endb) and not defined(nimscript):
include "system/debugger"
when defined(profiler) or defined(memProfiler):
include "system/profiler"
{.pop.} # stacktrace
when not defined(nimscript):
proc rawProc*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## retrieves the raw proc pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClP_0;
""".}
proc rawEnv*[T: proc](x: T): pointer {.noSideEffect, inline.} =
## retrieves the raw environment pointer of the closure `x`. This is
## useful for interfacing closures with C.
{.emit: """
`result` = `x`.ClE_0;
""".}
proc finished*[T: proc](x: T): bool {.noSideEffect, inline.} =
## can be used to determine if a first class iterator has finished.
{.emit: """
`result` = ((NI*) `x`.ClE_0)[1] < 0;
""".}
elif defined(JS):
# Stubs:
proc getOccupiedMem(): int = return -1
proc getFreeMem(): int = return -1
proc getTotalMem(): int = return -1
proc dealloc(p: pointer) = discard
proc alloc(size: Natural): pointer = discard
proc alloc0(size: Natural): pointer = discard
proc realloc(p: pointer, newsize: Natural): pointer = discard
proc allocShared(size: Natural): pointer = discard
proc allocShared0(size: Natural): pointer = discard
proc deallocShared(p: pointer) = discard
proc reallocShared(p: pointer, newsize: Natural): pointer = discard
when defined(JS):
include "system/jssys"
include "system/reprjs"
elif defined(nimscript):
proc cmp(x, y: string): int =
if x == y: return 0
if x < y: return -1
return 1
when defined(nimffi):
include "system/sysio"
proc quit*(errormsg: string, errorcode = QuitFailure) {.noReturn.} =
## a shorthand for ``echo(errormsg); quit(errorcode)``.
echo(errormsg)
quit(errorcode)
{.pop.} # checks
{.pop.} # hints
when not defined(JS):
proc likely_proc(val: bool): bool {.importc: "likely", nodecl, nosideeffect.}
proc unlikely_proc(val: bool): bool {.importc: "unlikely", nodecl, nosideeffect.}
template likely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be true.
##
## You can use this template to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: nim
## for value in inputValues:
## if likely(value <= 100):
## process(value)
## else:
## echo "Value too big!"
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
likely_proc(val)
template unlikely*(val: bool): bool =
## Hints the optimizer that `val` is likely going to be false.
##
## You can use this proc to decorate a branch condition. On certain
## platforms this can help the processor predict better which branch is
## going to be run. Example:
##
## .. code-block:: nim
## for value in inputValues:
## if unlikely(value > 100):
## echo "Value too big!"
## else:
## process(value)
##
## On backends without branch prediction (JS and the nimscript VM), this
## template will not affect code execution.
when nimvm:
val
else:
when defined(JS):
val
else:
unlikely_proc(val)
proc `/`*(x, y: int): float {.inline, noSideEffect.} =
## integer division that results in a float.
result = toFloat(x) / toFloat(y)
template spliceImpl(s, a, L, b: untyped): untyped =
# make room for additional elements or cut:
var shift = b.len - max(0,L) # ignore negative slice size
var newLen = s.len + shift
if shift > 0:
# enlarge:
setLen(s, newLen)
for i in countdown(newLen-1, a+b.len): shallowCopy(s[i], s[i-shift])
else:
for i in countup(a+b.len, newLen-1): shallowCopy(s[i], s[i-shift])
# cut down:
setLen(s, newLen)
# fill the hole:
for i in 0 .. <b.len: s[a+i] = b[i]
when hasAlloc or defined(nimscript):
proc `[]`*(s: string, x: Slice[int]): string {.inline.} =
## slice operation for strings.
## returns the inclusive range [s[x.a], s[x.b]]:
##
## .. code-block:: nim
## var s = "abcdef"
## assert s[1..3] == "bcd"
result = s.substr(x.a, x.b)
proc `[]=`*(s: var string, x: Slice[int], b: string) =
## slice assignment for strings. If
## ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed:
##
## .. code-block:: nim
## var s = "abcdef"
## s[1 .. ^2] = "xyz"
## assert s == "axyzf"
var a = x.a
var L = x.b - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc `[]`*[Idx, T](a: array[Idx, T], x: Slice[int]): seq[T] =
## slice operation for arrays.
## returns the inclusive range [a[x.a], a[x.b]]:
##
## .. code-block:: nim
## var a = [1,2,3,4]
## assert a[0..2] == @[1,2,3]
when low(a) < 0:
{.error: "Slicing for arrays with negative indices is unsupported.".}
var L = x.b - x.a + 1
result = newSeq[T](L)
for i in 0.. <L: result[i] = a[i + x.a]
proc `[]=`*[Idx, T](a: var array[Idx, T], x: Slice[int], b: openArray[T]) =
## slice assignment for arrays.
when low(a) < 0:
{.error: "Slicing for arrays with negative indices is unsupported.".}
var L = x.b - x.a + 1
if L == b.len:
for i in 0 .. <L: a[i+x.a] = b[i]
else:
sysFatal(RangeError, "different lengths for slice assignment")
proc `[]`*[Idx, T](a: array[Idx, T], x: Slice[Idx]): seq[T] =
## slice operation for arrays.
var L = ord(x.b) - ord(x.a) + 1
newSeq(result, L)
for i in 0.. <L:
result[i] = a[Idx(ord(x.a) + i)]
proc `[]=`*[Idx, T](a: var array[Idx, T], x: Slice[Idx], b: openArray[T]) =
## slice assignment for arrays.
var L = ord(x.b) - ord(x.a) + 1
if L == b.len:
for i in 0 .. <L:
a[Idx(ord(x.a) + i)] = b[i]
else:
sysFatal(RangeError, "different lengths for slice assignment")
proc `[]`*[T](s: seq[T], x: Slice[int]): seq[T] =
## slice operation for sequences.
## returns the inclusive range [s[x.a], s[x.b]]:
##
## .. code-block:: nim
## var s = @[1,2,3,4]
## assert s[0..2] == @[1,2,3]
var a = x.a
var L = x.b - a + 1
newSeq(result, L)
for i in 0.. <L: result[i] = s[i + a]
proc `[]=`*[T](s: var seq[T], x: Slice[int], b: openArray[T]) =
## slice assignment for sequences. If
## ``b.len`` is not exactly the number of elements that are referred to
## by `x`, a `splice`:idx: is performed.
var a = x.a
var L = x.b - a + 1
if L == b.len:
for i in 0 .. <L: s[i+a] = b[i]
else:
spliceImpl(s, a, L, b)
proc slurp*(filename: string): string {.magic: "Slurp".}
## This is an alias for `staticRead <#staticRead>`_.
proc staticRead*(filename: string): string {.magic: "Slurp".}
## Compile-time `readFile <#readFile>`_ proc for easy `resource`:idx:
## embedding:
##
## .. code-block:: nim
## const myResource = staticRead"mydatafile.bin"
##
## `slurp <#slurp>`_ is an alias for ``staticRead``.
proc gorge*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## This is an alias for `staticExec <#staticExec>`_.
proc staticExec*(command: string, input = "", cache = ""): string {.
magic: "StaticExec".} = discard
## Executes an external process at compile-time.
## if `input` is not an empty string, it will be passed as a standard input
## to the executed program.
##
## .. code-block:: nim
## const buildInfo = "Revision " & staticExec("git rev-parse HEAD") &
## "\nCompiled on " & staticExec("uname -v")
##
## `gorge <#gorge>`_ is an alias for ``staticExec``. Note that you can use
## this proc inside a pragma like `passC <nimc.html#passc-pragma>`_ or `passL
## <nimc.html#passl-pragma>`_.
##
## If ``cache`` is not empty, the results of ``staticExec`` are cached within
## the ``nimcache`` directory. Use ``--forceBuild`` to get rid of this caching
## behaviour then. ``command & input & cache`` (the concatenated string) is
## used to determine whether the entry in the cache is still valid. You can
## use versioning information for ``cache``:
##
## .. code-block:: nim
## const stateMachine = staticExec("dfaoptimizer", "input", "0.8.0")
proc gorgeEx*(command: string, input = "", cache = ""): tuple[output: string,
exitCode: int] =
## Same as `gorge` but also returns the precious exit code.
discard
proc `+=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
magic: "Inc", noSideEffect.}
## Increments an ordinal
proc `-=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
magic: "Dec", noSideEffect.}
## Decrements an ordinal
proc `*=`*[T: SomeOrdinal|uint|uint64](x: var T, y: T) {.
inline, noSideEffect.} =
## Binary `*=` operator for ordinals
x = x * y
proc `+=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Increments in place a floating point number
x = x + y
proc `-=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Decrements in place a floating point number
x = x - y
proc `*=`*[T: float|float32|float64] (x: var T, y: T) {.
inline, noSideEffect.} =
## Multiplies in place a floating point number
x = x * y
proc `/=`*(x: var float64, y: float64) {.inline, noSideEffect.} =
## Divides in place a floating point number
x = x / y
proc `/=`*[T: float|float32](x: var T, y: T) {.inline, noSideEffect.} =
## Divides in place a floating point number
x = x / y
proc `&=`* (x: var string, y: string) {.magic: "AppendStrStr", noSideEffect.}
template `&=`*(x, y: typed) =
## generic 'sink' operator for Nim. For files an alias for ``write``.
## If not specialized further an alias for ``add``.
add(x, y)
when declared(File):
template `&=`*(f: File, x: typed) = write(f, x)
proc astToStr*[T](x: T): string {.magic: "AstToStr", noSideEffect.}
## converts the AST of `x` into a string representation. This is very useful
## for debugging.
proc instantiationInfo*(index = -1, fullPaths = false): tuple[
filename: string, line: int] {. magic: "InstantiationInfo", noSideEffect.}
## provides access to the compiler's instantiation stack line information
## of a template.
##
## While similar to the `caller info`:idx: of other languages, it is determined
## at compile time.
##
## This proc is mostly useful for meta programming (eg. ``assert`` template)
## to retrieve information about the current filename and line number.
## Example:
##
## .. code-block:: nim
## import strutils
##
## template testException(exception, code: expr): stmt =
## try:
## let pos = instantiationInfo()
## discard(code)
## echo "Test failure at $1:$2 with '$3'" % [pos.filename,
## $pos.line, astToStr(code)]
## assert false, "A test expecting failure succeeded?"
## except exception:
## discard
##
## proc tester(pos: int): int =
## let
## a = @[1, 2, 3]
## result = a[pos]
##
## when isMainModule:
## testException(IndexError, tester(30))
## testException(IndexError, tester(1))
## # --> Test failure at example.nim:20 with 'tester(1)'
template currentSourcePath*: string = instantiationInfo(-1, true).filename
## returns the full file-system path of the current source
proc raiseAssert*(msg: string) {.noinline.} =
sysFatal(AssertionError, msg)
proc failedAssertImpl*(msg: string) {.raises: [], tags: [].} =
# trick the compiler to not list ``AssertionError`` when called
# by ``assert``.
type Hide = proc (msg: string) {.noinline, raises: [], noSideEffect,
tags: [].}
{.deprecated: [THide: Hide].}
Hide(raiseAssert)(msg)
template assert*(cond: bool, msg = "") =
## Raises ``AssertionError`` with `msg` if `cond` is false. Note
## that ``AssertionError`` is hidden from the effect system, so it doesn't
## produce ``{.raises: [AssertionError].}``. This exception is only supposed
## to be caught by unit testing frameworks.
## The compiler may not generate any code at all for ``assert`` if it is
## advised to do so through the ``-d:release`` or ``--assertions:off``
## `command line switches <nimc.html#command-line-switches>`_.
bind instantiationInfo
mixin failedAssertImpl
when compileOption("assertions"):
{.line.}:
if not cond: failedAssertImpl(astToStr(cond) & ' ' & msg)
template doAssert*(cond: bool, msg = "") =
## same as `assert` but is always turned on and not affected by the
## ``--assertions`` command line switch.
bind instantiationInfo
{.line: instantiationInfo().}:
if not cond:
raiseAssert(astToStr(cond) & ' ' & msg)
iterator items*[T](a: seq[T]): T {.inline.} =
## iterates over each item of `a`.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "seq modified while iterating over it")
iterator mitems*[T](a: var seq[T]): var T {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "seq modified while iterating over it")
iterator items*(a: string): char {.inline.} =
## iterates over each item of `a`.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "string modified while iterating over it")
iterator mitems*(a: var string): var char {.inline.} =
## iterates over each item of `a` so that you can modify the yielded value.
var i = 0
let L = len(a)
while i < L:
yield a[i]
inc(i)
assert(len(a) == L, "string modified while iterating over it")
when not defined(nimhygiene):
{.pragma: inject.}
template onFailedAssert*(msg, code: untyped): untyped {.dirty.} =
## Sets an assertion failure handler that will intercept any assert
## statements following `onFailedAssert` in the current module scope.
##
## .. code-block:: nim
## # module-wide policy to change the failed assert
## # exception type in order to include a lineinfo
## onFailedAssert(msg):
## var e = new(TMyError)
## e.msg = msg
## e.lineinfo = instantiationInfo(-2)
## raise e
##
template failedAssertImpl(msgIMPL: string): untyped {.dirty.} =
let msg = msgIMPL
code
proc shallow*[T](s: var seq[T]) {.noSideEffect, inline.} =
## marks a sequence `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`. This is only useful for optimization
## purposes.
when not defined(JS) and not defined(nimscript):
var s = cast[PGenericSeq](s)
s.reserved = s.reserved or seqShallowFlag
proc shallow*(s: var string) {.noSideEffect, inline.} =
## marks a string `s` as `shallow`:idx:. Subsequent assignments will not
## perform deep copies of `s`. This is only useful for optimization
## purposes.
when not defined(JS) and not defined(nimscript):
var s = cast[PGenericSeq](s)
s.reserved = s.reserved or seqShallowFlag
type
NimNodeObj = object
NimNode* {.magic: "PNimrodNode".} = ref NimNodeObj
## represents a Nim AST node. Macros operate on this type.
{.deprecated: [PNimrodNode: NimNode].}
when false:
template eval*(blk: stmt): stmt =
## executes a block of code at compile time just as if it was a macro
## optionally, the block can return an AST tree that will replace the
## eval expression
macro payload: stmt {.gensym.} = blk
payload()
when hasAlloc:
proc insert*(x: var string, item: string, i = 0.Natural) {.noSideEffect.} =
## inserts `item` into `x` at position `i`.
var xl = x.len
setLen(x, xl+item.len)
var j = xl-1
while j >= i:
shallowCopy(x[j+item.len], x[j])
dec(j)
j = 0
while j < item.len:
x[j+i] = item[j]
inc(j)
proc compiles*(x: untyped): bool {.magic: "Compiles", noSideEffect, compileTime.} =
## Special compile-time procedure that checks whether `x` can be compiled
## without any semantic error.
## This can be used to check whether a type supports some operation:
##
## .. code-block:: Nim
## when compiles(3 + 4):
## echo "'+' for integers is available"
discard
when declared(initDebugger):
initDebugger()
when hasAlloc:
# XXX: make these the default (or implement the NilObject optimization)
proc safeAdd*[T](x: var seq[T], y: T) {.noSideEffect.} =
## Adds ``y`` to ``x`` unless ``x`` is not yet initialized; in that case,
## ``x`` becomes ``@[y]``
if x == nil: x = @[y]
else: x.add(y)
proc safeAdd*(x: var string, y: char) =
## Adds ``y`` to ``x``. If ``x`` is ``nil`` it is initialized to ``""``
if x == nil: x = ""
x.add(y)
proc safeAdd*(x: var string, y: string) =
## Adds ``y`` to ``x`` unless ``x`` is not yet initalized; in that
## case, ``x`` becomes ``y``
if x == nil: x = y
else: x.add(y)
proc locals*(): RootObj {.magic: "Plugin", noSideEffect.} =
## generates a tuple constructor expression listing all the local variables
## in the current scope. This is quite fast as it does not rely
## on any debug or runtime information. Note that in contrast to what
## the official signature says, the return type is not ``RootObj`` but a
## tuple of a structure that depends on the current scope. Example:
##
## .. code-block:: nim
## proc testLocals() =
## var
## a = "something"
## b = 4
## c = locals()
## d = "super!"
##
## b = 1
## for name, value in fieldPairs(c):
## echo "name ", name, " with value ", value
## echo "B is ", b
## # -> name a with value something
## # -> name b with value 4
## # -> B is 1
discard
when hasAlloc and not defined(nimscript) and not defined(JS):
proc deepCopy*[T](x: var T, y: T) {.noSideEffect, magic: "DeepCopy".} =
## performs a deep copy of `y` and copies it into `x`.
## This is also used by the code generator
## for the implementation of ``spawn``.
discard
include "system/deepcopy"
proc procCall*(x: untyped) {.magic: "ProcCall", compileTime.} =
## special magic to prohibit dynamic binding for `method`:idx: calls.
## This is similar to `super`:idx: in ordinary OO languages.
##
## .. code-block:: nim
## # 'someMethod' will be resolved fully statically:
## procCall someMethod(a, b)
discard
proc `^`*[T](x: int; y: openArray[T]): int {.noSideEffect, magic: "Roof".}
proc `^`*(x: int): int {.noSideEffect, magic: "Roof".} =
## builtin `roof`:idx: operator that can be used for convenient array access.
## ``a[^x]`` is rewritten to ``a[a.len-x]``. However currently the ``a``
## expression must not have side effects for this to compile. Note that since
## this is a builtin, it automatically works for all kinds of
## overloaded ``[]`` or ``[]=`` accessors.
discard
template `..^`*(a, b: untyped): untyped =
## a shortcut for '.. ^' to avoid the common gotcha that a space between
## '..' and '^' is required.
a .. ^b
template `..<`*(a, b: untyped): untyped {.dirty.} =
## a shortcut for '.. <' to avoid the common gotcha that a space between
## '..' and '<' is required.
a .. <b
iterator `..<`*[S,T](a: S, b: T): T =
var i = T(a)
while i < b:
yield i
inc i
proc xlen*(x: string): int {.magic: "XLenStr", noSideEffect.} = discard
proc xlen*[T](x: seq[T]): int {.magic: "XLenSeq", noSideEffect.} =
## returns the length of a sequence or a string without testing for 'nil'.
## This is an optimization that rarely makes sense.
discard
proc `==` *(x, y: cstring): bool {.magic: "EqCString", noSideEffect,
inline.} =
## Checks for equality between two `cstring` variables.
proc strcmp(a, b: cstring): cint {.noSideEffect,
importc, header: "<string.h>".}
if pointer(x) == pointer(y): result = true
elif x.isNil or y.isNil: result = false
else: result = strcmp(x, y) == 0
template closureScope*(body: untyped): untyped =
## Useful when creating a closure in a loop to capture local loop variables by
## their current iteration values. Example:
##
## .. code-block:: nim
## var myClosure : proc()
## # without closureScope:
## for i in 0 .. 5:
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 5. `j` is changed after closure creation
## # with closureScope:
## for i in 0 .. 5:
## closureScope: # Everything in this scope is locked after closure creation
## let j = i
## if j == 3:
## myClosure = proc() = echo j
## myClosure() # outputs 3
(proc() = body)()
{.pop.} #{.push warning[GcMem]: off, warning[Uninit]: off.}
when defined(nimconfig):
include "system/nimscript"
when defined(windows) and appType == "console" and defined(nimSetUtf8CodePage):
proc setConsoleOutputCP(codepage: cint): cint {.stdcall, dynlib: "kernel32",
importc: "SetConsoleOutputCP".}
discard setConsoleOutputCP(65001) # 65001 - utf-8 codepage